Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2017

Open Access 01-12-2017 | Research

Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: an open-label, multicenter, randomized controlled trial

Authors: Mei-feng Li, Xiao-li Li, Kai-liang Fan, Ying-yi Yu, Jing Gong, Shu-ying Geng, Ya-feng Liang, Ling Huang, Ji-hua Qiu, Xing-han Tian, Wen-ting Wang, Xiao-lu Zhang, Qing-xia Yu, Yuan-feng Zhang, Peng Lin, Li-na Wang, Xin Li, Ming Hou, Lu-yi Liu, Jun Peng

Published in: Journal of Hematology & Oncology | Issue 1/2017

Login to get access

Abstract

Background

Studies in murine models suggested that platelet desialylation was an important mechanism of thrombocytopenia during sepsis.

Methods

First, we performed a prospective, multicenter, observational study that enrolled septic patients with or without thrombocytopenia to determine the association between platelet desialylation and thrombocytopenia in patients with sepsis, severe sepsis, and septic shock. Gender- and age-matched healthy adults were selected as normal controls in analysis of the platelet desialylation levels (study I). Next, we conducted an open-label randomized controlled trial (RCT) in which the patients who had severe sepsis with thrombocytopenia (platelet counts ≤50 × 109/L) were randomly assigned to receive antimicrobial therapy alone (control group) or antimicrobial therapy plus oseltamivir (oseltamivir group) in a 1:1 ratio (study II). The primary outcomes were platelet desialylation level at study entry, overall platelet response rate within 14 days post-randomization, and all-cause mortality within 28 days post-randomization. Secondary outcomes included platelet recovery time, the occurrence of bleeding events, and the amount of platelets transfused within 14 days post-randomization.

Results

The platelet desialylation levels increased significantly in the 127 septic patients with thrombocytopenia compared to the 134 patients without thrombocytopenia. A platelet response was achieved in 45 of the 54 patients in the oseltamivir group (83.3%) compared with 34 of the 52 patients in the control group (65.4%; P = 0.045). The median platelet recovery time was 5 days (interquartile range 4–6) in the oseltamivir group compared with 7 days (interquartile range 5–10) in the control group (P = 0.003). The amount of platelets transfused decreased significantly in the oseltamivir group compared to the control group (P = 0.044). There was no difference in the overall 28-day mortality regardless of whether oseltamivir was used. The Sequential Organ Failure Assessment score and platelet recovery time were independent indicators of oseltamivir therapy. The main reason for all of the mortalities was multiple-organ failure.

Conclusions

Thrombocytopenia was associated with increased platelet desialylation in septic patients. The addition of oseltamivir could significantly increase the platelet response rate, shorten platelet recovery time, and reduce platelet transfusion.

