Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2015

Open Access 01-12-2015 | Rapid communication

All-trans retinoic acid arrests cell cycle in leukemic bone marrow stromal cells by increasing intercellular communication through connexin 43-mediated gap junction

Authors: Yao Liu, Qin Wen, Xue-lian Chen, Shi-jie Yang, Lei Gao, Li Gao, Cheng Zhang, Jia-li Li, Xi-xi Xiang, Kai Wan, Xing-hua Chen, Xi Zhang, Jiang-fan Zhong

Published in: Journal of Hematology & Oncology | Issue 1/2015

Login to get access

Abstract

Background

Gap junctional intercellular communication (GJIC) is typically decreased in malignant tumors. Gap junction is not presented between hematopoietic cells but occurred in bone marrow stromal cells (BMSCs). Connexin 43 (Cx43) is the major gap junction (GJ) protein; our previous study revealed that Cx43 expression and GJIC were decreased in acute leukemic BMSCs. All-trans retinoic acid (ATRA) increases GJIC in a variety of cancer cells and has been used to treat acute promyelocytic leukemia, but the effects of ATRA on leukemic BMSCs is unknown. In this study, we evaluated the potential effects of ATRA on cell cycle, proliferation, and apoptosis of leukemic BMSCs. Effects of ATRA on Cx43 expression and GJIC were also examined.

Methods

Human BMSCs obtained from 25 patients with primary acute leukemia, and 10 normal healthy donors were cultured. Effects of ATRA on cell cycle, cell proliferation, and apoptosis were examined with or without co-treatment with amphotericin-B. Cx43 expression was examined at both the mRNA and protein expression levels. GJIC was examined by using a dye transfer assay and measuring the rate of fluorescence recovery after photobleaching (FRAP).

Results

ATRA arrested the cell cycle progression, inhibited cell growth, and increased apoptosis in leukemic BMSCs. Both Cx43 expression and GJIC function were increased by ATRA treatment. Most of the observed effects mediated by ATRA were abolished by amphotericin-B pretreatment.

Conclusions

ATRA arrests cell cycle progression in leukemic BMSCs, likely due to upregulating Cx43 expression and enhancing GJIC function.
Appendix
Available only for authorised users
Literature
1.
go back to reference Leithe E, Sirnes S, Omori Y, Rivedal E. Downregulation of gap junctions in cancer cells. Crit Rev Oncog. 2006;12:225–56.CrossRefPubMed Leithe E, Sirnes S, Omori Y, Rivedal E. Downregulation of gap junctions in cancer cells. Crit Rev Oncog. 2006;12:225–56.CrossRefPubMed
3.
4.
go back to reference Khan Z, Yaiw KC, Wilhelmi V, Lam H, Rahbar A, Stragliotto G, et al. Human cytomegalovirus immediate early proteins promote degradation of connexin 43 and disrupt gap junction communication: implications for a role in gliomagenesis. Carcinogenesis. 2014;35:145–54.CrossRefPubMed Khan Z, Yaiw KC, Wilhelmi V, Lam H, Rahbar A, Stragliotto G, et al. Human cytomegalovirus immediate early proteins promote degradation of connexin 43 and disrupt gap junction communication: implications for a role in gliomagenesis. Carcinogenesis. 2014;35:145–54.CrossRefPubMed
5.
go back to reference Anand RJ, Hackam DJ. The role of gap junctions in health and disease. Crit Care Med. 2005;33:S535–8.CrossRefPubMed Anand RJ, Hackam DJ. The role of gap junctions in health and disease. Crit Care Med. 2005;33:S535–8.CrossRefPubMed
6.
go back to reference Mehta PP, Perez-Stable C, Nadji M, Mian M, Asotra K, Roos BA. Suppression of human prostate cancer cell growth by forced expression of connexin genes. Dev Genet. 1999;24:91–110.CrossRefPubMed Mehta PP, Perez-Stable C, Nadji M, Mian M, Asotra K, Roos BA. Suppression of human prostate cancer cell growth by forced expression of connexin genes. Dev Genet. 1999;24:91–110.CrossRefPubMed
7.
go back to reference Ignatenko NA, Zhang H, Watts GS, Skovan BA, Stringer DE, Gemer EW. The chemopreventive agent alpha-difluoromethylornithine blocks Ki-ras-dependent tumor formation and specific gene expression in Caco-2 cells. MolCarcinog. 2004;39:221–33.CrossRef Ignatenko NA, Zhang H, Watts GS, Skovan BA, Stringer DE, Gemer EW. The chemopreventive agent alpha-difluoromethylornithine blocks Ki-ras-dependent tumor formation and specific gene expression in Caco-2 cells. MolCarcinog. 2004;39:221–33.CrossRef
8.
go back to reference Tang B, Peng ZH, Yu PW, Yu G, Qian F, Zeng DZ, et al. Aberrant expression of Cx43 is associated with the peritoneal metastasis of gastric cancer and Cx43-mediated gap junction enhances gastric cancer cell diapedesis from peritoneal mesothelium. PLoS One. 2013;8:e74527.PubMedCentralCrossRefPubMed Tang B, Peng ZH, Yu PW, Yu G, Qian F, Zeng DZ, et al. Aberrant expression of Cx43 is associated with the peritoneal metastasis of gastric cancer and Cx43-mediated gap junction enhances gastric cancer cell diapedesis from peritoneal mesothelium. PLoS One. 2013;8:e74527.PubMedCentralCrossRefPubMed
9.
go back to reference Zhao K, Wang W, Guan C, Cai J, Wang P. Inhibition of gap junction channel attenuates the migration of breast cancer cells. MolBiol Rep. 2012;39:2607–13. Zhao K, Wang W, Guan C, Cai J, Wang P. Inhibition of gap junction channel attenuates the migration of breast cancer cells. MolBiol Rep. 2012;39:2607–13.
10.
go back to reference Qin H, Shao Q, Belliveau DJ, Laird DW. Aggregated DsRed-tagged Cx43 and over-expressed Cx43 are targeted to lysosomes in human breast cancer cells. Cell CommunAdhes. 2001;8:433–9. Qin H, Shao Q, Belliveau DJ, Laird DW. Aggregated DsRed-tagged Cx43 and over-expressed Cx43 are targeted to lysosomes in human breast cancer cells. Cell CommunAdhes. 2001;8:433–9.
11.
go back to reference Zhu D, Caveney S, Kidder GM, Naus CC. Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc Natl Acad Sci U S A. 1991;88:1883–7.PubMedCentralCrossRefPubMed Zhu D, Caveney S, Kidder GM, Naus CC. Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc Natl Acad Sci U S A. 1991;88:1883–7.PubMedCentralCrossRefPubMed
12.
go back to reference Yang J, Darley RL, Hallett M, Evans WH. Low connexin channel-dependent intercellular communication in human adult hematopoietic progenitor/stem cells: probing mechanisms of autologous stem cell therapy. Cell Commun Adhes. 2009;16:138–45.PubMedCentralCrossRefPubMed Yang J, Darley RL, Hallett M, Evans WH. Low connexin channel-dependent intercellular communication in human adult hematopoietic progenitor/stem cells: probing mechanisms of autologous stem cell therapy. Cell Commun Adhes. 2009;16:138–45.PubMedCentralCrossRefPubMed
13.
go back to reference Rosendaal M, Krenacs TT. Regulatory pathways in blood-forming tissue with particular reference to gap junctional communication. Pathol Oncol Res. 2006;6:243–9.CrossRef Rosendaal M, Krenacs TT. Regulatory pathways in blood-forming tissue with particular reference to gap junctional communication. Pathol Oncol Res. 2006;6:243–9.CrossRef
15.
go back to reference Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature. 1989;339:27–30.CrossRefPubMed Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature. 1989;339:27–30.CrossRefPubMed
16.
go back to reference Ploemacher RE, Mayen AE, De Koning AE, Krenacs T, Rosendaal M. Hematopoiesis: gap junction intercellular communication is likely to be involved in regulation of stroma-dependent proliferation of hemopoietic stem cells. Hematology. 2000;5:133–47.PubMed Ploemacher RE, Mayen AE, De Koning AE, Krenacs T, Rosendaal M. Hematopoiesis: gap junction intercellular communication is likely to be involved in regulation of stroma-dependent proliferation of hemopoietic stem cells. Hematology. 2000;5:133–47.PubMed
17.
go back to reference Hurtado SP, Balduino A, Bodi EC, El-Cheikh MC, de Carvalho AC C, Borojevic R. Connexin expression and gap-junction-mediated cell interactions in an in vitro model of haemopoieticstroma. Cell Tissue Res. 2004;316:65–76.CrossRefPubMed Hurtado SP, Balduino A, Bodi EC, El-Cheikh MC, de Carvalho AC C, Borojevic R. Connexin expression and gap-junction-mediated cell interactions in an in vitro model of haemopoieticstroma. Cell Tissue Res. 2004;316:65–76.CrossRefPubMed
18.
go back to reference Liu Y, Zhang X, Li ZJ, Chen XH. Up-regulation of Cx43 expression and GJIC function in acute leukemia bone marrow stromal cells post-chemotherapy. Leuk Res. 2010;34:631–40.CrossRefPubMed Liu Y, Zhang X, Li ZJ, Chen XH. Up-regulation of Cx43 expression and GJIC function in acute leukemia bone marrow stromal cells post-chemotherapy. Leuk Res. 2010;34:631–40.CrossRefPubMed
19.
go back to reference Zhang X, Liu Y, Si YJ, Chen XH, Li ZJ, Gao L, et al. Effect of Cx43 gene-modified leukemic bone marrow stromal cells on the regulation of Jurkat cell line in vitro. Leuk Res. 2012;36:198–204.CrossRefPubMed Zhang X, Liu Y, Si YJ, Chen XH, Li ZJ, Gao L, et al. Effect of Cx43 gene-modified leukemic bone marrow stromal cells on the regulation of Jurkat cell line in vitro. Leuk Res. 2012;36:198–204.CrossRefPubMed
20.
go back to reference Bodi E, Hurtado SP, Carvalho MA, Borojevic R, Carvalho AC. Gap junctions in hematopoietic stroma control proliferation and differentiation of blood cell precursors. An Acad Bras Cienc. 2004;76:743–56.CrossRefPubMed Bodi E, Hurtado SP, Carvalho MA, Borojevic R, Carvalho AC. Gap junctions in hematopoietic stroma control proliferation and differentiation of blood cell precursors. An Acad Bras Cienc. 2004;76:743–56.CrossRefPubMed
21.
go back to reference Zhang C, Li Y, Chen J, Gao Q, Zacharek A, Kapke A, et al. Bone marrow stromal cells upregulate expression of bone morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin after stroke in rats. Neuroscience. 2006;141:687–95.CrossRefPubMed Zhang C, Li Y, Chen J, Gao Q, Zacharek A, Kapke A, et al. Bone marrow stromal cells upregulate expression of bone morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin after stroke in rats. Neuroscience. 2006;141:687–95.CrossRefPubMed
22.
go back to reference Alves LA, Nihei OK, Fonseca PC, Carvalho AC, Savino W. Gap junction modulation by extracellular signaling molecules: the thymus model. Braz J Med Biol Res. 2000;33:457–65.PubMed Alves LA, Nihei OK, Fonseca PC, Carvalho AC, Savino W. Gap junction modulation by extracellular signaling molecules: the thymus model. Braz J Med Biol Res. 2000;33:457–65.PubMed
23.
go back to reference Tan XY, He JG. The remodeling of connexin in the hypertrophied right ventricular in pulmonary arterial hypertension and the effect of a dual ET receptor antagonist (bosentan). Pathol Res Pract. 2009;205:473–82.CrossRefPubMed Tan XY, He JG. The remodeling of connexin in the hypertrophied right ventricular in pulmonary arterial hypertension and the effect of a dual ET receptor antagonist (bosentan). Pathol Res Pract. 2009;205:473–82.CrossRefPubMed
24.
go back to reference Di Francesco AM, Ubezio P, Torella AR, Meco D, Pierri F, Barone G, et al. Enhanced cell cycle perturbation and apoptosis mediate the synergistic effects of ST1926 and ATRA in neuroblastoma preclinical models. Invest New Drugs. 2012;30:1319–30.CrossRefPubMed Di Francesco AM, Ubezio P, Torella AR, Meco D, Pierri F, Barone G, et al. Enhanced cell cycle perturbation and apoptosis mediate the synergistic effects of ST1926 and ATRA in neuroblastoma preclinical models. Invest New Drugs. 2012;30:1319–30.CrossRefPubMed
25.
go back to reference Zhang KZ, Zhang QB, Zhang QB, Sun HC, Ao JY, Chai ZT, et al. Arsenic trioxide induces differentiation of CD133+ hepatocellular carcinoma cells and prolongs posthepatectomy survival by targeting GLI1 expression in a mouse model. J Hematol Oncol. 2014;7:28.PubMedCentralCrossRefPubMed Zhang KZ, Zhang QB, Zhang QB, Sun HC, Ao JY, Chai ZT, et al. Arsenic trioxide induces differentiation of CD133+ hepatocellular carcinoma cells and prolongs posthepatectomy survival by targeting GLI1 expression in a mouse model. J Hematol Oncol. 2014;7:28.PubMedCentralCrossRefPubMed
26.
go back to reference Chen W, Yan C, Hou J, Pu J, Ouyang J, Wen D. ATRA enhances bystander effect of suicide gene therapy in the treatment of prostate cancer. Urol Oncol. 2008;26:397–405.CrossRefPubMed Chen W, Yan C, Hou J, Pu J, Ouyang J, Wen D. ATRA enhances bystander effect of suicide gene therapy in the treatment of prostate cancer. Urol Oncol. 2008;26:397–405.CrossRefPubMed
27.
go back to reference Yang Y, Qin SK, Wu Q, Wang ZS, Zheng RS, Tong XH, et al. Connexin-dependent gap junction enhancement is involved in the synergistic effect of sorafenib and all-trans retinoic acid on HCC growth inhibition. Oncol Rep. 2014;31:540–50.PubMedCentralPubMed Yang Y, Qin SK, Wu Q, Wang ZS, Zheng RS, Tong XH, et al. Connexin-dependent gap junction enhancement is involved in the synergistic effect of sorafenib and all-trans retinoic acid on HCC growth inhibition. Oncol Rep. 2014;31:540–50.PubMedCentralPubMed
28.
go back to reference Shen ZX, Shi ZZ, Fang J, Gu BW, Li JM, Zhu YM, et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci. 2004;101:5328–35.PubMedCentralCrossRefPubMed Shen ZX, Shi ZZ, Fang J, Gu BW, Li JM, Zhu YM, et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci. 2004;101:5328–35.PubMedCentralCrossRefPubMed
29.
go back to reference Zhang L, Chen Q-S, Xu P-P, Qian Y, Wang A-H, Xiao D, et al. Catechins induced acute promyelocytic leukemia cell apoptosis and triggered PML-RARαoncoprotein degradation. J Hematol Oncol. 2014;7:75.PubMedCentralCrossRefPubMed Zhang L, Chen Q-S, Xu P-P, Qian Y, Wang A-H, Xiao D, et al. Catechins induced acute promyelocytic leukemia cell apoptosis and triggered PML-RARαoncoprotein degradation. J Hematol Oncol. 2014;7:75.PubMedCentralCrossRefPubMed
30.
go back to reference Maeda Y, Yamaguchi T, Hijikata Y, Tanaka M, Hirase C, Takai S, et al. Clinical efficacy of all-trans retinoic acid for treating adult T cell leukemia. J Cancer Res Clin Oncol. 2008;134:673–7.CrossRefPubMed Maeda Y, Yamaguchi T, Hijikata Y, Tanaka M, Hirase C, Takai S, et al. Clinical efficacy of all-trans retinoic acid for treating adult T cell leukemia. J Cancer Res Clin Oncol. 2008;134:673–7.CrossRefPubMed
31.
go back to reference el-Fouly MH, Trosko JE, Chang CC. Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res. 1987;168:422–30.CrossRefPubMed el-Fouly MH, Trosko JE, Chang CC. Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp Cell Res. 1987;168:422–30.CrossRefPubMed
32.
go back to reference Bolhassani A, Khavari A, Bathaie SZ. Saffron and natural carotenoids: biochemical activities and anti-tumor effects. Biochim Biophys Acta. 2014;1845:20–30.PubMed Bolhassani A, Khavari A, Bathaie SZ. Saffron and natural carotenoids: biochemical activities and anti-tumor effects. Biochim Biophys Acta. 2014;1845:20–30.PubMed
33.
go back to reference Matesic DF, Sidorova TS, Burns TJ, Bell AM, Tran PL, Ruch RJ, et al. p38 MAPK activation, JNK inhibition, neoplastic growth inhibition, and increased gap junction communication in human lung carcinoma and Ras-transformed cells by 4-phenyl-3-butenoic acid. J Cell Biochem. 2012;113:269–81.PubMedCentralCrossRefPubMed Matesic DF, Sidorova TS, Burns TJ, Bell AM, Tran PL, Ruch RJ, et al. p38 MAPK activation, JNK inhibition, neoplastic growth inhibition, and increased gap junction communication in human lung carcinoma and Ras-transformed cells by 4-phenyl-3-butenoic acid. J Cell Biochem. 2012;113:269–81.PubMedCentralCrossRefPubMed
34.
go back to reference Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev. 2003;83:1359–400.CrossRefPubMed Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev. 2003;83:1359–400.CrossRefPubMed
35.
go back to reference Zhang X, Ren Z, Zuo J, Su C, Wang R, Chang Y, et al. The effect of all-trans retinoic acid on gap junctional intercellular communication and connexin 43 gene expression in glioma cells. Chin Med Sci J. 2002;17:22–6.PubMed Zhang X, Ren Z, Zuo J, Su C, Wang R, Chang Y, et al. The effect of all-trans retinoic acid on gap junctional intercellular communication and connexin 43 gene expression in glioma cells. Chin Med Sci J. 2002;17:22–6.PubMed
36.
go back to reference Geimonen E, Jiang W, Ali M, Fishman GI, Garfield RE, Andersen J. Activation of protein kinase C in human uterine smooth muscle induces connexin-43 gene transcription through an AP-1 site in the promoter sequence. J Biol Chem. 1996;271:23667–74.CrossRefPubMed Geimonen E, Jiang W, Ali M, Fishman GI, Garfield RE, Andersen J. Activation of protein kinase C in human uterine smooth muscle induces connexin-43 gene transcription through an AP-1 site in the promoter sequence. J Biol Chem. 1996;271:23667–74.CrossRefPubMed
37.
go back to reference Sullivan R, Ruangvoravat C, Joo D, Morgan J, Wang BL, Wang XK, et al. Structure, sequence and expression of the mouse Cx43 gene encoding connexin 43. Gene. 1993;130:191–9.CrossRefPubMed Sullivan R, Ruangvoravat C, Joo D, Morgan J, Wang BL, Wang XK, et al. Structure, sequence and expression of the mouse Cx43 gene encoding connexin 43. Gene. 1993;130:191–9.CrossRefPubMed
38.
go back to reference Gotow T, Shiozaki M, Higashi T, Yoshimura K, Shibata M, Kominami E, et al. Hepatic gap junctions in the hepatocarcinogen-resistant DRH rat. Histochem Cell Biol. 2008;130:583–94.CrossRefPubMed Gotow T, Shiozaki M, Higashi T, Yoshimura K, Shibata M, Kominami E, et al. Hepatic gap junctions in the hepatocarcinogen-resistant DRH rat. Histochem Cell Biol. 2008;130:583–94.CrossRefPubMed
39.
go back to reference Lamiche C, Clarhaut J, Strale PO, Crespin S, Pedretti N, Bernard FX, et al. The gap junction protein Cx43 is involved in the bone-targeted metastatic behaviour of human prostate cancer cells. ClinExp Metastasis. 2012;29:111–22.CrossRef Lamiche C, Clarhaut J, Strale PO, Crespin S, Pedretti N, Bernard FX, et al. The gap junction protein Cx43 is involved in the bone-targeted metastatic behaviour of human prostate cancer cells. ClinExp Metastasis. 2012;29:111–22.CrossRef
40.
go back to reference Hotz-Wagenblatt A, Shalloway D. Gap junctional communication and neoplastic transformation. Crit Rev Oncog. 1993;4:541–58.PubMed Hotz-Wagenblatt A, Shalloway D. Gap junctional communication and neoplastic transformation. Crit Rev Oncog. 1993;4:541–58.PubMed
41.
go back to reference Qian MX, Wen J, Zhu X, Jia XH, Yang XW, Du YZ, et al. Structurally differentiated Cis-elements that interact with PU.1 are functionally distinguishable in acute promyelocyticleukemia. J Hematol Oncol. 2013;6:25.PubMedCentralCrossRefPubMed Qian MX, Wen J, Zhu X, Jia XH, Yang XW, Du YZ, et al. Structurally differentiated Cis-elements that interact with PU.1 are functionally distinguishable in acute promyelocyticleukemia. J Hematol Oncol. 2013;6:25.PubMedCentralCrossRefPubMed
42.
go back to reference Makarenkova HP, Shestopalov VI. The role of pannexin hemichannels in inflammation and regeneration. Front Physiol. 2014;25:1–8. Makarenkova HP, Shestopalov VI. The role of pannexin hemichannels in inflammation and regeneration. Front Physiol. 2014;25:1–8.
43.
go back to reference Xianrong Z, Yipeng Q. Role of intramolecular interaction in connexin 50: mediating the Ca2+-dependent binding of calmodulin to gap junction. Arc BiocBiop. 2005;2:111–7. Xianrong Z, Yipeng Q. Role of intramolecular interaction in connexin 50: mediating the Ca2+-dependent binding of calmodulin to gap junction. Arc BiocBiop. 2005;2:111–7.
44.
go back to reference Akinleye A, Avvaru P, Furqan M, Song YP, Liu DL. Phosphatidylinositol 3-kinase(PI3K) inhibitors as cancer therapeutics. J HematolOncol. 2013;6:88. Akinleye A, Avvaru P, Furqan M, Song YP, Liu DL. Phosphatidylinositol 3-kinase(PI3K) inhibitors as cancer therapeutics. J HematolOncol. 2013;6:88.
45.
go back to reference Czyz J, Szpak K, Madeja Z. The role of connexins in prostate cancer promotion and progression. Nat Rev Urol. 2012;5:274–82.CrossRef Czyz J, Szpak K, Madeja Z. The role of connexins in prostate cancer promotion and progression. Nat Rev Urol. 2012;5:274–82.CrossRef
46.
go back to reference Kim H, Suh H, Jo SA, Kim HW, Lee JM, Kim EH, et al. In vivo bone formation by human marrow stromal cells in biodegradable scaffolds that release dexamethasone and ascorbate-2-phosphate. BiochemBiophys Res Commun. 2005;332:1053–60.CrossRef Kim H, Suh H, Jo SA, Kim HW, Lee JM, Kim EH, et al. In vivo bone formation by human marrow stromal cells in biodegradable scaffolds that release dexamethasone and ascorbate-2-phosphate. BiochemBiophys Res Commun. 2005;332:1053–60.CrossRef
47.
go back to reference Boswell BA, Lein PJ, Musil LS. Cross-talk between fibroblast growth factor and bone morphogenetic proteins regulates gap junction-mediated intercellular communication in lens cells. MolBiol Cell. 2008;19:2631–41. Boswell BA, Lein PJ, Musil LS. Cross-talk between fibroblast growth factor and bone morphogenetic proteins regulates gap junction-mediated intercellular communication in lens cells. MolBiol Cell. 2008;19:2631–41.
48.
go back to reference Wade MH, Trosko JE, Schindler M. A fluorescence photobleaching assay of gap junction-mediated communication between human cells. Science. 1986;232:525–8.CrossRefPubMed Wade MH, Trosko JE, Schindler M. A fluorescence photobleaching assay of gap junction-mediated communication between human cells. Science. 1986;232:525–8.CrossRefPubMed
49.
go back to reference Katarzyna AD, Wang Y, Li JM, Wayne AC, Cynthia RG, Huang CZ, et al. Host bone marrow-derived IL-12 enhances donor T cell engraftment in a mouse model of bone marrow transplantation. J Hematol Oncol. 2014;7:16.CrossRef Katarzyna AD, Wang Y, Li JM, Wayne AC, Cynthia RG, Huang CZ, et al. Host bone marrow-derived IL-12 enhances donor T cell engraftment in a mouse model of bone marrow transplantation. J Hematol Oncol. 2014;7:16.CrossRef
Metadata
Title
All-trans retinoic acid arrests cell cycle in leukemic bone marrow stromal cells by increasing intercellular communication through connexin 43-mediated gap junction
Authors
Yao Liu
Qin Wen
Xue-lian Chen
Shi-jie Yang
Lei Gao
Li Gao
Cheng Zhang
Jia-li Li
Xi-xi Xiang
Kai Wan
Xing-hua Chen
Xi Zhang
Jiang-fan Zhong
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2015
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-015-0212-7

Other articles of this Issue 1/2015

Journal of Hematology & Oncology 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine