Skip to main content
Top
Published in: Child and Adolescent Psychiatry and Mental Health 1/2016

Open Access 01-12-2016 | Research article

Association of peripheral BDNF level with cognition, attention and behavior in preschool children

Authors: Chan-Woo Yeom, Young-Ja Park, Sam-Wook Choi, Soo-Young Bhang

Published in: Child and Adolescent Psychiatry and Mental Health | Issue 1/2016

Login to get access

Abstract

Background

Brain-derived neurotrophic factor (BDNF) has been reported to affect development, cognition, attention and behavior. However, few studies have investigated preschool children with regard to these areas. We evaluated the relationship between cognition, attention and peripheral blood concentration of BDNF in preschool children.

Methods

Twenty-eight children (mean age: 6.16 ± 0.60 years) were recruited. For all subjects, serum and plasma BDNF levels were assessed; intelligence was assessed using the Korean standardisation of the Wechsler Intelligence Scale for Children (KEDI-WISC); attention was assessed using the computerised continuous performance test (CCPT), the children’s color trails test (CCTT), the Stroop color-word test for preschool children, and the attention-deficit/hyperactivity disorder rating scale (K-ARS); and finally emotional and behavioral problems were assessed using the child behavior checklist (K-CBCL). We confirmed the previously reported correlations between the various psychometric properties assessed and serum and plasma levels of BDNF in our sample.

Results

Serum BDNF levels were negatively correlated with both KEDI-WISC full scale IQ (FSIQ, r = −0.39, p = 0.04) and verbal IQ (VIQ, r = −0.05, p = 0.01), but not with the performance IQ (PIQ, r = −0.12, p = 0.56). There were no significant relationships between plasma BDNF level and VIQ, PIQ or FSIQ. No correlations were found between either serum or plasma level of BDNF and any of the attentional measures (CCPT, ARS, CCTT or Stroop color word test). The CBCL total behavioral problem and attention problem sections were positively correlated with plasma BDNF level (r = 0.41, p = 0.03), (r = 0.44, p = 0.02), however, no relationship was found between the serum BDNF and any of the composite CBCL measures.

Conclusions

Our results suggest that high peripheral BDNF may be negatively correlated with intelligence, behavioral problems and clinical symptoms of neuro-developmental disorders such as intellectual disability in preschool children. A high peripheral BDNF concentration may, if these findings are further replicated, prove to be a useful biomarker for such issues in preschool children.
Literature
1.
go back to reference Kwin GR, Barde YA. Physiology of the neurotophins. Annu Rev Neurosci. 1996;19:289–317.CrossRef Kwin GR, Barde YA. Physiology of the neurotophins. Annu Rev Neurosci. 1996;19:289–317.CrossRef
2.
3.
go back to reference Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol. 2010;70(5):271–88.PubMedPubMedCentral Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol. 2010;70(5):271–88.PubMedPubMedCentral
4.
go back to reference Park HJ, Poo MM. Neurotrophin regulation of neural circuit development and function. Neuroscience. 2013;14:7–23.PubMed Park HJ, Poo MM. Neurotrophin regulation of neural circuit development and function. Neuroscience. 2013;14:7–23.PubMed
6.
go back to reference Rattiner LM, Davis M, Ressler KJ. Brain-derived neurotrophic factor in amygdala-dependent learning. Neuroscientist. 2005;11(4):323–33.CrossRefPubMed Rattiner LM, Davis M, Ressler KJ. Brain-derived neurotrophic factor in amygdala-dependent learning. Neuroscientist. 2005;11(4):323–33.CrossRefPubMed
7.
go back to reference Yamada K, Mizuno M, Nabeshima T. Role for brain-derived neurotrophic factor in learning and memory. Life Sci. 2002;70:735–44.CrossRefPubMed Yamada K, Mizuno M, Nabeshima T. Role for brain-derived neurotrophic factor in learning and memory. Life Sci. 2002;70:735–44.CrossRefPubMed
8.
go back to reference Cirulli FBA, Chiarotti F, Alleva E. Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-Maze. Hippocampus. 2004;14:802–7.CrossRefPubMed Cirulli FBA, Chiarotti F, Alleva E. Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-Maze. Hippocampus. 2004;14:802–7.CrossRefPubMed
9.
go back to reference Mu JS, Li WP, Yao ZB, Zhou XF. Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res. 1999;835:259–65.CrossRefPubMed Mu JS, Li WP, Yao ZB, Zhou XF. Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res. 1999;835:259–65.CrossRefPubMed
10.
go back to reference Cunha C, Angelucci A, D’Antoni A, Dobrossy MD, Dunnett SB, Berardi N, Brambilla R. Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments. Neurobiol Dis. 2009;33:358–68.CrossRefPubMed Cunha C, Angelucci A, D’Antoni A, Dobrossy MD, Dunnett SB, Berardi N, Brambilla R. Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments. Neurobiol Dis. 2009;33:358–68.CrossRefPubMed
11.
go back to reference Radka SF, Hoist PA, Fritsche M, Altar CA. Presence of brain-derived neurotrophic factor in brain and human and rat but not mouse serum detected by a sensitive and specific immunoassay. Brain Res. 1996;709:122–30.CrossRefPubMed Radka SF, Hoist PA, Fritsche M, Altar CA. Presence of brain-derived neurotrophic factor in brain and human and rat but not mouse serum detected by a sensitive and specific immunoassay. Brain Res. 1996;709:122–30.CrossRefPubMed
12.
go back to reference Yan Q, Rosenfeld RD, Matheson CR, Hawkins N, Lopez OT, Bennett L, Welcher AA. Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience. 1997;78:431–48.CrossRefPubMed Yan Q, Rosenfeld RD, Matheson CR, Hawkins N, Lopez OT, Bennett L, Welcher AA. Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience. 1997;78:431–48.CrossRefPubMed
13.
go back to reference Chen GKR, Barde YA, Bonhoeffer T, Kossel A. Relative contribution of endogenous neurotrophins in hippocampal long-term potentiation. J Neurosci. 1999;19(18):7983–90.PubMed Chen GKR, Barde YA, Bonhoeffer T, Kossel A. Relative contribution of endogenous neurotrophins in hippocampal long-term potentiation. J Neurosci. 1999;19(18):7983–90.PubMed
14.
go back to reference Messaoudi E, Bårdsen K, Srebro B, Bramham CR. Acute intrahippocampal infusion of BDNF induces lasting potentiation of synaptic transmission in the rat dentate gyrus. J Neurophysiol. 1998;79:496–9.PubMed Messaoudi E, Bårdsen K, Srebro B, Bramham CR. Acute intrahippocampal infusion of BDNF induces lasting potentiation of synaptic transmission in the rat dentate gyrus. J Neurophysiol. 1998;79:496–9.PubMed
15.
go back to reference Galloway EM, Woo NH, Lu B. Persistent neural activity in the prefrontal cortex: a mechanism by which BDNF regulates working memory? Prog Brain Res. 2008;169:251.CrossRefPubMedPubMedCentral Galloway EM, Woo NH, Lu B. Persistent neural activity in the prefrontal cortex: a mechanism by which BDNF regulates working memory? Prog Brain Res. 2008;169:251.CrossRefPubMedPubMedCentral
16.
go back to reference Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002;109:143–8.CrossRefPubMed Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002;109:143–8.CrossRefPubMed
17.
go back to reference Ray MT, Weickert CS, Wyatt E, Webster MJ. Decreased BDNF, trkB-TK+and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci. 2011;36(3):195–203.CrossRefPubMedCentral Ray MT, Weickert CS, Wyatt E, Webster MJ. Decreased BDNF, trkB-TK+and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci. 2011;36(3):195–203.CrossRefPubMedCentral
18.
go back to reference Dalmian Holsinger RM, Schnarr J, Henry P, Castelo VT, Fahnestock M. Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer’s disease. Mol Brain Res. 2000;76:347–54.CrossRefPubMed Dalmian Holsinger RM, Schnarr J, Henry P, Castelo VT, Fahnestock M. Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer’s disease. Mol Brain Res. 2000;76:347–54.CrossRefPubMed
19.
go back to reference Yu H, Zhang Z, Shi Y, Bai F, Xie C, Qian Y, Yuan Y, Deng L. Association study of the decreased serum BDNF concentrations in amnestic mild cognitive impairment and the Val66Met polymorphism in Chinese Han. J Clin Psychiatry. 2008;69(7):1104–11.CrossRefPubMed Yu H, Zhang Z, Shi Y, Bai F, Xie C, Qian Y, Yuan Y, Deng L. Association study of the decreased serum BDNF concentrations in amnestic mild cognitive impairment and the Val66Met polymorphism in Chinese Han. J Clin Psychiatry. 2008;69(7):1104–11.CrossRefPubMed
20.
go back to reference Corominas-Roso M, Ramos-Quiroga JA, Ribases M, Sanchez-Mora C, Palomar G, Valero S, Bosch R, Casas M. Decreased serum levels of brain-derived neurotrophic factor in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol. 2013;16:1267–75.CrossRef Corominas-Roso M, Ramos-Quiroga JA, Ribases M, Sanchez-Mora C, Palomar G, Valero S, Bosch R, Casas M. Decreased serum levels of brain-derived neurotrophic factor in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol. 2013;16:1267–75.CrossRef
21.
go back to reference Ramos-Quiroga AJ, Corominas-Roso M, Palomar G, Gomez-Barros N, Ribases M, Sanchez-Mora C, Bosch R, Nogueira M, Corrales M, Valero S, Casas M. Changes in the serum levels of brain-derived neurotrophic factor in adults with attention deficit hyperactivity disorder after treatment with atomoxetine. Psychopharmacology. 2014;231:1389–95.CrossRefPubMed Ramos-Quiroga AJ, Corominas-Roso M, Palomar G, Gomez-Barros N, Ribases M, Sanchez-Mora C, Bosch R, Nogueira M, Corrales M, Valero S, Casas M. Changes in the serum levels of brain-derived neurotrophic factor in adults with attention deficit hyperactivity disorder after treatment with atomoxetine. Psychopharmacology. 2014;231:1389–95.CrossRefPubMed
22.
go back to reference Shim SH, Hwangbo Y, Kwon YJ, Jeong HY, Lee BH, Lee HJ, Kim YK. Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1824–8.CrossRefPubMed Shim SH, Hwangbo Y, Kwon YJ, Jeong HY, Lee BH, Lee HJ, Kim YK. Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1824–8.CrossRefPubMed
23.
go back to reference Nelson KB, Grether JK, Croen LA, Dambrosia JM, Dickens BF, Jelliffe LL, Hansen RL, Phillips TM. Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol. 2001;49:597–606.CrossRefPubMed Nelson KB, Grether JK, Croen LA, Dambrosia JM, Dickens BF, Jelliffe LL, Hansen RL, Phillips TM. Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol. 2001;49:597–606.CrossRefPubMed
24.
go back to reference Miyazaki K, Narita N, Sakuta R, Miyahara T, Naruse H, Okado N, Narita M. Serum neurotrophin concentrations in autism and mental retardation: a pilot study. Brain Dev. 2004;26:292–5.CrossRefPubMed Miyazaki K, Narita N, Sakuta R, Miyahara T, Naruse H, Okado N, Narita M. Serum neurotrophin concentrations in autism and mental retardation: a pilot study. Brain Dev. 2004;26:292–5.CrossRefPubMed
25.
go back to reference Taurines R, Segura M, Schecklmann M, Albantakis L, Grunblatt E, Walitza S, Jans T, Lyttwin B, Haberhausen M, Theisen FM, Martin B, Briegel W, Thome J, Schwenck C, Romanos M, Gerlach M. Altered peripheral BDNF mRNA expression and BDNF protein concentrations in blood of children and adolescents with autism spectrum disorder. J Neural Transm. 2014;121:1117–28.CrossRefPubMed Taurines R, Segura M, Schecklmann M, Albantakis L, Grunblatt E, Walitza S, Jans T, Lyttwin B, Haberhausen M, Theisen FM, Martin B, Briegel W, Thome J, Schwenck C, Romanos M, Gerlach M. Altered peripheral BDNF mRNA expression and BDNF protein concentrations in blood of children and adolescents with autism spectrum disorder. J Neural Transm. 2014;121:1117–28.CrossRefPubMed
26.
go back to reference Katoh-Semba R, Wakako R, Komori T, Shigemi H, Miyazaki N, Ito H, Kumagai T, Tsuzuki M, Shigemi K, Yoshida F, Nakayama A. Age-related changes in BDNF protein levels in human serum: differences between autism cases and normal controls. Int J Devl Neuroscience. 2007;25:367–72.CrossRef Katoh-Semba R, Wakako R, Komori T, Shigemi H, Miyazaki N, Ito H, Kumagai T, Tsuzuki M, Shigemi K, Yoshida F, Nakayama A. Age-related changes in BDNF protein levels in human serum: differences between autism cases and normal controls. Int J Devl Neuroscience. 2007;25:367–72.CrossRef
27.
go back to reference Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology. 1998;37:1553–61.CrossRefPubMed Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology. 1998;37:1553–61.CrossRefPubMed
28.
go back to reference Karege F, Schwald M, Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett. 2002;328:261–4.CrossRefPubMed Karege F, Schwald M, Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett. 2002;328:261–4.CrossRefPubMed
29.
go back to reference Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, Knudsen GM, Aznar S. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14:347–53.CrossRefPubMed Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, Knudsen GM, Aznar S. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14:347–53.CrossRefPubMed
30.
go back to reference Park KS, Yoon JY, Park HJ, Park HJ, Kwon KU. Development of KEDI-WISC, individual intelligence test for Korean children. Seoul: Korean Educational Development Institute; 1996. Park KS, Yoon JY, Park HJ, Park HJ, Kwon KU. Development of KEDI-WISC, individual intelligence test for Korean children. Seoul: Korean Educational Development Institute; 1996.
31.
go back to reference Shin MS, Cho S, Chun SY, Hong KEM. A Study of the devolpment and standardization of ADHD diagnostic system Korean. J Child Adol Psychiatry. 2000;11:91–9. Shin MS, Cho S, Chun SY, Hong KEM. A Study of the devolpment and standardization of ADHD diagnostic system Korean. J Child Adol Psychiatry. 2000;11:91–9.
32.
go back to reference ADHD diagnostic system manual. SNU R&DB foundation, IQ BIG. 2011. ADHD diagnostic system manual. SNU R&DB foundation, IQ BIG. 2011.
33.
go back to reference Maj M, D’Elia LF, Satz P, Janssen R, Zaudig M, Uchiyama C. Evaluation of two new neuropsychological tests designed to minimize cultural bias in the assessment of HIV-1 seropositive persons: WHO study. Arch Clin Neuropsychol. 1993;8:123–35.CrossRefPubMed Maj M, D’Elia LF, Satz P, Janssen R, Zaudig M, Uchiyama C. Evaluation of two new neuropsychological tests designed to minimize cultural bias in the assessment of HIV-1 seropositive persons: WHO study. Arch Clin Neuropsychol. 1993;8:123–35.CrossRefPubMed
34.
go back to reference Koo HJ, Shin MS. A standardization study of children’s color trails test. J Kor Acad Child Adolesc Psychiatry. 2008;19:29–37. Koo HJ, Shin MS. A standardization study of children’s color trails test. J Kor Acad Child Adolesc Psychiatry. 2008;19:29–37.
35.
go back to reference Shin MS, Park MJ. Children’s color trail test. Hakjisa. 2007. Shin MS, Park MJ. Children’s color trail test. Hakjisa. 2007.
36.
37.
go back to reference Shin MS, Park MJ. Stroop color and word test: A Manual for Clinical and Experimental Uses. Seoul: Hakjisa; 2007. Shin MS, Park MJ. Stroop color and word test: A Manual for Clinical and Experimental Uses. Seoul: Hakjisa; 2007.
38.
go back to reference Oh K, Lee H, Hong K, Ha E. Korean version of child behavior checklist (K-CBCL). Seoul: Chungang Aptitude Publishing Co Ltd; 1997. Oh K, Lee H, Hong K, Ha E. Korean version of child behavior checklist (K-CBCL). Seoul: Chungang Aptitude Publishing Co Ltd; 1997.
39.
go back to reference Oh KJ, Lee HR. Development of korean version of child behavior checklist (K-CBCL). Seoul: Korean Research Foundation Report; 1990. Oh KJ, Lee HR. Development of korean version of child behavior checklist (K-CBCL). Seoul: Korean Research Foundation Report; 1990.
40.
go back to reference Park JI, Shim SH, Lee MM, Jung YE, Park TW, Park SH, Im YJ, Yang JC, Chung YC, Chung SK. The validities and efficiencies of Korean ADHD rating scale and korean child behavior checklist for screening children with ADHD in the community. Psychiatry Investig. 2014;11(3):258–65.CrossRefPubMedPubMedCentral Park JI, Shim SH, Lee MM, Jung YE, Park TW, Park SH, Im YJ, Yang JC, Chung YC, Chung SK. The validities and efficiencies of Korean ADHD rating scale and korean child behavior checklist for screening children with ADHD in the community. Psychiatry Investig. 2014;11(3):258–65.CrossRefPubMedPubMedCentral
41.
go back to reference So YK, Noh JS, Kim YS, Ko SG, Koh YJ. The reliability and validity of Korean parent and teacher ADHD rating scale. J Korean Neuropsychiatry Assoc. 2002;41:283–9. So YK, Noh JS, Kim YS, Ko SG, Koh YJ. The reliability and validity of Korean parent and teacher ADHD rating scale. J Korean Neuropsychiatry Assoc. 2002;41:283–9.
42.
go back to reference DuPaul GJ. Parent and teacher ratings of ADHD symptoms: psychometric properties in a community-based sample. J Clin Child Psychol. 1991;20:245–53.CrossRef DuPaul GJ. Parent and teacher ratings of ADHD symptoms: psychometric properties in a community-based sample. J Clin Child Psychol. 1991;20:245–53.CrossRef
43.
go back to reference Croll SD, Suri C, Compton DL, Simmons MV, Yancopoulos GD, Lidsay RM, Wiegand SJ, Rudge JS, Scharfman HE. Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and enthorhinal cortex. Neuroscience. 1999;93(4):1491–506.CrossRefPubMedPubMedCentral Croll SD, Suri C, Compton DL, Simmons MV, Yancopoulos GD, Lidsay RM, Wiegand SJ, Rudge JS, Scharfman HE. Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and enthorhinal cortex. Neuroscience. 1999;93(4):1491–506.CrossRefPubMedPubMedCentral
44.
go back to reference Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–69.CrossRefPubMed Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–69.CrossRefPubMed
45.
go back to reference Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, Weinberger DR. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci. 2003;23:6690–4.PubMed Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, Weinberger DR. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci. 2003;23:6690–4.PubMed
46.
go back to reference Lang UE, Hellweg R, Sander T, Gallinat J. The Met allele of the BDNF Val66Met polymorphism is associated with increased BDNF serum concentrations. Mol Psychiatry. 2009;14:120–2.CrossRefPubMed Lang UE, Hellweg R, Sander T, Gallinat J. The Met allele of the BDNF Val66Met polymorphism is associated with increased BDNF serum concentrations. Mol Psychiatry. 2009;14:120–2.CrossRefPubMed
47.
go back to reference Scassellati C, Zanardini R, Tiberti A, Pezzani M, Valenti V, Effedri P, Filippini E, Conte S, Ottolini A, Gennarelli M, Bocchio-Chiavetto L. Serum brain-derived neurotrophic factor (BDNF) levels in attention deficit–hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry. 2014;23:173–7.CrossRefPubMed Scassellati C, Zanardini R, Tiberti A, Pezzani M, Valenti V, Effedri P, Filippini E, Conte S, Ottolini A, Gennarelli M, Bocchio-Chiavetto L. Serum brain-derived neurotrophic factor (BDNF) levels in attention deficit–hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry. 2014;23:173–7.CrossRefPubMed
48.
go back to reference Linnarsson S, Bjorklund A, Ernfors P. Learning deficit in BDNF mutant mice. Eur J Neurosci. 1997;9:2581–7.CrossRefPubMed Linnarsson S, Bjorklund A, Ernfors P. Learning deficit in BDNF mutant mice. Eur J Neurosci. 1997;9:2581–7.CrossRefPubMed
49.
go back to reference Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R, Lechan RM, Jaenisch R. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol. 2001;15(10):1748–57.CrossRefPubMed Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R, Lechan RM, Jaenisch R. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol. 2001;15(10):1748–57.CrossRefPubMed
50.
go back to reference Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, Wihler C, Koliatsos VE, Tessarollo L. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA. 1999;96:15239–44.CrossRefPubMedPubMedCentral Lyons WE, Mamounas LA, Ricaurte GA, Coppola V, Reid SW, Bora SH, Wihler C, Koliatsos VE, Tessarollo L. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA. 1999;96:15239–44.CrossRefPubMedPubMedCentral
51.
go back to reference Lanktree M, Squassina A, Krinsky M, Strauss J, Jain U, Macciardi F, Kennedy JL, Muglia P. Association study of brain-derived neurotrophic factor (BDNF) and LIN-7 homolog (LIN-7) genes with adult attention deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:945–51.CrossRefPubMed Lanktree M, Squassina A, Krinsky M, Strauss J, Jain U, Macciardi F, Kennedy JL, Muglia P. Association study of brain-derived neurotrophic factor (BDNF) and LIN-7 homolog (LIN-7) genes with adult attention deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:945–51.CrossRefPubMed
52.
go back to reference Kent L, Green E, Hawi Z, Kirley A, Dudbridge F, Lowe N, Raybould R, Langley K, Bray N, Fitzgerald M, Owen MJ, Donovan MC, Gill M, Thapar A, Craddock N. Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. Mol Psychiatry. 2005;10:939–43.CrossRefPubMed Kent L, Green E, Hawi Z, Kirley A, Dudbridge F, Lowe N, Raybould R, Langley K, Bray N, Fitzgerald M, Owen MJ, Donovan MC, Gill M, Thapar A, Craddock N. Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. Mol Psychiatry. 2005;10:939–43.CrossRefPubMed
53.
go back to reference Bergman OWL, Lichtenstein P, Eriksson E, Larsson H. Study on the possible association of brain-derived neurotrophic factor polymorphism with the developmental course of symptoms of attention deficit and hyperactivity. Int J Neuropsychopharmacol. 2011;14:1367–76.CrossRefPubMed Bergman OWL, Lichtenstein P, Eriksson E, Larsson H. Study on the possible association of brain-derived neurotrophic factor polymorphism with the developmental course of symptoms of attention deficit and hyperactivity. Int J Neuropsychopharmacol. 2011;14:1367–76.CrossRefPubMed
54.
go back to reference Yoshimura R, Sugita-ikenouchi A, Hori H, Umene-nakano W, Hayashi K, Katsuki A, Ueda N, Nakamura J. A close correlation between plasma and serum levels of brain-derived neurotrophic factor (BDNF) in healthy volunteers. Int J Psychiatry Clin Pract. 2010;14:220–2.CrossRefPubMed Yoshimura R, Sugita-ikenouchi A, Hori H, Umene-nakano W, Hayashi K, Katsuki A, Ueda N, Nakamura J. A close correlation between plasma and serum levels of brain-derived neurotrophic factor (BDNF) in healthy volunteers. Int J Psychiatry Clin Pract. 2010;14:220–2.CrossRefPubMed
55.
go back to reference Bocchio-chiavetto L, Bagnardi V, Zanardini R, Molteni R, Nielsen MG, Placentino A, Giovannini C, Rillosi L, Ventriglia M, Riva MA, Gennarelli M. Serum and plasma BDNF levels in major depression: a replication study and meta-analyses. World J Biol Psychiatry. 2010;11:763–73.CrossRefPubMed Bocchio-chiavetto L, Bagnardi V, Zanardini R, Molteni R, Nielsen MG, Placentino A, Giovannini C, Rillosi L, Ventriglia M, Riva MA, Gennarelli M. Serum and plasma BDNF levels in major depression: a replication study and meta-analyses. World J Biol Psychiatry. 2010;11:763–73.CrossRefPubMed
56.
go back to reference Marano CM, Phatak P, Vemulapalli UR, Sasan A, Nalbandyan MR, Ramanujam S, Soekadar S, Demosthenous M, Regenold WT. Increased plasma concentration of brain-derived neurotrophic factor with electroconvulsive therapy: a pilot study in patients with major depression. J Clin Psychiatry. 2007;68:512–7.CrossRefPubMed Marano CM, Phatak P, Vemulapalli UR, Sasan A, Nalbandyan MR, Ramanujam S, Soekadar S, Demosthenous M, Regenold WT. Increased plasma concentration of brain-derived neurotrophic factor with electroconvulsive therapy: a pilot study in patients with major depression. J Clin Psychiatry. 2007;68:512–7.CrossRefPubMed
57.
go back to reference Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. BDNF as a biomarker for successful treatment of mood disorders: a systematic and quantitative meta-analysis. J Affect Disord. 2015;174:432–40.CrossRefPubMed Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. BDNF as a biomarker for successful treatment of mood disorders: a systematic and quantitative meta-analysis. J Affect Disord. 2015;174:432–40.CrossRefPubMed
Metadata
Title
Association of peripheral BDNF level with cognition, attention and behavior in preschool children
Authors
Chan-Woo Yeom
Young-Ja Park
Sam-Wook Choi
Soo-Young Bhang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Child and Adolescent Psychiatry and Mental Health / Issue 1/2016
Electronic ISSN: 1753-2000
DOI
https://doi.org/10.1186/s13034-016-0097-4

Other articles of this Issue 1/2016

Child and Adolescent Psychiatry and Mental Health 1/2016 Go to the issue