Trial registration

Chinese Clinical Trial Registry, ChiCTR-IPR-16008542.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.CrossRefPubMed Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.CrossRefPubMed
3.
go back to reference Lim SY, Jeon EJ, Kim HJ, et al. The incidence, causes, and prognostic significance of new-onset thrombocytopenia in intensive care units: a prospective cohort study in a Korean hospital. J Korean Med Sci. 2012;27:1418–23.CrossRefPubMedPubMedCentral Lim SY, Jeon EJ, Kim HJ, et al. The incidence, causes, and prognostic significance of new-onset thrombocytopenia in intensive care units: a prospective cohort study in a Korean hospital. J Korean Med Sci. 2012;27:1418–23.CrossRefPubMedPubMedCentral
4.
go back to reference Brogly N, Devos P, Boussekey N, et al. Impact of thrombocytopenia on outcome of patients admitted to ICU for severe community-acquired pneumonia. J Infect. 2007;55:136–40.CrossRefPubMed Brogly N, Devos P, Boussekey N, et al. Impact of thrombocytopenia on outcome of patients admitted to ICU for severe community-acquired pneumonia. J Infect. 2007;55:136–40.CrossRefPubMed
5.
go back to reference Moreau D, Timsit JF, Vesin A, et al. Platelet count decline: an early prognostic marker in critically ill patients with prolonged ICU stays. Chest. 2007;131:1735–41.CrossRefPubMed Moreau D, Timsit JF, Vesin A, et al. Platelet count decline: an early prognostic marker in critically ill patients with prolonged ICU stays. Chest. 2007;131:1735–41.CrossRefPubMed
6.
go back to reference Sharma B, Sharma M, Majumder M, et al. Thrombocytopenia in septic shock patients—a prospective observational study of incidence, risk factors and correlation with clinical outcome. Anaesth Intensive Care. 2007;35:874–80.PubMed Sharma B, Sharma M, Majumder M, et al. Thrombocytopenia in septic shock patients—a prospective observational study of incidence, risk factors and correlation with clinical outcome. Anaesth Intensive Care. 2007;35:874–80.PubMed
7.
go back to reference Vanderschueren S, De Weerdt A, Malbrain M, et al. Thrombocytopenia and prognosis in intensive care. Crit Care Med. 2000;28:1871–6.CrossRefPubMed Vanderschueren S, De Weerdt A, Malbrain M, et al. Thrombocytopenia and prognosis in intensive care. Crit Care Med. 2000;28:1871–6.CrossRefPubMed
8.
go back to reference de Stoppelaar SF, van’t Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost. 2014;112:666–77.CrossRefPubMed de Stoppelaar SF, van’t Veer C, van der Poll T. The role of platelets in sepsis. Thromb Haemost. 2014;112:666–77.CrossRefPubMed
10.
go back to reference Neame PB, Kelton JG, Walker IR, et al. Thrombocytopenia in septicemia: the role of disseminated intravascular coagulation. Blood. 1980;56:88–92.PubMed Neame PB, Kelton JG, Walker IR, et al. Thrombocytopenia in septicemia: the role of disseminated intravascular coagulation. Blood. 1980;56:88–92.PubMed
11.
go back to reference Andonegui G, Kerfoot SM, McNagny K, et al. Platelets express functional Toll-like receptor-4. Blood. 2005;106:2417–23.CrossRefPubMed Andonegui G, Kerfoot SM, McNagny K, et al. Platelets express functional Toll-like receptor-4. Blood. 2005;106:2417–23.CrossRefPubMed
12.
go back to reference Wilson JJ, Neame PB, Kelton JG. Infection-induced thrombocytopenia. Semin Thromb Hemost. 1982;8:217–33.CrossRefPubMed Wilson JJ, Neame PB, Kelton JG. Infection-induced thrombocytopenia. Semin Thromb Hemost. 1982;8:217–33.CrossRefPubMed
13.
go back to reference Francois B, Trimoreau F, Vignon P, et al. Thrombocytopenia in the sepsis syndrome: role of hemophagocytosis and macrophage colony-stimulating factor. Am J Med. 1997;103:114–20.CrossRefPubMed Francois B, Trimoreau F, Vignon P, et al. Thrombocytopenia in the sepsis syndrome: role of hemophagocytosis and macrophage colony-stimulating factor. Am J Med. 1997;103:114–20.CrossRefPubMed
14.
go back to reference Xiang B, Zhang G, Guo L, et al. Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. Nat Commun. 2013;4:2657.PubMedPubMedCentral Xiang B, Zhang G, Guo L, et al. Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. Nat Commun. 2013;4:2657.PubMedPubMedCentral
15.
go back to reference Yin H, Stojanovic-Terpo A, Xu W, et al. Role for platelet glycoprotein Ib-IX and effects of its inhibition in endotoxemia-induced thrombosis, thrombocytopenia, and mortality. Arterioscler Thromb Vasc Biol. 2013;33:2529–37.CrossRefPubMedPubMedCentral Yin H, Stojanovic-Terpo A, Xu W, et al. Role for platelet glycoprotein Ib-IX and effects of its inhibition in endotoxemia-induced thrombosis, thrombocytopenia, and mortality. Arterioscler Thromb Vasc Biol. 2013;33:2529–37.CrossRefPubMedPubMedCentral
16.
go back to reference Pockros PJ, Duchini A, McMillan R, et al. Immune thrombocytopenic purpura in patients with chronic hepatitis C virus infection. Am J Gastroenterol. 2002;97:2040–5.CrossRefPubMed Pockros PJ, Duchini A, McMillan R, et al. Immune thrombocytopenic purpura in patients with chronic hepatitis C virus infection. Am J Gastroenterol. 2002;97:2040–5.CrossRefPubMed
17.
go back to reference Torre D, Pugliese A. Platelets and HIV-1 infection: old and new aspects. Curr HIV Res. 2008;6:411–8.CrossRefPubMed Torre D, Pugliese A. Platelets and HIV-1 infection: old and new aspects. Curr HIV Res. 2008;6:411–8.CrossRefPubMed
18.
go back to reference Tavil B, Unal S, Aytac-Elmas S, et al. Weekly long-term intravenous immunoglobulin for refractory parvovirus B19 and Epstein-Barr virus-induced immune thrombocytopenic purpura. Turk J Pediatr. 2008;50:74–7.PubMed Tavil B, Unal S, Aytac-Elmas S, et al. Weekly long-term intravenous immunoglobulin for refractory parvovirus B19 and Epstein-Barr virus-induced immune thrombocytopenic purpura. Turk J Pediatr. 2008;50:74–7.PubMed
19.
go back to reference Grewal PK, Aziz PV, Uchiyama S, et al. Inducing host protection in pneumococcal sepsis by preactivation of the Ashwell-Morell receptor. Proc Natl Acad Sci U S A. 2013;110:20218–23.CrossRefPubMedPubMedCentral Grewal PK, Aziz PV, Uchiyama S, et al. Inducing host protection in pneumococcal sepsis by preactivation of the Ashwell-Morell receptor. Proc Natl Acad Sci U S A. 2013;110:20218–23.CrossRefPubMedPubMedCentral
22.
go back to reference Roggentin P, Schauer R, Hoyer LL, et al. The sialidase superfamily and its spread by horizontal gene transfer. Mol Microbiol. 1993;9:915–21.CrossRefPubMed Roggentin P, Schauer R, Hoyer LL, et al. The sialidase superfamily and its spread by horizontal gene transfer. Mol Microbiol. 1993;9:915–21.CrossRefPubMed
23.
go back to reference Monti E, Bonten E, D'Azzo A, et al. Sialidases in vertebrates: a family of enzymes tailored for several cell functions. Adv Carbohydr Chem Biochem. 2010;64:403–79.CrossRefPubMed Monti E, Bonten E, D'Azzo A, et al. Sialidases in vertebrates: a family of enzymes tailored for several cell functions. Adv Carbohydr Chem Biochem. 2010;64:403–79.CrossRefPubMed
24.
go back to reference Tribulatti MV, Mucci J, Van Rooijen N, et al. The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas’ disease by reducing the platelet sialic acid contents. Infect Immun. 2005;73:201–7.CrossRefPubMedPubMedCentral Tribulatti MV, Mucci J, Van Rooijen N, et al. The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas’ disease by reducing the platelet sialic acid contents. Infect Immun. 2005;73:201–7.CrossRefPubMedPubMedCentral
25.
go back to reference King SJ, Hippe KR, Weiser JN. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol. 2006;59:961–74.CrossRefPubMed King SJ, Hippe KR, Weiser JN. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol. 2006;59:961–74.CrossRefPubMed
26.
go back to reference Manco S, Hernon F, Yesilkaya H, et al. Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun. 2006;74:4014–20.CrossRefPubMedPubMedCentral Manco S, Hernon F, Yesilkaya H, et al. Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun. 2006;74:4014–20.CrossRefPubMedPubMedCentral
27.
go back to reference Sorensen AL, Rumjantseva V, Nayeb-Hashemi S, et al. Role of sialic acid for platelet life span: exposure of beta-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood. 2009;114:1645–54.CrossRefPubMedPubMedCentral Sorensen AL, Rumjantseva V, Nayeb-Hashemi S, et al. Role of sialic acid for platelet life span: exposure of beta-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood. 2009;114:1645–54.CrossRefPubMedPubMedCentral
28.
go back to reference Hoffmeister KM, Felbinger TW, Falet H, et al. The clearance mechanism of chilled blood platelets. Cell. 2003;112:87–97.CrossRefPubMed Hoffmeister KM, Felbinger TW, Falet H, et al. The clearance mechanism of chilled blood platelets. Cell. 2003;112:87–97.CrossRefPubMed
29.
go back to reference Hoffmeister KM, Josefsson EC, Isaac NA, et al. Glycosylation restores survival of chilled blood platelets. Science. 2003;301:1531–4.CrossRefPubMed Hoffmeister KM, Josefsson EC, Isaac NA, et al. Glycosylation restores survival of chilled blood platelets. Science. 2003;301:1531–4.CrossRefPubMed
30.
go back to reference Jansen AJ, Peng J, Zhao HG, et al. Sialidase inhibition to increase platelet counts: a new treatment option for thrombocytopenia. Am J Hematol. 2015;90:E94–95.CrossRefPubMed Jansen AJ, Peng J, Zhao HG, et al. Sialidase inhibition to increase platelet counts: a new treatment option for thrombocytopenia. Am J Hematol. 2015;90:E94–95.CrossRefPubMed
31.
go back to reference Jansen AJ, Josefsson EC, Rumjantseva V, et al. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbalpha metalloproteinase-mediated cleavage in mice. Blood. 2012;119:1263–73.CrossRefPubMedPubMedCentral Jansen AJ, Josefsson EC, Rumjantseva V, et al. Desialylation accelerates platelet clearance after refrigeration and initiates GPIbalpha metalloproteinase-mediated cleavage in mice. Blood. 2012;119:1263–73.CrossRefPubMedPubMedCentral
32.
go back to reference Hata K, Koseki K, Yamaguchi K, et al. Limited inhibitory effects of oseltamivir and zanamivir on human sialidases. Antimicrob Agents Chemother. 2008;52:3484–91.CrossRefPubMedPubMedCentral Hata K, Koseki K, Yamaguchi K, et al. Limited inhibitory effects of oseltamivir and zanamivir on human sialidases. Antimicrob Agents Chemother. 2008;52:3484–91.CrossRefPubMedPubMedCentral
33.
go back to reference Moore ML, Chi MH, Zhou W, et al. Cutting edge: oseltamivir decreases T cell GM1 expression and inhibits clearance of respiratory syncytial virus: potential role of endogenous sialidase in antiviral immunity. J Immunol. 2007;178:2651–4.CrossRefPubMed Moore ML, Chi MH, Zhou W, et al. Cutting edge: oseltamivir decreases T cell GM1 expression and inhibits clearance of respiratory syncytial virus: potential role of endogenous sialidase in antiviral immunity. J Immunol. 2007;178:2651–4.CrossRefPubMed
34.
go back to reference Shao L, Wu Y, Zhou H, et al. Successful treatment with oseltamivir phosphate in a patient with chronic immune thrombocytopenia positive for anti-GPIb/IX autoantibody. Platelets. 2015;26:495–7.CrossRefPubMed Shao L, Wu Y, Zhou H, et al. Successful treatment with oseltamivir phosphate in a patient with chronic immune thrombocytopenia positive for anti-GPIb/IX autoantibody. Platelets. 2015;26:495–7.CrossRefPubMed
35.
go back to reference Thiolliere F, Serre-Sapin AF, Reignier J, et al. Epidemiology and outcome of thrombocytopenic patients in the intensive care unit: results of a prospective multicenter study. Intensive Care Med. 2013;39:1460–8.CrossRefPubMed Thiolliere F, Serre-Sapin AF, Reignier J, et al. Epidemiology and outcome of thrombocytopenic patients in the intensive care unit: results of a prospective multicenter study. Intensive Care Med. 2013;39:1460–8.CrossRefPubMed
36.
37.
go back to reference Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:762–74.CrossRefPubMed Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:762–74.CrossRefPubMed
38.
go back to reference Greenberg J, Packham MA, Cazenave JP, et al. Effects on platelet function of removal of platelet sialic acid by neuraminidase. Lab Invest. 1975;32:476–84.PubMed Greenberg J, Packham MA, Cazenave JP, et al. Effects on platelet function of removal of platelet sialic acid by neuraminidase. Lab Invest. 1975;32:476–84.PubMed
39.
go back to reference Kotze HF, van Wyk V, Badenhorst PN, et al. Influence of platelet membrane sialic acid and platelet-associated IgG on ageing and sequestration of blood platelets in baboons. Thromb Haemost. 1993;70:676–80.PubMed Kotze HF, van Wyk V, Badenhorst PN, et al. Influence of platelet membrane sialic acid and platelet-associated IgG on ageing and sequestration of blood platelets in baboons. Thromb Haemost. 1993;70:676–80.PubMed
40.
go back to reference Choi SI, Simone JV, Jorney LJ. Neuraminidase-induced thrombocytopenia in rats. Br J Haematol. 1972;22:93–101.CrossRefPubMed Choi SI, Simone JV, Jorney LJ. Neuraminidase-induced thrombocytopenia in rats. Br J Haematol. 1972;22:93–101.CrossRefPubMed
41.
go back to reference Grottum KA, Jeremic M. Neuraminidase injections in rabbits. Reduced platelet surface charge, aggregation and thrombocytopenia. Thromb Diath Haemorrh. 1973;29:461–9.PubMed Grottum KA, Jeremic M. Neuraminidase injections in rabbits. Reduced platelet surface charge, aggregation and thrombocytopenia. Thromb Diath Haemorrh. 1973;29:461–9.PubMed
42.
go back to reference Sakr Y, Vincent JL, Ruokonen E, et al. Sepsis and organ system failure are major determinants of post-intensive care unit mortality. J Crit Care. 2008;23:475–83.CrossRefPubMed Sakr Y, Vincent JL, Ruokonen E, et al. Sepsis and organ system failure are major determinants of post-intensive care unit mortality. J Crit Care. 2008;23:475–83.CrossRefPubMed
43.
go back to reference Ospina-Tascon GA, Buchele GL, Vincent JL. Multicenter, randomized, controlled trials evaluating mortality in intensive care: doomed to fail? Crit Care Med. 2008;36:1311–22.CrossRefPubMed Ospina-Tascon GA, Buchele GL, Vincent JL. Multicenter, randomized, controlled trials evaluating mortality in intensive care: doomed to fail? Crit Care Med. 2008;36:1311–22.CrossRefPubMed
44.
go back to reference Cooper DJ, Rosenfeld JV, Murray L, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493–502.CrossRefPubMed Cooper DJ, Rosenfeld JV, Murray L, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364:1493–502.CrossRefPubMed
45.
go back to reference von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res. 2007;100:27–40.CrossRef von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res. 2007;100:27–40.CrossRef
Metadata
Title
Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: an open-label, multicenter, randomized controlled trial
Authors
Mei-feng Li
Xiao-li Li
Kai-liang Fan
Ying-yi Yu
Jing Gong
Shu-ying Geng
Ya-feng Liang
Ling Huang
Ji-hua Qiu
Xing-han Tian
Wen-ting Wang
Xiao-lu Zhang
Qing-xia Yu
Yuan-feng Zhang
Peng Lin
Li-na Wang
Xin Li
Ming Hou
Lu-yi Liu
Jun Peng
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2017
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-017-0476-1

Other articles of this Issue 1/2017

Journal of Hematology & Oncology 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine