Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2017

Open Access 01-12-2017 | Review

TREM2 in Neurodegenerative Diseases

Authors: Taylor R. Jay, Victoria E. von Saucken, Gary E. Landreth

Published in: Molecular Neurodegeneration | Issue 1/2017

Login to get access

Abstract

TREM2 variants have been identified as risk factors for Alzheimer’s disease (AD) and other neurodegenerative diseases (NDDs). Because TREM2 encodes a receptor exclusively expressed on immune cells, identification of these variants conclusively demonstrates that the immune response can play an active role in the pathogenesis of NDDs. These TREM2 variants also confer the highest risk for developing Alzheimer’s disease of any risk factor identified in nearly two decades, suggesting that understanding more about TREM2 function could provide key insights into NDD pathology and provide avenues for novel immune-related NDD biomarkers and therapeutics. The expression, signaling and function of TREM2 in NDDs have been extensively investigated in an effort to understand the role of immune function in disease pathogenesis and progression. We provide a comprehensive review of our current understanding of TREM2 biology, including new insights into the regulation of TREM2 expression, and TREM2 signaling and function across NDDs. While many open questions remain, the current body of literature provides clarity on several issues. While it is still often cited that TREM2 expression is decreased by pro-inflammatory stimuli, it is now clear that this is true in vitro, but inflammatory stimuli in vivo almost universally increase TREM2 expression. Likewise, while TREM2 function is classically described as promoting an anti-inflammatory phenotype, more than half of published studies demonstrate a pro-inflammatory role for TREM2, suggesting that its role in inflammation is much more complex. Finally, these components of TREM2 biology are applied to a discussion of how TREM2 impacts NDD pathologies and the latest assessment of how these findings might be applied to immune-directed clinical biomarkers and therapeutics.
Literature
2.
go back to reference Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A, Jehu L, Segurado R, Stone D, Schadt E, et al. Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet. 2007;16:865–73.PubMedCrossRef Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A, Jehu L, Segurado R, Stone D, Schadt E, et al. Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet. 2007;16:865–73.PubMedCrossRef
3.
go back to reference Karch CM, Goate AM. Alzheimer’s Disease Risk Genes and Mechanisms of Disease Pathogenesis. Biol Psychiatry. 2015;77:43–51.PubMedCrossRef Karch CM, Goate AM. Alzheimer’s Disease Risk Genes and Mechanisms of Disease Pathogenesis. Biol Psychiatry. 2015;77:43–51.PubMedCrossRef
4.
go back to reference Wes PD, Sayed FA, Bard F, Gan L. Targeting Microglia for the Treatment of Alzheimer’s Disease. Glia. 2016;64:1710–32.PubMedCrossRef Wes PD, Sayed FA, Bard F, Gan L. Targeting Microglia for the Treatment of Alzheimer’s Disease. Glia. 2016;64:1710–32.PubMedCrossRef
5.
go back to reference Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Lupton MK, et al. TREM2 Variants in Alzheimer’s Disease. N Engl J Med. 2013;368:117–27.PubMedCrossRef Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Lupton MK, et al. TREM2 Variants in Alzheimer’s Disease. N Engl J Med. 2013;368:117–27.PubMedCrossRef
6.
go back to reference Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, et al. Variant of TREM2 Associated with the Risk of Alzheimer’s Disease. N Engl J Med. 2013;368:107–16.PubMedCrossRef Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, et al. Variant of TREM2 Associated with the Risk of Alzheimer’s Disease. N Engl J Med. 2013;368:107–16.PubMedCrossRef
7.
go back to reference Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol. 2016;15:857–68.PubMedCrossRef Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol. 2016;15:857–68.PubMedCrossRef
8.
go back to reference Neumann H, Daly MJ. Variant TREM2 as Risk Factor for Alzheimer’s Disease. N Engl J Med. 2013;368:182–4.PubMedCrossRef Neumann H, Daly MJ. Variant TREM2 as Risk Factor for Alzheimer’s Disease. N Engl J Med. 2013;368:182–4.PubMedCrossRef
9.
go back to reference Neumann H, Takahashi K. Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol. 2007;184:92–9.PubMedCrossRef Neumann H, Takahashi K. Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol. 2007;184:92–9.PubMedCrossRef
10.
11.
go back to reference Hickman SE, El Khoury J. TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem Pharmacol. 2014;88:495–8.PubMedCrossRef Hickman SE, El Khoury J. TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem Pharmacol. 2014;88:495–8.PubMedCrossRef
12.
go back to reference Suarez-Calvet M, Caballero MAA, Kleinberger G, Bateman RJ, Fagan AM, Morris JC, Levin J, Danek A, Ewers M, Haass C, Dominantly Inherited Alzheimer N. Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury. Sci Transl Med. 2016;8:178.CrossRef Suarez-Calvet M, Caballero MAA, Kleinberger G, Bateman RJ, Fagan AM, Morris JC, Levin J, Danek A, Ewers M, Haass C, Dominantly Inherited Alzheimer N. Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury. Sci Transl Med. 2016;8:178.CrossRef
13.
go back to reference Zheng H, Jia L, Liu C-C, Li Zhong ZR, Yang L, Chen X-F, Fryer JD, Wang X, Zhang Y-w, Xu H, Bu G. TREM2 promotes microglial survival by activating Wnt/β-catenin pathway. J Neurosci. 2017;37(7):1772–84.PubMedCrossRef Zheng H, Jia L, Liu C-C, Li Zhong ZR, Yang L, Chen X-F, Fryer JD, Wang X, Zhang Y-w, Xu H, Bu G. TREM2 promotes microglial survival by activating Wnt/β-catenin pathway. J Neurosci. 2017;37(7):1772–84.PubMedCrossRef
14.
go back to reference Zhong L, Chen X-F, Wang T, Wang Z, Liao C, Wang Z, Huang R, Wang D, Li X, Wu L, et al. Soluble TREM2 induces inflammatory responses and enhances microglial survival. J Exp Med. 2017;214(3):597–607.PubMed Zhong L, Chen X-F, Wang T, Wang Z, Liao C, Wang Z, Huang R, Wang D, Li X, Wu L, et al. Soluble TREM2 induces inflammatory responses and enhances microglial survival. J Exp Med. 2017;214(3):597–607.PubMed
15.
go back to reference Ghani M, Sato C, Kakhki EG, Gibbs JR, Traynor B, St George-Hyslop P, Rogaeva E. Mutation analysis of the MS4A and TREM gene clusters in a case–control Alzheimer’s disease data set. Neurobiol Aging. 2016;42:217.PubMedCrossRef Ghani M, Sato C, Kakhki EG, Gibbs JR, Traynor B, St George-Hyslop P, Rogaeva E. Mutation analysis of the MS4A and TREM gene clusters in a case–control Alzheimer’s disease data set. Neurobiol Aging. 2016;42:217.PubMedCrossRef
16.
go back to reference Cuyvers E, Bettens K, Philtjens S, Van Langenhove T, Gijselinck I, van der Zee J, Engelborghs S, Vandenbulcke M, Van Dongen J, Geerts N, et al. Investigating the role of rare heterozygous TREM2 variants in Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging. 2014;35(3):726.PubMedCrossRef Cuyvers E, Bettens K, Philtjens S, Van Langenhove T, Gijselinck I, van der Zee J, Engelborghs S, Vandenbulcke M, Van Dongen J, Geerts N, et al. Investigating the role of rare heterozygous TREM2 variants in Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging. 2014;35(3):726.PubMedCrossRef
17.
go back to reference Wang X, Lopez OL, Sweet RA, Becker JT, DeKosky ST, Barmada MM, Demirci FY, Kamboh MI. Genetic Determinants of Disease Progression in Alzheimer’s Disease. J Alzheimer Dis. 2015;43:649–55. Wang X, Lopez OL, Sweet RA, Becker JT, DeKosky ST, Barmada MM, Demirci FY, Kamboh MI. Genetic Determinants of Disease Progression in Alzheimer’s Disease. J Alzheimer Dis. 2015;43:649–55.
18.
go back to reference Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R, Bianchin M, Bird T, Miranda R, Salmaggi A, et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet. 2002;71:656–62.PubMedPubMedCentralCrossRef Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R, Bianchin M, Bird T, Miranda R, Salmaggi A, et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet. 2002;71:656–62.PubMedPubMedCentralCrossRef
19.
go back to reference Paloneva J, Mandelin J, Kiialainen A, Bohling T, Prudlo J, Hakola P, Hatia M, Konttinen YT, Peltonen L. DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med. 2003;198:669–75.PubMedPubMedCentralCrossRef Paloneva J, Mandelin J, Kiialainen A, Bohling T, Prudlo J, Hakola P, Hatia M, Konttinen YT, Peltonen L. DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med. 2003;198:669–75.PubMedPubMedCentralCrossRef
20.
go back to reference Nasu T, Tsukahara Y, Terayama K. A lipid metabolic disease-“membranous lipodystrophy”-an autopsy case demonstrating numerous peculiar membrane-structures composed of compound lipid in bone and bone marrow and various adipose tissues. Acta Pathol Jpn. 1973;23:539–58.PubMed Nasu T, Tsukahara Y, Terayama K. A lipid metabolic disease-“membranous lipodystrophy”-an autopsy case demonstrating numerous peculiar membrane-structures composed of compound lipid in bone and bone marrow and various adipose tissues. Acta Pathol Jpn. 1973;23:539–58.PubMed
21.
go back to reference Hakola HP. Neuropsychiatric and genetic aspects of a new hereditary disease characterized by progressive dementia and lipomembranous polycystic osteodysplasia. Acta Psychiatr Scand Suppl. 1972;232:1–173.PubMed Hakola HP. Neuropsychiatric and genetic aspects of a new hereditary disease characterized by progressive dementia and lipomembranous polycystic osteodysplasia. Acta Psychiatr Scand Suppl. 1972;232:1–173.PubMed
22.
go back to reference Kaneko M, Sano K, Nakayama J, Amano N. Nasu-Hakola disease: The first case reported by Nasu and review. Neuropathology. 2010;30:463–70.PubMed Kaneko M, Sano K, Nakayama J, Amano N. Nasu-Hakola disease: The first case reported by Nasu and review. Neuropathology. 2010;30:463–70.PubMed
23.
go back to reference Sasaki A, Kakita A, Yoshida K, Konno T, Ikeuchi T, Hayashi S, Matsuo H, Shioda K. Variable expression of microglial DAP12 and TREM2 genes in Nasu-Hakola disease. Neurogenetics. 2015;16:265–76.PubMedCrossRef Sasaki A, Kakita A, Yoshida K, Konno T, Ikeuchi T, Hayashi S, Matsuo H, Shioda K. Variable expression of microglial DAP12 and TREM2 genes in Nasu-Hakola disease. Neurogenetics. 2015;16:265–76.PubMedCrossRef
24.
go back to reference Bianchin MM, Capella HM, Chaves DL, Steindel M, Grisard EC, Ganev GG, da Silva JP, Neto ES, Poffo MA, Walz R, et al. Nasu-Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy - PLOSL): A dementia associated with bone cystic lesions. From clinical to genetic and molecular aspects. Cell Mol Neurobiol. 2004;24:1–24.PubMedCrossRef Bianchin MM, Capella HM, Chaves DL, Steindel M, Grisard EC, Ganev GG, da Silva JP, Neto ES, Poffo MA, Walz R, et al. Nasu-Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy - PLOSL): A dementia associated with bone cystic lesions. From clinical to genetic and molecular aspects. Cell Mol Neurobiol. 2004;24:1–24.PubMedCrossRef
25.
go back to reference Satoh J, Tabunoki H, Ishida T, Yagishita S, Jinnai K, Futamura N, Kobayashi M, Toyoshima I, Yoshioka T, Enomoto K, et al. Immunohistochemical characterization of microglia in Nasu-Hakola disease brains. Neuropathology. 2011;31:363–75.PubMedCrossRef Satoh J, Tabunoki H, Ishida T, Yagishita S, Jinnai K, Futamura N, Kobayashi M, Toyoshima I, Yoshioka T, Enomoto K, et al. Immunohistochemical characterization of microglia in Nasu-Hakola disease brains. Neuropathology. 2011;31:363–75.PubMedCrossRef
26.
go back to reference Bock V, Botturi A, Gaviani P, Lamperti E, Maccagnano C, Piccio L, Silvani A, Salmaggi A. Polycystic Lipomembranous Osteodysplasia with Sclerosing Leukoencephalopathy (PLOSL): A new report of an Italian woman and review of the literature. J Neurol Sci. 2013;326:115–9.PubMedCrossRef Bock V, Botturi A, Gaviani P, Lamperti E, Maccagnano C, Piccio L, Silvani A, Salmaggi A. Polycystic Lipomembranous Osteodysplasia with Sclerosing Leukoencephalopathy (PLOSL): A new report of an Italian woman and review of the literature. J Neurol Sci. 2013;326:115–9.PubMedCrossRef
27.
go back to reference Yamazaki K, Yoshino Y, Mori Y, Ochi S, Yoshida T, Lshimaru T, Ueno S. A Case of Nasu-Hakola Disease without Fractures or Consanguinity Diagnosed Using Exome Sequencing and Treated with Sodium Valproate. Clin Psychopharmacol Neurosci. 2015;13:324–6.PubMedPubMedCentralCrossRef Yamazaki K, Yoshino Y, Mori Y, Ochi S, Yoshida T, Lshimaru T, Ueno S. A Case of Nasu-Hakola Disease without Fractures or Consanguinity Diagnosed Using Exome Sequencing and Treated with Sodium Valproate. Clin Psychopharmacol Neurosci. 2015;13:324–6.PubMedPubMedCentralCrossRef
28.
go back to reference Numasawa Y, Yamaura C, Ishihara S, Shintani S, Yamazaki M, Tabunoki H, Satoh JI. Nasu-Hakola disease with a splicing mutation of TREM2 in a Japanese family. Eur J Neurol. 2011;18:1179–83.PubMedCrossRef Numasawa Y, Yamaura C, Ishihara S, Shintani S, Yamazaki M, Tabunoki H, Satoh JI. Nasu-Hakola disease with a splicing mutation of TREM2 in a Japanese family. Eur J Neurol. 2011;18:1179–83.PubMedCrossRef
29.
go back to reference Fenoglio C, Galimberti D, Piccio L, Scalabrini D, Panina P, Buonsanti C, Venturelli E, Lovati C, Forloni G, Mariani C, et al. Absence of TREM2 polymorphisms in patients with Alzheimer’s disease and Frontotemporal Lobar Degeneration. Neurosci Lett. 2007;411:133–7.PubMedCrossRef Fenoglio C, Galimberti D, Piccio L, Scalabrini D, Panina P, Buonsanti C, Venturelli E, Lovati C, Forloni G, Mariani C, et al. Absence of TREM2 polymorphisms in patients with Alzheimer’s disease and Frontotemporal Lobar Degeneration. Neurosci Lett. 2007;411:133–7.PubMedCrossRef
30.
go back to reference Klunemann HH, Ridha H, Magy L, Wherrett JR, Hemelsoet DM, Keen RW, De Bleecker JL, Rossor MN, Marienhagen J, Klein HE, et al. The genetic causes of basal ganglia calcification, dementia, and bone cysts DAP12 and TREM2. Neurology. 2005;64:1502–7.PubMedCrossRef Klunemann HH, Ridha H, Magy L, Wherrett JR, Hemelsoet DM, Keen RW, De Bleecker JL, Rossor MN, Marienhagen J, Klein HE, et al. The genetic causes of basal ganglia calcification, dementia, and bone cysts DAP12 and TREM2. Neurology. 2005;64:1502–7.PubMedCrossRef
31.
go back to reference Soragna D, Papi L, Ratti MT, Sestini R, Tupler R, Montalbetti L. An Italian family affected by Nasu-Hakola disease with a novel genetic mutation in the TREM2 gene(vol 74, pg 825, 2003). J Neurol Neurosurg Psychiatry. 2003;74:1165.CrossRef Soragna D, Papi L, Ratti MT, Sestini R, Tupler R, Montalbetti L. An Italian family affected by Nasu-Hakola disease with a novel genetic mutation in the TREM2 gene(vol 74, pg 825, 2003). J Neurol Neurosurg Psychiatry. 2003;74:1165.CrossRef
32.
go back to reference Satoh J, Yanaizu M, Tosaki Y, Sakai K, Kino Y. Targeted sequencing approach to identify genetic mutations in Nasu-Hakola disease. Intractable Rare Dis Res. 2016;5:269–74.PubMedPubMedCentralCrossRef Satoh J, Yanaizu M, Tosaki Y, Sakai K, Kino Y. Targeted sequencing approach to identify genetic mutations in Nasu-Hakola disease. Intractable Rare Dis Res. 2016;5:269–74.PubMedPubMedCentralCrossRef
33.
go back to reference Dardiotis E, Siokas V, Pantazi E, Dardioti M, Rikos D, Xiromerisiou G, Markou A, Papadimitriou D, Speletas M, Hadjigeorgiou GM. A novel mutation in TREM2 gene causing Nasu-Hakola disease and review of the literature. Neurobiol Aging. 2017;53:194. e113-194.e122PubMedCrossRef Dardiotis E, Siokas V, Pantazi E, Dardioti M, Rikos D, Xiromerisiou G, Markou A, Papadimitriou D, Speletas M, Hadjigeorgiou GM. A novel mutation in TREM2 gene causing Nasu-Hakola disease and review of the literature. Neurobiol Aging. 2017;53:194. e113-194.e122PubMedCrossRef
34.
go back to reference Lattante S, Le Ber I, Camuzat A, Dayan S, Godard C, Van Bortel I, De Septenville A, Ciura S, Brice A, Kabashi E, French Res Network FF-A. TREM2 mutations are rare in a French cohort of patients with frontotemporal dementia. Neurobiol Aging. 2013;34(10):2443.PubMedCrossRef Lattante S, Le Ber I, Camuzat A, Dayan S, Godard C, Van Bortel I, De Septenville A, Ciura S, Brice A, Kabashi E, French Res Network FF-A. TREM2 mutations are rare in a French cohort of patients with frontotemporal dementia. Neurobiol Aging. 2013;34(10):2443.PubMedCrossRef
35.
go back to reference Le Ber I, De Septenville A, Guerreiro R, Bras J, Camuzat A, Caroppo P, Lattante S, Couarch P, Kabashi E, Bouya-Ahmed K, et al. Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiol Aging. 2014;35(10):2419.PubMedPubMedCentral Le Ber I, De Septenville A, Guerreiro R, Bras J, Camuzat A, Caroppo P, Lattante S, Couarch P, Kabashi E, Bouya-Ahmed K, et al. Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiol Aging. 2014;35(10):2419.PubMedPubMedCentral
36.
go back to reference Guerreiro RJ, Lohmann E, Bras JM, Gibbs JR, Rohrer JD, Gurunlian N, Dursun B, Bilgic B, Hanagasi H, Gurvit H, et al. Using Exome Sequencing to Reveal Mutations in TREM2 Presenting as a Frontotemporal Dementia-like Syndrome Without Bone Involvement. JAMA Neurol. 2013;70:78–84.PubMedPubMedCentralCrossRef Guerreiro RJ, Lohmann E, Bras JM, Gibbs JR, Rohrer JD, Gurunlian N, Dursun B, Bilgic B, Hanagasi H, Gurvit H, et al. Using Exome Sequencing to Reveal Mutations in TREM2 Presenting as a Frontotemporal Dementia-like Syndrome Without Bone Involvement. JAMA Neurol. 2013;70:78–84.PubMedPubMedCentralCrossRef
37.
go back to reference Giraldo M, Lopera F, Siniard AL, Corneveaux JJ, Schrauwen I, Carvajal J, Munoz C, Ramirez-Restrepo M, Gaiteri C, Myers AJ, et al. Variants in triggering receptor expressed on myeloid cells 2 are associated with both behavioral variant frontotemporal lobar degeneration and Alzheimer’s disease. Neurobiol Aging. 2013;34(8):2077.PubMedCrossRef Giraldo M, Lopera F, Siniard AL, Corneveaux JJ, Schrauwen I, Carvajal J, Munoz C, Ramirez-Restrepo M, Gaiteri C, Myers AJ, et al. Variants in triggering receptor expressed on myeloid cells 2 are associated with both behavioral variant frontotemporal lobar degeneration and Alzheimer’s disease. Neurobiol Aging. 2013;34(8):2077.PubMedCrossRef
38.
go back to reference Borroni B, Ferrari F, Galimberti D, Nacmias B, Barone C, Bagnoli S, Fenoglio C, Piaceri I, Archetti S, Bonvicini C, et al. Heterozygous TREM2 mutations in frontotemporal dementia. Neurobiol Aging. 2014;35(4):934.PubMedCrossRef Borroni B, Ferrari F, Galimberti D, Nacmias B, Barone C, Bagnoli S, Fenoglio C, Piaceri I, Archetti S, Bonvicini C, et al. Heterozygous TREM2 mutations in frontotemporal dementia. Neurobiol Aging. 2014;35(4):934.PubMedCrossRef
39.
go back to reference Thelen M, Razquin C, Hernandez I, Gorostidi A, Sanchez-Valle R, Ortega-Cubero S, Wolfsgruber S, Drichel D, Fliessbach K, Duenkel T, et al. Investigation of the role of rare TREM2 variants in frontotemporal dementia subtypes. Neurobiol Aging. 2014;35(11):2657.PubMedCrossRef Thelen M, Razquin C, Hernandez I, Gorostidi A, Sanchez-Valle R, Ortega-Cubero S, Wolfsgruber S, Drichel D, Fliessbach K, Duenkel T, et al. Investigation of the role of rare TREM2 variants in frontotemporal dementia subtypes. Neurobiol Aging. 2014;35(11):2657.PubMedCrossRef
40.
go back to reference Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener. 2013;8:19.PubMedPubMedCentralCrossRef Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener. 2013;8:19.PubMedPubMedCentralCrossRef
41.
go back to reference Slattery CF, Beck JA, Harper L, Adamson G, Abdi Z, Uphill J, Campbell T, Druyeh R, Mahoney CJ, Rohrer JD, et al. R47H TREM2 variant increases risk of typical early-onset Alzheimer’s disease but not of prion or frontotemporal dementia. Alzheimers Dement. 2014;10:602–8.PubMedCrossRef Slattery CF, Beck JA, Harper L, Adamson G, Abdi Z, Uphill J, Campbell T, Druyeh R, Mahoney CJ, Rohrer JD, et al. R47H TREM2 variant increases risk of typical early-onset Alzheimer’s disease but not of prion or frontotemporal dementia. Alzheimers Dement. 2014;10:602–8.PubMedCrossRef
42.
go back to reference Lill CM, Rengmark A, Pihlstrom L, Fogh I, Shatunov A, Sleiman PM, Wang LS, Liu T, Lassen CF, Meissner E, et al. The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimers Dement. 2015;11:1407–16.PubMedPubMedCentralCrossRef Lill CM, Rengmark A, Pihlstrom L, Fogh I, Shatunov A, Sleiman PM, Wang LS, Liu T, Lassen CF, Meissner E, et al. The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimers Dement. 2015;11:1407–16.PubMedPubMedCentralCrossRef
43.
go back to reference Baizabal-Carvallo JF, Jankovic J. Parkinsonism, movement disorders and genetics in frontotemporal dementia. Nat Rev Neurol. 2016;12:175–85.PubMedCrossRef Baizabal-Carvallo JF, Jankovic J. Parkinsonism, movement disorders and genetics in frontotemporal dementia. Nat Rev Neurol. 2016;12:175–85.PubMedCrossRef
44.
go back to reference Bird TD, Koerker RM, Leaird BJ, Vlcek BW, Thorning DR. Lipomembranous polycystic osteodysplasia (brain, bone, and fat disease): a genetic cause of presenile dementia. Neurology. 1983;33:81–6.PubMedCrossRef Bird TD, Koerker RM, Leaird BJ, Vlcek BW, Thorning DR. Lipomembranous polycystic osteodysplasia (brain, bone, and fat disease): a genetic cause of presenile dementia. Neurology. 1983;33:81–6.PubMedCrossRef
45.
go back to reference Kim JH, Song P, Lim H, Lee JH, Lee JH, Park SA, Alzheimer’s Dis Neuroimaging I. Gene-Based Rare Allele Analysis Identified a Risk Gene of Alzheimer’s Disease. PLoS One. 2014;9(10):e107983.PubMedPubMedCentralCrossRef Kim JH, Song P, Lim H, Lee JH, Lee JH, Park SA, Alzheimer’s Dis Neuroimaging I. Gene-Based Rare Allele Analysis Identified a Risk Gene of Alzheimer’s Disease. PLoS One. 2014;9(10):e107983.PubMedPubMedCentralCrossRef
46.
go back to reference Hooli BV, Parrado AR, Mullin K, Yip WK, Liu T, Roehr JT, Qiao DD, Jessen F, Peters O, Becker T, et al. The rare TREM2 R47H variant exerts only a modest effect on Alzheimer disease risk. Neurology. 2014;83:1353–8.PubMedPubMedCentralCrossRef Hooli BV, Parrado AR, Mullin K, Yip WK, Liu T, Roehr JT, Qiao DD, Jessen F, Peters O, Becker T, et al. The rare TREM2 R47H variant exerts only a modest effect on Alzheimer disease risk. Neurology. 2014;83:1353–8.PubMedPubMedCentralCrossRef
47.
go back to reference Bertram L, Parrado AR, Tanzi RE. TREM2 and neurodegenerative disease. N Engl J Med. 2013;369:1565.PubMed Bertram L, Parrado AR, Tanzi RE. TREM2 and neurodegenerative disease. N Engl J Med. 2013;369:1565.PubMed
48.
go back to reference Sirkis DW, Bonham LW, Aparicio RE, Geier EG, Ramos EM, Wang Q, Karydas A, Miller ZA, Miller BL, Coppola G, Yokoyama JS. Rare TREM2 variants associated with Alzheimer’s disease display reduced cell surface expression. Acta Neuropathol Commun. 2016:4–98. Sirkis DW, Bonham LW, Aparicio RE, Geier EG, Ramos EM, Wang Q, Karydas A, Miller ZA, Miller BL, Coppola G, Yokoyama JS. Rare TREM2 variants associated with Alzheimer’s disease display reduced cell surface expression. Acta Neuropathol Commun. 2016:4–98.
49.
go back to reference Rosenthal SL, Bamne MN, Wang XB, Berman S, Snitz BE, Klunk WE, Sweet RA, Demirci FY, Lopez OL, Kamboh MI. More evidence for association of a rare TREM2 mutation (R47H) with Alzheimer’s disease risk. Neurobiol Aging. 2015;36(8):2443.PubMedPubMedCentralCrossRef Rosenthal SL, Bamne MN, Wang XB, Berman S, Snitz BE, Klunk WE, Sweet RA, Demirci FY, Lopez OL, Kamboh MI. More evidence for association of a rare TREM2 mutation (R47H) with Alzheimer’s disease risk. Neurobiol Aging. 2015;36(8):2443.PubMedPubMedCentralCrossRef
50.
go back to reference Finelli D, Rollinson S, Harris J, Jones M, Richardson A, Gerhard A, Snowden J, Mann D, Pickering-Brown S. TREM2 analysis and increased risk of Alzheimer’s disease. Neurobiol Aging. 2015;36(1):546.PubMedCrossRef Finelli D, Rollinson S, Harris J, Jones M, Richardson A, Gerhard A, Snowden J, Mann D, Pickering-Brown S. TREM2 analysis and increased risk of Alzheimer’s disease. Neurobiol Aging. 2015;36(1):546.PubMedCrossRef
51.
go back to reference Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D, Norton JB, Hsu S, Harari O, Cai YF, et al. Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet. 2014;23:5838–46.PubMedPubMedCentralCrossRef Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D, Norton JB, Hsu S, Harari O, Cai YF, et al. Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet. 2014;23:5838–46.PubMedPubMedCentralCrossRef
52.
go back to reference Benitez BA, Cooper B, Pastor P, Jin SC, Lorenzo E, Cervantes S, Cruchaga C. TREM2 is associated with the risk of Alzheimer’s disease in Spanish population. Neurobiol Aging. 2013;34(6):1711.PubMedPubMedCentralCrossRef Benitez BA, Cooper B, Pastor P, Jin SC, Lorenzo E, Cervantes S, Cruchaga C. TREM2 is associated with the risk of Alzheimer’s disease in Spanish population. Neurobiol Aging. 2013;34(6):1711.PubMedPubMedCentralCrossRef
53.
go back to reference Benitez BA, Jin SC, Guerreiro R, Graham R, Lord J, Harold D, Sims R, Lambert JC, Gibbs JR, Bras J, et al. Missense variant in TREML2 protects against Alzheimer’s disease. Neurobiol Aging. 2014;35(6):1510.PubMedPubMedCentralCrossRef Benitez BA, Jin SC, Guerreiro R, Graham R, Lord J, Harold D, Sims R, Lambert JC, Gibbs JR, Bras J, et al. Missense variant in TREML2 protects against Alzheimer’s disease. Neurobiol Aging. 2014;35(6):1510.PubMedPubMedCentralCrossRef
54.
go back to reference Ruiz A, Dols-Icardo O, Bullido MJ, Pastor P, Rodriguez-Rodriguez E, de Munain AL, de Pancorbo MM, Perez-Tur J, Alvarez V, Antonell A, et al. Assessing the role of the TREM2 p.R47H variant as a risk factor for Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging. 2014;35(2):444.PubMedCrossRef Ruiz A, Dols-Icardo O, Bullido MJ, Pastor P, Rodriguez-Rodriguez E, de Munain AL, de Pancorbo MM, Perez-Tur J, Alvarez V, Antonell A, et al. Assessing the role of the TREM2 p.R47H variant as a risk factor for Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging. 2014;35(2):444.PubMedCrossRef
55.
go back to reference Gonzalez Murcia JD, Schmutz C, Munger C, Perkes A, Gustin A, Peterson M, Ebbert MT, Norton MC, Tschanz JT, Munger RG, et al. Assessment of TREM2 rs75932628 association with Alzheimer’s disease in a population-based sample: the Cache County Study. Neurobiol Aging. 2013;34:2889.e2811–83.CrossRef Gonzalez Murcia JD, Schmutz C, Munger C, Perkes A, Gustin A, Peterson M, Ebbert MT, Norton MC, Tschanz JT, Munger RG, et al. Assessment of TREM2 rs75932628 association with Alzheimer’s disease in a population-based sample: the Cache County Study. Neurobiol Aging. 2013;34:2889.e2811–83.CrossRef
56.
go back to reference Yu JT, Jiang T, Wang YL, Wang HF, Zhang W, Hu N, Tan L, Sun L, Tan MS, Zhu XC, Tan L. Triggering receptor expressed on myeloid cells 2 variant is rare in late-onset Alzheimer’s disease in Han Chinese individuals. Neurobiol Aging. 2014;35(4):937.PubMed Yu JT, Jiang T, Wang YL, Wang HF, Zhang W, Hu N, Tan L, Sun L, Tan MS, Zhu XC, Tan L. Triggering receptor expressed on myeloid cells 2 variant is rare in late-onset Alzheimer’s disease in Han Chinese individuals. Neurobiol Aging. 2014;35(4):937.PubMed
57.
go back to reference Roussos P, Katsel P, Fam P, Tan WL, Purohit DP, Haroutunian V. The triggering receptor expressed on myeloid cells 2 (TREM2) is associated with enhanced inflammation, neuropathological lesions and increased risk for Alzheimer’s dementia. Alzheimers Dement. 2015;11:1163–70.PubMedCrossRef Roussos P, Katsel P, Fam P, Tan WL, Purohit DP, Haroutunian V. The triggering receptor expressed on myeloid cells 2 (TREM2) is associated with enhanced inflammation, neuropathological lesions and increased risk for Alzheimer’s dementia. Alzheimers Dement. 2015;11:1163–70.PubMedCrossRef
58.
go back to reference Jiang T, Tan L, Chen Q, Tan MS, Zhou JS, Zhu XC, Lu H, Wang HF, Zhang YD, Yu JT. A rare coding variant in TREM2 increases risk for Alzheimer’s disease in Han Chinese. Neurobiol Aging. 2016;42:217.PubMedCrossRef Jiang T, Tan L, Chen Q, Tan MS, Zhou JS, Zhu XC, Lu H, Wang HF, Zhang YD, Yu JT. A rare coding variant in TREM2 increases risk for Alzheimer’s disease in Han Chinese. Neurobiol Aging. 2016;42:217.PubMedCrossRef
59.
go back to reference Mehrjoo Z, Najmabadi A, Abedini SS, Mohseni M, Kamali K, Najmabadi H, Khorshid HRK. Association Study of the TREM2 Gene and Identification of a Novel Variant in Exon 2 in Iranian Patients with Late-Onset Alzheimer’s Disease. Med Princ Pract. 2015;24:351–4.PubMedCrossRef Mehrjoo Z, Najmabadi A, Abedini SS, Mohseni M, Kamali K, Najmabadi H, Khorshid HRK. Association Study of the TREM2 Gene and Identification of a Novel Variant in Exon 2 in Iranian Patients with Late-Onset Alzheimer’s Disease. Med Princ Pract. 2015;24:351–4.PubMedCrossRef
60.
go back to reference Korvatska O, Leverenz JB, Jayadev S, McMillan P, Kurtz I, Guo XD, Rumbaugh M, Matsushita M, Girirajan S, Dorschner MO, et al. R47H Variant of TREM2 Associated With Alzheimer Disease in a Large Late-Onset Family Clinical, Genetic, and Neuropathological Study. JAMA Neurol. 2015;72:920–7.PubMedPubMedCentralCrossRef Korvatska O, Leverenz JB, Jayadev S, McMillan P, Kurtz I, Guo XD, Rumbaugh M, Matsushita M, Girirajan S, Dorschner MO, et al. R47H Variant of TREM2 Associated With Alzheimer Disease in a Large Late-Onset Family Clinical, Genetic, and Neuropathological Study. JAMA Neurol. 2015;72:920–7.PubMedPubMedCentralCrossRef
61.
62.
go back to reference Replogle JM, Chan G, White CC, Raj T, Winn PA, Evans DA, Sperling RA, Chibnik LB, Bradshaw EM, Schneider JA, et al. A TREM1 Variant Alters the Accumulation of Alzheimer-Related Amyloid Pathology. Ann Neurol. 2015;77:469–77.PubMedPubMedCentralCrossRef Replogle JM, Chan G, White CC, Raj T, Winn PA, Evans DA, Sperling RA, Chibnik LB, Bradshaw EM, Schneider JA, et al. A TREM1 Variant Alters the Accumulation of Alzheimer-Related Amyloid Pathology. Ann Neurol. 2015;77:469–77.PubMedPubMedCentralCrossRef
63.
go back to reference Luis EO, Ortega-Cubero S, Lamet I, Razquin C, Cruchaga C, Benitez BA, Lorenzo E, Irigoyen J, Pastor MA, Pastor P, Adni. Frontobasal gray matter loss is associated with the TREM2 p.R47H variant. Neurobiol Aging. 2014;35:2681–90.PubMedPubMedCentralCrossRef Luis EO, Ortega-Cubero S, Lamet I, Razquin C, Cruchaga C, Benitez BA, Lorenzo E, Irigoyen J, Pastor MA, Pastor P, Adni. Frontobasal gray matter loss is associated with the TREM2 p.R47H variant. Neurobiol Aging. 2014;35:2681–90.PubMedPubMedCentralCrossRef
64.
go back to reference Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P, Baloh RH, Ravits J, Simpson E, Appel SH, et al. TREM2 Variant p.R47H as a Risk Factor for Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurol. 2014;71:449–53.PubMedPubMedCentralCrossRef Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P, Baloh RH, Ravits J, Simpson E, Appel SH, et al. TREM2 Variant p.R47H as a Risk Factor for Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurol. 2014;71:449–53.PubMedPubMedCentralCrossRef
66.
go back to reference Liu GY, Liu YQ, Jiang QH, Jiang YS, Feng RN, Zhang LC, Chen ZG, Li KS, Liu JF. Convergent Genetic and Expression Datasets Highlight TREM2 in Parkinson’s Disease Susceptibility. Mol Neurobiol. 2016;53:4931–8.PubMedCrossRef Liu GY, Liu YQ, Jiang QH, Jiang YS, Feng RN, Zhang LC, Chen ZG, Li KS, Liu JF. Convergent Genetic and Expression Datasets Highlight TREM2 in Parkinson’s Disease Susceptibility. Mol Neurobiol. 2016;53:4931–8.PubMedCrossRef
67.
go back to reference Mengel D, Thelen M, Balzer-Geldsetzer M, Soeling C, Bach JP, Schaeffer E, Herold C, Becker T, Liepelt I, Becker J, et al. TREM2 rare variant p.R47H is not associated with Parkinson’s disease. Parkinsonism Relat Disord. 2016;23:109–11.PubMedCrossRef Mengel D, Thelen M, Balzer-Geldsetzer M, Soeling C, Bach JP, Schaeffer E, Herold C, Becker T, Liepelt I, Becker J, et al. TREM2 rare variant p.R47H is not associated with Parkinson’s disease. Parkinsonism Relat Disord. 2016;23:109–11.PubMedCrossRef
68.
go back to reference Carrasquillo MM, Barber I, Lincoln SJ, Murray ME, Camsari GB, Khan QU, Nguyen T, Ma L, Bisceglio GD, Crook JE, et al. Evaluating pathogenic dementia variants in posterior cortical atrophy. Neurobiol Aging. 2016;37:38–44.PubMedCrossRef Carrasquillo MM, Barber I, Lincoln SJ, Murray ME, Camsari GB, Khan QU, Nguyen T, Ma L, Bisceglio GD, Crook JE, et al. Evaluating pathogenic dementia variants in posterior cortical atrophy. Neurobiol Aging. 2016;37:38–44.PubMedCrossRef
69.
go back to reference Chen YP, Chen XP, Guo XY, Song W, Cao B, Wei QQ, Ou RW, Zhao B, Shang HF. Assessment of TREM2 rs75932628 association with Parkinson’s disease and multiple system atrophy in a Chinese population. Neurol Sci. 2015;36:1903–6.PubMedCrossRef Chen YP, Chen XP, Guo XY, Song W, Cao B, Wei QQ, Ou RW, Zhao B, Shang HF. Assessment of TREM2 rs75932628 association with Parkinson’s disease and multiple system atrophy in a Chinese population. Neurol Sci. 2015;36:1903–6.PubMedCrossRef
70.
go back to reference Ortega-Cubero S, Lorenzo-Betancor O, Lorenzo E, Agundez JAG, Jimenez-Jimenez FJ, Ross OA, Wurster I, Mielke C, Lin JJ, Coria F, et al. TREM2 R47H variant and risk of essential tremor: A cross-sectional international multicenter study. Parkinsonism Relat Disord. 2015;21:306–9.PubMedCrossRef Ortega-Cubero S, Lorenzo-Betancor O, Lorenzo E, Agundez JAG, Jimenez-Jimenez FJ, Ross OA, Wurster I, Mielke C, Lin JJ, Coria F, et al. TREM2 R47H variant and risk of essential tremor: A cross-sectional international multicenter study. Parkinsonism Relat Disord. 2015;21:306–9.PubMedCrossRef
71.
go back to reference Sulonen AM, Kallio SP, Ellonen P, Suvela M, Elovaara I, Koivisto K, Pirttila T, Reunanen M, Tienari PJ, Palotie A, et al. No evidence for shared etiology in two demyelinative disorders, MS and PLOSL. J Neuroimmunol. 2009;206:86–90.PubMedCrossRef Sulonen AM, Kallio SP, Ellonen P, Suvela M, Elovaara I, Koivisto K, Pirttila T, Reunanen M, Tienari PJ, Palotie A, et al. No evidence for shared etiology in two demyelinative disorders, MS and PLOSL. J Neuroimmunol. 2009;206:86–90.PubMedCrossRef
72.
go back to reference Chee KY, Gaillard F, Velakoulis D, Ang CL, Chin LK, Ariffin R: A case of TREM2 mutation presenting with features of progressive non-fluent aphasia and without bone involvement. Aust N Z J Psychiatr. 2017; doi:10.1177/0004867417707821. Chee KY, Gaillard F, Velakoulis D, Ang CL, Chin LK, Ariffin R: A case of TREM2 mutation presenting with features of progressive non-fluent aphasia and without bone involvement. Aust N Z J Psychiatr. 2017; doi:10.​1177/​0004867417707821​.
73.
go back to reference Walton RL, Soto-Ortolaza AI, Murray ME, Lorenzo-Betancor O, Ogaki K, Heckman MG, Rayaprolu S, Rademakers R, Ertekin-Taner N, Uitti RJ, et al. TREM2 p.R47H substitution is not associated with dementia with Lewy bodies. Neurol Genet. 2016;2(4):e85.PubMedPubMedCentralCrossRef Walton RL, Soto-Ortolaza AI, Murray ME, Lorenzo-Betancor O, Ogaki K, Heckman MG, Rayaprolu S, Rademakers R, Ertekin-Taner N, Uitti RJ, et al. TREM2 p.R47H substitution is not associated with dementia with Lewy bodies. Neurol Genet. 2016;2(4):e85.PubMedPubMedCentralCrossRef
74.
go back to reference Cheng J, Guo XF, Zhang T, Zhong L, Bu GJ, Chen XF. TREMs in Alzheimer’s disease: Genetic and clinical investigations. Clin Chim Acta. 2016;463:88–95.PubMedCrossRef Cheng J, Guo XF, Zhang T, Zhong L, Bu GJ, Chen XF. TREMs in Alzheimer’s disease: Genetic and clinical investigations. Clin Chim Acta. 2016;463:88–95.PubMedCrossRef
75.
go back to reference Tan T, Song Z, Yuan LM, Xiong W, Deng X, Ni B, Chen Y, Deng H. Genetic analysis of TREM2 variants in Chinese Han patients with sporadic Parkinson’s disease. Neurosci Lett. 2016;612:189–92.PubMedCrossRef Tan T, Song Z, Yuan LM, Xiong W, Deng X, Ni B, Chen Y, Deng H. Genetic analysis of TREM2 variants in Chinese Han patients with sporadic Parkinson’s disease. Neurosci Lett. 2016;612:189–92.PubMedCrossRef
76.
go back to reference Li ZM, Zhong L, Gu L, Huang WQ, Shi XZ, Zhang XL, An XK, Lin Q, Tzeng CM. Association study of TREM2 polymorphism rs75932628 with leucoaraiosis or Parkinson’s disease in the Han Chinese population. BMJ Open. 2016;6(1):e009499.PubMedPubMedCentralCrossRef Li ZM, Zhong L, Gu L, Huang WQ, Shi XZ, Zhang XL, An XK, Lin Q, Tzeng CM. Association study of TREM2 polymorphism rs75932628 with leucoaraiosis or Parkinson’s disease in the Han Chinese population. BMJ Open. 2016;6(1):e009499.PubMedPubMedCentralCrossRef
77.
go back to reference Chen XP, Chen YP, Wei QQ, Guo XY, Cao B, Ou RW, Zhao B, Shang HF. Assessment of TREM2 rs75932628 association with amyotrophic lateral sclerosis in a Chinese population. J Neurol Sci. 2015;355:193–5.PubMedCrossRef Chen XP, Chen YP, Wei QQ, Guo XY, Cao B, Ou RW, Zhao B, Shang HF. Assessment of TREM2 rs75932628 association with amyotrophic lateral sclerosis in a Chinese population. J Neurol Sci. 2015;355:193–5.PubMedCrossRef
78.
go back to reference Feng SJ, Nie K, Gan R, Huang J, Zhang YW, Wang LM, Zhao JH, Tang HM, Gao L, Zhu RM, et al. Triggering receptor expressed on myeloid cells 2 variants are rare in Parkinson’s disease in a Han Chinese cohort. Neurobiol Aging. 2014;35(7):1780.CrossRef Feng SJ, Nie K, Gan R, Huang J, Zhang YW, Wang LM, Zhao JH, Tang HM, Gao L, Zhu RM, et al. Triggering receptor expressed on myeloid cells 2 variants are rare in Parkinson’s disease in a Han Chinese cohort. Neurobiol Aging. 2014;35(7):1780.CrossRef
79.
go back to reference Ma JF, Zhou Y, Xu J, Liu XH, Wang Y, Deng YL, Wang G, Xu W, Ren RJ, Liu XY, et al. Association study of TREM2 polymorphism rs75932628 with late-onset Alzheimer’s disease in Chinese Han population. Neurol Res. 2014;36:894–6.PubMedCrossRef Ma JF, Zhou Y, Xu J, Liu XH, Wang Y, Deng YL, Wang G, Xu W, Ren RJ, Liu XY, et al. Association study of TREM2 polymorphism rs75932628 with late-onset Alzheimer’s disease in Chinese Han population. Neurol Res. 2014;36:894–6.PubMedCrossRef
80.
go back to reference Jiao B, Liu XY, Tang BS, Hou LH, Zhou L, Zhang FF, Zhou YF, Guo JF, Yan XX, Shen L. Investigation of TREM2, PLD3, and UNC5C variants in patients with Alzheimer’s disease from mainland China. Neurobiol Aging. 2014;35(10):2422.PubMedCrossRef Jiao B, Liu XY, Tang BS, Hou LH, Zhou L, Zhang FF, Zhou YF, Guo JF, Yan XX, Shen L. Investigation of TREM2, PLD3, and UNC5C variants in patients with Alzheimer’s disease from mainland China. Neurobiol Aging. 2014;35(10):2422.PubMedCrossRef
81.
go back to reference Miyashita A, Wen YN, Kitamura N, Matsubara E, Kawarabayashi T, Shoji M, Tomita N, Furukawa K, Arai H, Asada T, et al. Lack of Genetic Association Between TREM2 and Late-Onset Alzheimer’s Disease in a Japanese Population. J Alzheimer Dis. 2014;41:1031–8. Miyashita A, Wen YN, Kitamura N, Matsubara E, Kawarabayashi T, Shoji M, Tomita N, Furukawa K, Arai H, Asada T, et al. Lack of Genetic Association Between TREM2 and Late-Onset Alzheimer’s Disease in a Japanese Population. J Alzheimer Dis. 2014;41:1031–8.
82.
go back to reference Huang M, Wang DJ, Xu ZJ, Xu YS, Xu XP, Ma YF, Xia Z. Lack of Genetic Association Between TREM2 and Alzheimer’s Disease in East Asian Population: A Systematic Review and Meta-Analysis. Am J Alzheimers Dis Other Demen. 2015;30:541–6.PubMedCrossRef Huang M, Wang DJ, Xu ZJ, Xu YS, Xu XP, Ma YF, Xia Z. Lack of Genetic Association Between TREM2 and Alzheimer’s Disease in East Asian Population: A Systematic Review and Meta-Analysis. Am J Alzheimers Dis Other Demen. 2015;30:541–6.PubMedCrossRef
83.
go back to reference Jin SC, Carrasquillo MM, Benitez BA, Skorupa T, Carrell D, Patel D, Lincoln S, Krishnan S, Kachadoorian M, Reitz C, et al. TREM2 is associated with increased risk for Alzheimer’s disease in African Americans. Mol Neurodegener. 2015;10:19.PubMedPubMedCentralCrossRef Jin SC, Carrasquillo MM, Benitez BA, Skorupa T, Carrell D, Patel D, Lincoln S, Krishnan S, Kachadoorian M, Reitz C, et al. TREM2 is associated with increased risk for Alzheimer’s disease in African Americans. Mol Neurodegener. 2015;10:19.PubMedPubMedCentralCrossRef
84.
85.
go back to reference Chan G, White CC, Winn PA, Cimpean M, Replogle JM, Glick LR, Cuerdon NE, Ryan KJ, Johnson KA, Schneider JA, et al. CD33 modulates TREM2: convergence of Alzheimer loci. Nat Neurosci. 2015;18:1556–8.PubMedPubMedCentralCrossRef Chan G, White CC, Winn PA, Cimpean M, Replogle JM, Glick LR, Cuerdon NE, Ryan KJ, Johnson KA, Schneider JA, et al. CD33 modulates TREM2: convergence of Alzheimer loci. Nat Neurosci. 2015;18:1556–8.PubMedPubMedCentralCrossRef
86.
go back to reference Piccio L, Deming Y, Del-Aguila JL, Ghezzi L, Holtzman DM, Fagan AM, Fenoglio C, Galimberti D, Borroni B, Cruchaga C. Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol. 2016;131:925–33.PubMedPubMedCentralCrossRef Piccio L, Deming Y, Del-Aguila JL, Ghezzi L, Holtzman DM, Fagan AM, Fenoglio C, Galimberti D, Borroni B, Cruchaga C. Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol. 2016;131:925–33.PubMedPubMedCentralCrossRef
87.
go back to reference Takahashi H, Klein ZA, Bhagat SM, Kaufman AC, Kostylev MA, Ikezu T, Strittmatter SM. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;48:222. Takahashi H, Klein ZA, Bhagat SM, Kaufman AC, Kostylev MA, Ikezu T, Strittmatter SM. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;48:222.
88.
go back to reference Pottier C, Ravenscroft TA, Brown PH, Finch NA, Baker M, Parsons M, Asmann YW, Ren YX, Christopher E, Levitch D, et al. TYROBP genetic variants in early-onset Alzheimer’s disease. Neurobiol Aging. 2016;48:222.e9–e15. Pottier C, Ravenscroft TA, Brown PH, Finch NA, Baker M, Parsons M, Asmann YW, Ren YX, Christopher E, Levitch D, et al. TYROBP genetic variants in early-onset Alzheimer’s disease. Neurobiol Aging. 2016;48:222.e9–e15.
89.
go back to reference Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153:707–20.PubMedPubMedCentralCrossRef Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, Zhang C, Xie T, Tran L, Dobrin R, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153:707–20.PubMedPubMedCentralCrossRef
90.
go back to reference Kaifu T, Nakahara J, Inui M, Mishima K, Momiyama T, Kaji M, Sugahara A, Koito H, Ujike-Asai A, Nakamura A, et al. Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest. 2003;111:323–32.PubMedPubMedCentralCrossRef Kaifu T, Nakahara J, Inui M, Mishima K, Momiyama T, Kaji M, Sugahara A, Koito H, Ujike-Asai A, Nakamura A, et al. Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest. 2003;111:323–32.PubMedPubMedCentralCrossRef
91.
go back to reference Haure-Mirande J, Audrain M, Fanutza T, Ho Kim S, Klein WL, Glabe C, Readhead B, Dudley JT, Blitzer RD, Wang M, et al. Deficiency of TYROBP, an adaptor protein for TREM2 and C3 receptors, is neuroprotective in a mouse model of early Alzheimer’s pathology. Acta Neuropathol. 2017; doi:10.1007/s00401-017-1737-3. Haure-Mirande J, Audrain M, Fanutza T, Ho Kim S, Klein WL, Glabe C, Readhead B, Dudley JT, Blitzer RD, Wang M, et al. Deficiency of TYROBP, an adaptor protein for TREM2 and C3 receptors, is neuroprotective in a mouse model of early Alzheimer’s pathology. Acta Neuropathol. 2017; doi:10.​1007/​s00401-017-1737-3.
92.
go back to reference Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, Lash J, Wider C, Wojtas A, DeJesus-Hernandez M, et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet. 2011;44:200–5.PubMedPubMedCentralCrossRef Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A, Lash J, Wider C, Wojtas A, DeJesus-Hernandez M, et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet. 2011;44:200–5.PubMedPubMedCentralCrossRef
93.
go back to reference Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.PubMedPubMedCentralCrossRef Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.PubMedPubMedCentralCrossRef
94.
go back to reference Yeh FL, Wang YY, Tom I, Gonzalez LC, Sheng M. TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia. Neuron. 2016;91:328–40.PubMedCrossRef Yeh FL, Wang YY, Tom I, Gonzalez LC, Sheng M. TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia. Neuron. 2016;91:328–40.PubMedCrossRef
95.
go back to reference Atagi Y, Liu CC, Painter MM, Chen XF, Verbeeck C, Zheng H, Li X, Rademakers R, Kang SS, Xu H, et al. Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). J Biol Chem. 2015;290:26043–50.PubMedPubMedCentralCrossRef Atagi Y, Liu CC, Painter MM, Chen XF, Verbeeck C, Zheng H, Li X, Rademakers R, Kang SS, Xu H, et al. Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). J Biol Chem. 2015;290:26043–50.PubMedPubMedCentralCrossRef
96.
98.
go back to reference Saber M, Kokiko-Cochran O, Puntambekar SS, Lathia JD, Lamb BT. Triggering Receptor Expressed on Myeloid Cells 2 Deficiency Alters Acute Macrophage Distribution and Improves Recovery after Traumatic Brain Injury. J Neurotrauma. 2017;34:423.PubMedCrossRef Saber M, Kokiko-Cochran O, Puntambekar SS, Lathia JD, Lamb BT. Triggering Receptor Expressed on Myeloid Cells 2 Deficiency Alters Acute Macrophage Distribution and Improves Recovery after Traumatic Brain Injury. J Neurotrauma. 2017;34:423.PubMedCrossRef
99.
go back to reference Hernandez A, Donovan V, Grinberg YY, Obenaus A, Carson MJ. Differential detection of impact site versus rotational site injury by magnetic resonance imaging and microglial morphology in an unrestrained mild closed head injury model. J Neurochem. 2016;136:18–28.PubMedPubMedCentralCrossRef Hernandez A, Donovan V, Grinberg YY, Obenaus A, Carson MJ. Differential detection of impact site versus rotational site injury by magnetic resonance imaging and microglial morphology in an unrestrained mild closed head injury model. J Neurochem. 2016;136:18–28.PubMedPubMedCentralCrossRef
100.
go back to reference Graham LC, Harder JM, Soto I, de Vries WN, John SWM, Howell GR. Chronic consumption of a western diet induces robust glial activation in aging mice and in a mouse model of Alzheimer’s disease. Sci Report. 2016;6:21568.CrossRef Graham LC, Harder JM, Soto I, de Vries WN, John SWM, Howell GR. Chronic consumption of a western diet induces robust glial activation in aging mice and in a mouse model of Alzheimer’s disease. Sci Report. 2016;6:21568.CrossRef
101.
go back to reference Forabosco P, Ramasamy A, Trabzuni D, Walker R, Smith C, Bras J, Levine AP, Hardy J, Pocock JM, Guerreiro R, et al. Insights into TREM2 biology by network analysis of human brain gene expression data. Neurobiol Aging. 2013;34:2699–714.PubMedPubMedCentralCrossRef Forabosco P, Ramasamy A, Trabzuni D, Walker R, Smith C, Bras J, Levine AP, Hardy J, Pocock JM, Guerreiro R, et al. Insights into TREM2 biology by network analysis of human brain gene expression data. Neurobiol Aging. 2013;34:2699–714.PubMedPubMedCentralCrossRef
102.
go back to reference Allcock RJN, Barrow AD, Forbes S, Beck S, Trowsdale J. The human TREM gene cluster at 6p21.1 encodes both activating and inhibitory single IgV domain receptors and includes NKp44. Eur J Immunol. 2003;33:567–77.PubMedCrossRef Allcock RJN, Barrow AD, Forbes S, Beck S, Trowsdale J. The human TREM gene cluster at 6p21.1 encodes both activating and inhibitory single IgV domain receptors and includes NKp44. Eur J Immunol. 2003;33:567–77.PubMedCrossRef
105.
go back to reference Daniel B, Nagy G, Hah N, Horvath A, Czimmerer Z, Poliska S, Gyuris T, Keirsse J, Gysemans C, Van Ginderachter JA, et al. The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages. Genes Dev. 2014;28:1562–77.PubMedPubMedCentralCrossRef Daniel B, Nagy G, Hah N, Horvath A, Czimmerer Z, Poliska S, Gyuris T, Keirsse J, Gysemans C, Van Ginderachter JA, et al. The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages. Genes Dev. 2014;28:1562–77.PubMedPubMedCentralCrossRef
106.
go back to reference Zheng HH, Liu CC, Atagi Y, Chen XF, Jia L, Yang LY, He WC, Zhang XL, Kang SS, Rosenberry TL, et al. Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiol Aging. 2016;42:132–41.PubMedPubMedCentralCrossRef Zheng HH, Liu CC, Atagi Y, Chen XF, Jia L, Yang LY, He WC, Zhang XL, Kang SS, Rosenberry TL, et al. Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiol Aging. 2016;42:132–41.PubMedPubMedCentralCrossRef
107.
go back to reference Benitez BA, Jin SC, Guerreiro R, Graham R, Lord J, Harold D, Sims R, Lambert JC, Gibbs JR, Bras J, et al. Missense variant in TREML2 protects against Alzheimer’s disease. Neurobiol Aging. 2014;35:1510.PubMedPubMedCentralCrossRef Benitez BA, Jin SC, Guerreiro R, Graham R, Lord J, Harold D, Sims R, Lambert JC, Gibbs JR, Bras J, et al. Missense variant in TREML2 protects against Alzheimer’s disease. Neurobiol Aging. 2014;35:1510.PubMedPubMedCentralCrossRef
108.
go back to reference Carrasquillo MM, Allen M, Burgess JD, Wang X, Strickland SL, Aryal S, Siuda J, Kachadoorian ML, Medway C, Younkin CS, et al. A candidate regulatory variant at the TREM gene cluster associates with decreased Alzheimer’s disease risk and increased TREML1 and TREM2 brain gene expression. Alzheimers Dement. 2016;13(6):663–73.PubMedCrossRef Carrasquillo MM, Allen M, Burgess JD, Wang X, Strickland SL, Aryal S, Siuda J, Kachadoorian ML, Medway C, Younkin CS, et al. A candidate regulatory variant at the TREM gene cluster associates with decreased Alzheimer’s disease risk and increased TREML1 and TREM2 brain gene expression. Alzheimers Dement. 2016;13(6):663–73.PubMedCrossRef
109.
go back to reference Replogle JM, De Jager PL. No Association of TREM1 rs6910730 and TREM2 rs7759295 With Alzheimer Disease Reply. Ann Neurol. 2015;78:659–60.PubMedCrossRef Replogle JM, De Jager PL. No Association of TREM1 rs6910730 and TREM2 rs7759295 With Alzheimer Disease Reply. Ann Neurol. 2015;78:659–60.PubMedCrossRef
110.
go back to reference Reiner AP, Beleza S, Franceschini N, Auer PL, Robinson JG, Kooperberg C, Peters U, Tang H. Genome-wide Association and Population Genetic Analysis of C-Reactive Protein in African American and Hispanic American Women. Am J Hum Genet. 2012;91:502–12.PubMedPubMedCentralCrossRef Reiner AP, Beleza S, Franceschini N, Auer PL, Robinson JG, Kooperberg C, Peters U, Tang H. Genome-wide Association and Population Genetic Analysis of C-Reactive Protein in African American and Hispanic American Women. Am J Hum Genet. 2012;91:502–12.PubMedPubMedCentralCrossRef
111.
go back to reference Satoh J, Asahina N, Kitano S, Kino Y. A Comprehensive Profile of ChIP-Seq-Based PU.1/Spi1 Target Genes in Microglia. Gene Regul Syst Bio. 2014;8:127–39.PubMedPubMedCentralCrossRef Satoh J, Asahina N, Kitano S, Kino Y. A Comprehensive Profile of ChIP-Seq-Based PU.1/Spi1 Target Genes in Microglia. Gene Regul Syst Bio. 2014;8:127–39.PubMedPubMedCentralCrossRef
112.
go back to reference Lefterov I, Schug J, Mounier A, Nam KN, Fitz NF, Koldamova R. RNA-sequencing reveals transcriptional up-regulation of Trem2 in response to bexarotene treatment. Neurobiol Dis. 2015;82:132–40.PubMedPubMedCentralCrossRef Lefterov I, Schug J, Mounier A, Nam KN, Fitz NF, Koldamova R. RNA-sequencing reveals transcriptional up-regulation of Trem2 in response to bexarotene treatment. Neurobiol Dis. 2015;82:132–40.PubMedPubMedCentralCrossRef
113.
go back to reference Alexandrov PN, Zhao YH, Jones BM, Bhattacharjee S, Lukiw WJ. Expression of the phagocytosis-essential protein TREM2 is down-regulated by an aluminum-induced miRNA-34a in a murine microglial cell line. J Inorg Biochem. 2013;128:267–9.PubMedCrossRef Alexandrov PN, Zhao YH, Jones BM, Bhattacharjee S, Lukiw WJ. Expression of the phagocytosis-essential protein TREM2 is down-regulated by an aluminum-induced miRNA-34a in a murine microglial cell line. J Inorg Biochem. 2013;128:267–9.PubMedCrossRef
114.
go back to reference Owens R, Grabert K, Davies CL, Alfieri A, Antel JP, Healy LM, McColl BW. Divergent Neuroinflammatory Regulation of Microglial TREM Expression and Involvement of NF-κB. Front Cell Neurosci. 2017;11:56.PubMedPubMedCentralCrossRef Owens R, Grabert K, Davies CL, Alfieri A, Antel JP, Healy LM, McColl BW. Divergent Neuroinflammatory Regulation of Microglial TREM Expression and Involvement of NF-κB. Front Cell Neurosci. 2017;11:56.PubMedPubMedCentralCrossRef
115.
116.
go back to reference Zawawi MSF, Dharmapatni A, Cantley MD, McHugh KP, Haynes DR, Crotti TN. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation. Biochem Biophys Res Commun. 2012;427:404–9.PubMedCrossRef Zawawi MSF, Dharmapatni A, Cantley MD, McHugh KP, Haynes DR, Crotti TN. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation. Biochem Biophys Res Commun. 2012;427:404–9.PubMedCrossRef
117.
go back to reference Bhattacharjee S, Zhao Y, Dua P, Rogaev EI, Lukiw WJ. microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration. PLoS One. 2016;11:e0150211.PubMedPubMedCentralCrossRef Bhattacharjee S, Zhao Y, Dua P, Rogaev EI, Lukiw WJ. microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration. PLoS One. 2016;11:e0150211.PubMedPubMedCentralCrossRef
118.
go back to reference Bhattacharjee S, Zhao YH, Lukiw WJ. Deficits in the miRNA-34a-regulated endogenous TREM2 phagocytosis sensor-receptor in Alzheimer’s disease (AD); an update. Front Aging Neurosci. 2014;6:116.PubMedPubMedCentral Bhattacharjee S, Zhao YH, Lukiw WJ. Deficits in the miRNA-34a-regulated endogenous TREM2 phagocytosis sensor-receptor in Alzheimer’s disease (AD); an update. Front Aging Neurosci. 2014;6:116.PubMedPubMedCentral
119.
go back to reference Zhao YH, Bhattacharjee S, Jones BM, Dua P, Alexandrov PN, Hill JM, Lukiw WJ. Regulation of TREM2 expression by an NF-kappa B-sensitive miRNA-34a. Neuroreport. 2013;24:318–23.PubMedPubMedCentralCrossRef Zhao YH, Bhattacharjee S, Jones BM, Dua P, Alexandrov PN, Hill JM, Lukiw WJ. Regulation of TREM2 expression by an NF-kappa B-sensitive miRNA-34a. Neuroreport. 2013;24:318–23.PubMedPubMedCentralCrossRef
120.
go back to reference Zhao YH, Hill JM, Bhattacharjee S, Percy ME, Pogue AID, Lukiw WJ. Aluminum-induced amyloidogenesis and impairment in the clearance of amyloid peptides from the central nervous system in Alzheimer’s disease. Front Neurol. 2014;5:167.PubMedPubMedCentralCrossRef Zhao YH, Hill JM, Bhattacharjee S, Percy ME, Pogue AID, Lukiw WJ. Aluminum-induced amyloidogenesis and impairment in the clearance of amyloid peptides from the central nervous system in Alzheimer’s disease. Front Neurol. 2014;5:167.PubMedPubMedCentralCrossRef
121.
go back to reference Zhao YH, Jaber V, Lukiw WJ. Over-Expressed Pathogenic miRNAs in Alzheimer’s Disease (AD) and Prion Disease (PrD) Drive Deficits in TREM2-Mediated A beta 42 Peptide Clearance. Front Aging Neurosci. 2016;8:140.PubMedPubMedCentral Zhao YH, Jaber V, Lukiw WJ. Over-Expressed Pathogenic miRNAs in Alzheimer’s Disease (AD) and Prion Disease (PrD) Drive Deficits in TREM2-Mediated A beta 42 Peptide Clearance. Front Aging Neurosci. 2016;8:140.PubMedPubMedCentral
122.
go back to reference Celarain N, de Gordoa JSR, Zelaya MV, Roldan M, Larumbe R, Pulido L, Echavarri C, Mendioroz M. TREM2 upregulation correlates with 5-hydroxymethycytosine enrichment in Alzheimer’s disease hippocampus. Clin Epigenetics. 2016;8:37.PubMedPubMedCentralCrossRef Celarain N, de Gordoa JSR, Zelaya MV, Roldan M, Larumbe R, Pulido L, Echavarri C, Mendioroz M. TREM2 upregulation correlates with 5-hydroxymethycytosine enrichment in Alzheimer’s disease hippocampus. Clin Epigenetics. 2016;8:37.PubMedPubMedCentralCrossRef
123.
go back to reference Smith AR, Smith RG, Condliffe D, Hannon E, Schalkwyk L, Mill J, Lunnon K. Increased DNA methylation near TREM2 is consistently seen in the superior temporal gyrus in Alzheimer’s disease brain. Neurobiol Aging. 2016;47:35–40.PubMedCrossRef Smith AR, Smith RG, Condliffe D, Hannon E, Schalkwyk L, Mill J, Lunnon K. Increased DNA methylation near TREM2 is consistently seen in the superior temporal gyrus in Alzheimer’s disease brain. Neurobiol Aging. 2016;47:35–40.PubMedCrossRef
124.
go back to reference Ozaki Y, Yoshino Y, Yamazaki K, Sao T, Mori Y, Ochi S, Yoshida T, Mori T, Iga JI, Ueno SI. DNA methylation changes at TREM2 intron 1 and TREM2 mRNA expression in patients with Alzheimer’s disease. J Psychiatr Res. 2017;92:74–80.PubMedCrossRef Ozaki Y, Yoshino Y, Yamazaki K, Sao T, Mori Y, Ochi S, Yoshida T, Mori T, Iga JI, Ueno SI. DNA methylation changes at TREM2 intron 1 and TREM2 mRNA expression in patients with Alzheimer’s disease. J Psychiatr Res. 2017;92:74–80.PubMedCrossRef
125.
go back to reference Fujimoto S, Goda T, Mochizuki K. In vivo evidence of enhanced di-methylation of histone H3 K4 on upregulated genes in adipose tissue of diabetic db/db mice. Biochem Biophys Res Commun. 2011;404:223–7.PubMedCrossRef Fujimoto S, Goda T, Mochizuki K. In vivo evidence of enhanced di-methylation of histone H3 K4 on upregulated genes in adipose tissue of diabetic db/db mice. Biochem Biophys Res Commun. 2011;404:223–7.PubMedCrossRef
126.
go back to reference Tserel L, Kolde R, Rebane A, Kisand K, Org T, Peterson H, Vilo J, Peterson P. Genome-wide promoter analysis of histone modifications in human monocyte-derived antigen presenting cells. BMC Genomics. 2010;11:642.PubMedPubMedCentralCrossRef Tserel L, Kolde R, Rebane A, Kisand K, Org T, Peterson H, Vilo J, Peterson P. Genome-wide promoter analysis of histone modifications in human monocyte-derived antigen presenting cells. BMC Genomics. 2010;11:642.PubMedPubMedCentralCrossRef
127.
go back to reference Ji JD, Park-Min KH, Shen Z, Fajardo RJ, Goldring SR, McHugh KP, Ivashkiv LB. Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-gamma in human osteoclast precursors. J Immunol. 2009;183:7223–33.PubMedPubMedCentralCrossRef Ji JD, Park-Min KH, Shen Z, Fajardo RJ, Goldring SR, McHugh KP, Ivashkiv LB. Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-gamma in human osteoclast precursors. J Immunol. 2009;183:7223–33.PubMedPubMedCentralCrossRef
128.
go back to reference Hu N, Tan MS, Yu JT, Sun L, Tan L, Wang YL, Jiang T, Tan L. Increased Expression of TREM2 in Peripheral Blood of Alzheimer’s Disease Patients. J Alzheimer Dis. 2014;38:497–501. Hu N, Tan MS, Yu JT, Sun L, Tan L, Wang YL, Jiang T, Tan L. Increased Expression of TREM2 in Peripheral Blood of Alzheimer’s Disease Patients. J Alzheimer Dis. 2014;38:497–501.
129.
go back to reference Park M, Yi JW, Kim EM, Yoon IJ, Lee EH, Lee HY, Ji KY, Lee KH, Jang JH, Oh SS, et al. Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Promotes Adipogenesis and Diet-Induced Obesity. Diabetes. 2015;64:117–27.PubMedCrossRef Park M, Yi JW, Kim EM, Yoon IJ, Lee EH, Lee HY, Ji KY, Lee KH, Jang JH, Oh SS, et al. Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Promotes Adipogenesis and Diet-Induced Obesity. Diabetes. 2015;64:117–27.PubMedCrossRef
130.
go back to reference Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, Colonna M. Impaired Differentiation of Osteoclasts in TREM-2–deficient Individuals. J Exp Med. 2003;198:645–51.PubMedPubMedCentralCrossRef Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, Colonna M. Impaired Differentiation of Osteoclasts in TREM-2–deficient Individuals. J Exp Med. 2003;198:645–51.PubMedPubMedCentralCrossRef
131.
go back to reference Chouery E, Delague V, Bergougnoux A, Koussa S, Serre JL, Megarbane A. Mutations in TREM2 lead to pure early-onset dementia without bone cysts. Hum Mutat. 2008;29:E194–204.PubMedCrossRef Chouery E, Delague V, Bergougnoux A, Koussa S, Serre JL, Megarbane A. Mutations in TREM2 lead to pure early-onset dementia without bone cysts. Hum Mutat. 2008;29:E194–204.PubMedCrossRef
132.
go back to reference Ma L, Allen M, Sakae N, Ertekin-Taner N, Graff-Radford NR, Dickson DW, Younkin SG, Sevlever D. Expression and processing analyses of wild type and p.R47H TREM2 variant in Alzheimer’s disease brains. Mol Neurodegener. 2016;11(1):72.PubMedPubMedCentralCrossRef Ma L, Allen M, Sakae N, Ertekin-Taner N, Graff-Radford NR, Dickson DW, Younkin SG, Sevlever D. Expression and processing analyses of wild type and p.R47H TREM2 variant in Alzheimer’s disease brains. Mol Neurodegener. 2016;11(1):72.PubMedPubMedCentralCrossRef
133.
go back to reference Park JS, Ji IJ, An HJ, Kang MJ, Kang SW, Kim DH, Yoon SY. Disease-Associated Mutations of TREM2 Alter the Processing of N-Linked Oligosaccharides in the Golgi Apparatus. Traffic. 2015;16:510–8.PubMedCrossRef Park JS, Ji IJ, An HJ, Kang MJ, Kang SW, Kim DH, Yoon SY. Disease-Associated Mutations of TREM2 Alter the Processing of N-Linked Oligosaccharides in the Golgi Apparatus. Traffic. 2015;16:510–8.PubMedCrossRef
134.
go back to reference Yang AX, Chong NJ, Jiang YF, Catalano J, Puri RK, Khleif SN. Molecular Characterization of Antigen-Peptide Pulsed Dendritic Cells: Immature Dendritic Cells Develop a Distinct Molecular Profile when Pulsed with Antigen Peptide. PLoS One. 2014;9(1):e86306.PubMedPubMedCentralCrossRef Yang AX, Chong NJ, Jiang YF, Catalano J, Puri RK, Khleif SN. Molecular Characterization of Antigen-Peptide Pulsed Dendritic Cells: Immature Dendritic Cells Develop a Distinct Molecular Profile when Pulsed with Antigen Peptide. PLoS One. 2014;9(1):e86306.PubMedPubMedCentralCrossRef
135.
go back to reference Kiialainen A, Veckman V, Saharinen J, Paloneva J, Gentile M, Hakola P, Hemelsoet D, Ridha B, Kopra O, Julkunen I, Peltonen L. Transcript profiles of dendritic cells of PLOSL patients link demyelinating CNS disorders with abnormalities in pathways of actin bundling and immune response. J Mol Med. 2007;85:971–83.PubMedCrossRef Kiialainen A, Veckman V, Saharinen J, Paloneva J, Gentile M, Hakola P, Hemelsoet D, Ridha B, Kopra O, Julkunen I, Peltonen L. Transcript profiles of dendritic cells of PLOSL patients link demyelinating CNS disorders with abnormalities in pathways of actin bundling and immune response. J Mol Med. 2007;85:971–83.PubMedCrossRef
136.
go back to reference Bouchon A, Hernandez-Munain C, Cella M, Colonna M. A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J Exp Med. 2001;194:1111–22.PubMedPubMedCentralCrossRef Bouchon A, Hernandez-Munain C, Cella M, Colonna M. A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J Exp Med. 2001;194:1111–22.PubMedPubMedCentralCrossRef
137.
go back to reference Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA, Grimmond SM, Hume DA, Ricardo SD, Little MH. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol. 2007;308:232–46.PubMedCrossRef Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA, Grimmond SM, Hume DA, Ricardo SD, Little MH. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol. 2007;308:232–46.PubMedCrossRef
138.
go back to reference Konig S, Regen T, Dittmann K, Engelke M, Wienands J, Schwendener R, Hanisch UK, Pukrop T, Hahn H. Empty liposomes induce antitumoral effects associated with macrophage responses distinct from those of the TLR1/2 agonist Pam(3)CSK(4) (BLP). Cancer Immunol Immunother. 2013;62:1587–97.PubMedCrossRef Konig S, Regen T, Dittmann K, Engelke M, Wienands J, Schwendener R, Hanisch UK, Pukrop T, Hahn H. Empty liposomes induce antitumoral effects associated with macrophage responses distinct from those of the TLR1/2 agonist Pam(3)CSK(4) (BLP). Cancer Immunol Immunother. 2013;62:1587–97.PubMedCrossRef
139.
go back to reference Takahashi K, Rochford CDP, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005;201:647–57.PubMedPubMedCentralCrossRef Takahashi K, Rochford CDP, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005;201:647–57.PubMedPubMedCentralCrossRef
140.
go back to reference Goncalves LA, Rodrigues-Duarte L, Rodo J, de Moraes LV, Marques I, Penha-Goncalves C. TREM2 governs Kupffer cell activation and explains belr1 genetic resistance to malaria liver stage infection. Proc Natl Acad Sci U S A. 2013;110:19531–6.PubMedPubMedCentralCrossRef Goncalves LA, Rodrigues-Duarte L, Rodo J, de Moraes LV, Marques I, Penha-Goncalves C. TREM2 governs Kupffer cell activation and explains belr1 genetic resistance to malaria liver stage infection. Proc Natl Acad Sci U S A. 2013;110:19531–6.PubMedPubMedCentralCrossRef
141.
go back to reference Koth LL, Cambier CJ, Ellwanger A, Solon M, Hou L, Lanier LL, Abram CL, Hamerman JA, Woodruff PG. DAP12 Is Required for Macrophage Recruitment to the Lung in Response to Cigarette Smoke and Chemotaxis toward CCL2. J Immunol. 2010;184:6522–8.PubMedPubMedCentralCrossRef Koth LL, Cambier CJ, Ellwanger A, Solon M, Hou L, Lanier LL, Abram CL, Hamerman JA, Woodruff PG. DAP12 Is Required for Macrophage Recruitment to the Lung in Response to Cigarette Smoke and Chemotaxis toward CCL2. J Immunol. 2010;184:6522–8.PubMedPubMedCentralCrossRef
142.
go back to reference Oh JH, Yang MJ, Heo JD, Yang YS, Park HJ, Park SM, Kwon MS, Song CW, Yoon S, Yu IJ. Inflammatory response in rat lungs with recurrent exposure to welding fumes: a transcriptomic approach. Toxicol Ind Health. 2012;28:203–15.PubMedCrossRef Oh JH, Yang MJ, Heo JD, Yang YS, Park HJ, Park SM, Kwon MS, Song CW, Yoon S, Yu IJ. Inflammatory response in rat lungs with recurrent exposure to welding fumes: a transcriptomic approach. Toxicol Ind Health. 2012;28:203–15.PubMedCrossRef
143.
go back to reference Humphrey MB, Daws MR, Spusta SC, Niemi EC, Torchia JA, Lanier LL, Seaman WE, Nakamura MC. TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J Bone Miner Res. 2006;21:237–45.PubMedCrossRef Humphrey MB, Daws MR, Spusta SC, Niemi EC, Torchia JA, Lanier LL, Seaman WE, Nakamura MC. TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function. J Bone Miner Res. 2006;21:237–45.PubMedCrossRef
144.
go back to reference Song W, Hooli B, Mullin K, Jin SC, Cella M, Ulland TK, Wang Y, Tanzi RE, Colonna M. Alzheimer’s disease-associated TREM2 variants exhibit either decreased or increased ligand-dependent activation. Alzheimers Dement. 2017;13(4):381–7.PubMedCrossRef Song W, Hooli B, Mullin K, Jin SC, Cella M, Ulland TK, Wang Y, Tanzi RE, Colonna M. Alzheimer’s disease-associated TREM2 variants exhibit either decreased or increased ligand-dependent activation. Alzheimers Dement. 2017;13(4):381–7.PubMedCrossRef
145.
go back to reference Wang YM, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT, Yuan P, Mahan TE, Shi Y, Gilfillan S, et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med. 2016;213:667–75.PubMedPubMedCentralCrossRef Wang YM, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT, Yuan P, Mahan TE, Shi Y, Gilfillan S, et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med. 2016;213:667–75.PubMedPubMedCentralCrossRef
146.
go back to reference Mori Y, Yoshino Y, Ochi S, Yamazaki K, Kawabe K, Abe M, Kitano T, Ozaki Y, Yoshida T, Numata S, et al. TREM2 mRNA Expression in Leukocytes Is Increased in Alzheimer’s Disease and Schizophrenia. PLoS One. 2015;10(9):e0136835.PubMedPubMedCentralCrossRef Mori Y, Yoshino Y, Ochi S, Yamazaki K, Kawabe K, Abe M, Kitano T, Ozaki Y, Yoshida T, Numata S, et al. TREM2 mRNA Expression in Leukocytes Is Increased in Alzheimer’s Disease and Schizophrenia. PLoS One. 2015;10(9):e0136835.PubMedPubMedCentralCrossRef
147.
go back to reference Satoh J, Shimamura Y, Tabunoki H. Gene Expression Profile of THP-1 Monocytes Following Knockdown of DAP12, A Causative Gene for Nasu-Hakola Disease. Cell Mol Neurobiol. 2012;32:337–43.PubMedCrossRef Satoh J, Shimamura Y, Tabunoki H. Gene Expression Profile of THP-1 Monocytes Following Knockdown of DAP12, A Causative Gene for Nasu-Hakola Disease. Cell Mol Neurobiol. 2012;32:337–43.PubMedCrossRef
148.
go back to reference Tan YJ, Ng AS, Lim JKW, Chander RJ, Fang J, Qiu Y, Ting S, Hameed S, Kandiah N, Zhou J: Higher peripheral Trem2 mRNA expression levels are related to cognitive deficits and Alzheimer’s disease and amnestic MCI. Alzheimers Dement. 2017;58:413–23. Tan YJ, Ng AS, Lim JKW, Chander RJ, Fang J, Qiu Y, Ting S, Hameed S, Kandiah N, Zhou J: Higher peripheral Trem2 mRNA expression levels are related to cognitive deficits and Alzheimer’s disease and amnestic MCI. Alzheimers Dement. 2017;58:413–23.
149.
go back to reference Wu K, Byers DE, Jin X, Agapov E, Alexander-Brett J, Patel AC, Cella M, Gilfilan S, Colonna M, Kober DL, et al. TREM-2 promotes macrophage survival and lung disease after respiratory viral infection. J Exp Med. 2015;212:681–97.PubMedPubMedCentralCrossRef Wu K, Byers DE, Jin X, Agapov E, Alexander-Brett J, Patel AC, Cella M, Gilfilan S, Colonna M, Kober DL, et al. TREM-2 promotes macrophage survival and lung disease after respiratory viral infection. J Exp Med. 2015;212:681–97.PubMedPubMedCentralCrossRef
150.
go back to reference Li XW, Montine KS, Keene CD, Montine TJ. Different mechanisms of apolipoprotein E isoform-dependent modulation of prostaglandin E-2 production and triggering receptor expressed on myeloid cells 2 (TREM2) expression after innate immune activation of microglia. FASEB J. 2015;29:1754–62.PubMedPubMedCentralCrossRef Li XW, Montine KS, Keene CD, Montine TJ. Different mechanisms of apolipoprotein E isoform-dependent modulation of prostaglandin E-2 production and triggering receptor expressed on myeloid cells 2 (TREM2) expression after innate immune activation of microglia. FASEB J. 2015;29:1754–62.PubMedPubMedCentralCrossRef
151.
go back to reference Elliott R, Li F, Dragomir I, Chua MMW, Gregory BD, Weiss SR. Analysis of the Host Transcriptome from Demyelinating Spinal Cord of Murine Coronavirus-Infected Mice. PLoS One. 2013;8(9):e75346.PubMedPubMedCentralCrossRef Elliott R, Li F, Dragomir I, Chua MMW, Gregory BD, Weiss SR. Analysis of the Host Transcriptome from Demyelinating Spinal Cord of Murine Coronavirus-Infected Mice. PLoS One. 2013;8(9):e75346.PubMedPubMedCentralCrossRef
152.
go back to reference Kiialainen A, Hovanes K, Paloneva J, Kopra O, Peltonen L. Dap12 and Trem2, molecules involved in innate immunity and neurodegeneration, are co-expressed in the CNS. Neurobiol Dis. 2005;18:314–22.PubMedCrossRef Kiialainen A, Hovanes K, Paloneva J, Kopra O, Peltonen L. Dap12 and Trem2, molecules involved in innate immunity and neurodegeneration, are co-expressed in the CNS. Neurobiol Dis. 2005;18:314–22.PubMedCrossRef
153.
go back to reference Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, Seaman WE. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem. 2009;109:1144–56.PubMedPubMedCentralCrossRef Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, Seaman WE. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem. 2009;109:1144–56.PubMedPubMedCentralCrossRef
154.
go back to reference Thrash JC, Torbett BE, Carson MJ. Developmental Regulation of TREM2 and DAP12 Expression in the Murine CNS: Implications for Nasu-Hakola Disease. Neurochem Res. 2009;34:38–45.PubMedCrossRef Thrash JC, Torbett BE, Carson MJ. Developmental Regulation of TREM2 and DAP12 Expression in the Murine CNS: Implications for Nasu-Hakola Disease. Neurochem Res. 2009;34:38–45.PubMedCrossRef
155.
go back to reference Zhu CH, Herrmann US, Li B, Abakumova I, Moos R, Schwarz P, Rushing EJ, Colonna M, Aguzzi A. Triggering receptor expressed on myeloid cells-2 is involved in prion-induced microglial activation but does not contribute to prion pathogenesis in mouse brains. Neurobiol Aging. 2015;36:1994–2003.PubMedCrossRef Zhu CH, Herrmann US, Li B, Abakumova I, Moos R, Schwarz P, Rushing EJ, Colonna M, Aguzzi A. Triggering receptor expressed on myeloid cells-2 is involved in prion-induced microglial activation but does not contribute to prion pathogenesis in mouse brains. Neurobiol Aging. 2015;36:1994–2003.PubMedCrossRef
156.
go back to reference Sessa G, Podini P, Mariani M, Meroni A, Spreafico R, Sinigaglia F, Colonna M, Panina P, Meldolesi J. Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. Eur J Neurosci. 2004;20:2617–28.PubMedCrossRef Sessa G, Podini P, Mariani M, Meroni A, Spreafico R, Sinigaglia F, Colonna M, Panina P, Meldolesi J. Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. Eur J Neurosci. 2004;20:2617–28.PubMedCrossRef
157.
go back to reference Jiang T, Tan L, Zhu X, Zhang Q, Cao L, Tan M, Gu L, Wang H, Ding Z, Zhang Y, Yu J. Upregulation of TREM2 Ameliorates Neuropathology and Rescues Spatial Cognitive Impairment in a Transgenic Mouse Model of Alzheimer’s Disease. Neuropsychopharmacology. 2014;39:2949–62.PubMedPubMedCentralCrossRef Jiang T, Tan L, Zhu X, Zhang Q, Cao L, Tan M, Gu L, Wang H, Ding Z, Zhang Y, Yu J. Upregulation of TREM2 Ameliorates Neuropathology and Rescues Spatial Cognitive Impairment in a Transgenic Mouse Model of Alzheimer’s Disease. Neuropsychopharmacology. 2014;39:2949–62.PubMedPubMedCentralCrossRef
158.
go back to reference Melchior B, Garcia AE, Hsiung BK, Lo KM, Doose JM, Thrash JC, Stalder AK, Staufenbiel M, Neumann H, Carson MJ. Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer’s disease. Asn Neuro. 2010;2:157–70.CrossRef Melchior B, Garcia AE, Hsiung BK, Lo KM, Doose JM, Thrash JC, Stalder AK, Staufenbiel M, Neumann H, Carson MJ. Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer’s disease. Asn Neuro. 2010;2:157–70.CrossRef
159.
go back to reference Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med. 2007;4:675–89.CrossRef Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med. 2007;4:675–89.CrossRef
160.
go back to reference Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim JY, Hsieh CL, Nakamura MC, Yenari MA. Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Deficiency Attenuates Phagocytic Activities of Microglia and Exacerbates Ischemic Damage in Experimental Stroke. J Neurosci. 2015;35:3384–96.PubMedPubMedCentralCrossRef Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim JY, Hsieh CL, Nakamura MC, Yenari MA. Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Deficiency Attenuates Phagocytic Activities of Microglia and Exacerbates Ischemic Damage in Experimental Stroke. J Neurosci. 2015;35:3384–96.PubMedPubMedCentralCrossRef
161.
go back to reference Schmid CD, Sautkulis LN, Danielson PE, Cooper J, Hasel KW, Hilbush BS, Sutcliffe JG, Carson MJ. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem. 2002;83:1309–20.PubMedPubMedCentralCrossRef Schmid CD, Sautkulis LN, Danielson PE, Cooper J, Hasel KW, Hilbush BS, Sutcliffe JG, Carson MJ. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem. 2002;83:1309–20.PubMedPubMedCentralCrossRef
162.
go back to reference Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, Xu GX, Margevicius D, Karlo JC, Sousa GL, et al. TREM2 deficiency eliminates TREM2(+) inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med. 2015;212:287–95.PubMedPubMedCentralCrossRef Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, Xu GX, Margevicius D, Karlo JC, Sousa GL, et al. TREM2 deficiency eliminates TREM2(+) inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med. 2015;212:287–95.PubMedPubMedCentralCrossRef
163.
go back to reference Elmore Monica RP, Najafi Allison R, Koike Maya A, Dagher Nabil N, Spangenberg Elizabeth E, Rice Rachel A, Kitazawa M, Matusow B, Nguyen H, West Brian L, Green Kim N. Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain. Neuron. 2014;82:380–97.PubMedPubMedCentralCrossRef Elmore Monica RP, Najafi Allison R, Koike Maya A, Dagher Nabil N, Spangenberg Elizabeth E, Rice Rachel A, Kitazawa M, Matusow B, Nguyen H, West Brian L, Green Kim N. Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain. Neuron. 2014;82:380–97.PubMedPubMedCentralCrossRef
164.
go back to reference Lue LF, Schmitz CT, Serrano G, Sue LI, Beach TG, Walker DG. TREM2 Protein Expression Changes Correlate with Alzheimer’s Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices. Brain Pathol. 2015;25:469–80.PubMedCrossRef Lue LF, Schmitz CT, Serrano G, Sue LI, Beach TG, Walker DG. TREM2 Protein Expression Changes Correlate with Alzheimer’s Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices. Brain Pathol. 2015;25:469–80.PubMedCrossRef
165.
go back to reference Chertoff M, Shrivastava K, Gonzalez B, Acarin L, Gimenez-Llort L. Differential Modulation of TREM2 Protein during Postnatal Brain Development in Mice. PLoS One. 2013;8(8):e72083.PubMedPubMedCentralCrossRef Chertoff M, Shrivastava K, Gonzalez B, Acarin L, Gimenez-Llort L. Differential Modulation of TREM2 Protein during Postnatal Brain Development in Mice. PLoS One. 2013;8(8):e72083.PubMedPubMedCentralCrossRef
166.
go back to reference Bhattacharjee S, Zhao YH, Dua P, Rogaev EI, Lukiw WJ. microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration. PLoS One. 2016;11(4):e0153292.CrossRef Bhattacharjee S, Zhao YH, Dua P, Rogaev EI, Lukiw WJ. microRNA-34a-Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration. PLoS One. 2016;11(4):e0153292.CrossRef
167.
go back to reference Trudler D, Weinreb O, Mandel SA, Youdim MBH, Frenkel D. DJ-1 deficiency triggers microglia sensitivity dopamine toward a pro-inflammatory phenotype that is attenuated by rasagiline. J Neurochem. 2014;129:434–47.PubMedCrossRef Trudler D, Weinreb O, Mandel SA, Youdim MBH, Frenkel D. DJ-1 deficiency triggers microglia sensitivity dopamine toward a pro-inflammatory phenotype that is attenuated by rasagiline. J Neurochem. 2014;129:434–47.PubMedCrossRef
168.
go back to reference Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L, Hernandez M, Colonna M. Cutting edge: TREM-2 attenuates macrophage activation. J Immunol. 2006;177:3520–4.PubMedCrossRef Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L, Hernandez M, Colonna M. Cutting edge: TREM-2 attenuates macrophage activation. J Immunol. 2006;177:3520–4.PubMedCrossRef
169.
go back to reference Gao X, Dong Y, Liu Z, Niu B. Silencing of triggering receptor expressed on myeloid cells-2 enhances the inflammatory responses of alveolar macrophages to lipopolysaccharide. Mol Med Rep. 2013;7:921–6.PubMed Gao X, Dong Y, Liu Z, Niu B. Silencing of triggering receptor expressed on myeloid cells-2 enhances the inflammatory responses of alveolar macrophages to lipopolysaccharide. Mol Med Rep. 2013;7:921–6.PubMed
170.
go back to reference Gawish R, Martins R, Bohm B, Wimberger T, Sharif O, Lakovits K, Schmidt M, Knapp S. Triggering receptor expressed on myeloid cells-2 fine-tunes inflammatory responses in murine Gram-negative sepsis. FASEB J. 2015;29:1247–57.PubMedCrossRef Gawish R, Martins R, Bohm B, Wimberger T, Sharif O, Lakovits K, Schmidt M, Knapp S. Triggering receptor expressed on myeloid cells-2 fine-tunes inflammatory responses in murine Gram-negative sepsis. FASEB J. 2015;29:1247–57.PubMedCrossRef
171.
go back to reference Chang JH, Chang EJ, Kim HH, Kim SK. Enhanced inhibitory effects of a novel CpG motif on osteoclast differentiation via TREM-2 down-regulation. Biochem Biophys Res Commun. 2009;389:28–33.PubMedCrossRef Chang JH, Chang EJ, Kim HH, Kim SK. Enhanced inhibitory effects of a novel CpG motif on osteoclast differentiation via TREM-2 down-regulation. Biochem Biophys Res Commun. 2009;389:28–33.PubMedCrossRef
172.
go back to reference Wilkins HM, Carl SM, Weber SG, Ramanujan SA, Festoff BW, Linseman DA, Swerdlow RH. Mitochondrial Lysates Induce Inflammation and Alzheimer’s Disease-Relevant Changes in Microglial and Neuronal Cells. J Alzheimer Dis. 2015;45:305–18. Wilkins HM, Carl SM, Weber SG, Ramanujan SA, Festoff BW, Linseman DA, Swerdlow RH. Mitochondrial Lysates Induce Inflammation and Alzheimer’s Disease-Relevant Changes in Microglial and Neuronal Cells. J Alzheimer Dis. 2015;45:305–18.
173.
go back to reference Sharif O, Gawish R, Warszawska JM, Martins R, Lakovits K, Hladik A, Doninger B, Brunner J, Korosec A, Schwarzenbacher RE, et al. The triggering receptor expressed on myeloid cells 2 inhibits complement component 1q effector mechanisms and exerts detrimental effects during pneumococcal pneumonia. PLoS Pathog. 2014;10:e1004167.PubMedPubMedCentralCrossRef Sharif O, Gawish R, Warszawska JM, Martins R, Lakovits K, Hladik A, Doninger B, Brunner J, Korosec A, Schwarzenbacher RE, et al. The triggering receptor expressed on myeloid cells 2 inhibits complement component 1q effector mechanisms and exerts detrimental effects during pneumococcal pneumonia. PLoS Pathog. 2014;10:e1004167.PubMedPubMedCentralCrossRef
174.
go back to reference Sun GY, Guan CX, Zhou Y, Liu YP, Li SF, Zhou HF, Tang CY, Fang X. Vasoactive intestinal peptide re-balances TREM-1/TREM-2 ratio in acute lung injury. Regul Pept. 2011;167:56–64.PubMedCrossRef Sun GY, Guan CX, Zhou Y, Liu YP, Li SF, Zhou HF, Tang CY, Fang X. Vasoactive intestinal peptide re-balances TREM-1/TREM-2 ratio in acute lung injury. Regul Pept. 2011;167:56–64.PubMedCrossRef
175.
go back to reference Fujita K, Fukuda M, Fukui H, Horie M, Endoh S, Uchida K, Shichiri M, Morimoto Y, Ogami A, Iwahashi H. Intratracheal instillation of single-wall carbon nanotubes in the rat lung induces time-dependent changes in gene expression. Nanotoxicology. 2015;9:290–301.PubMedCrossRef Fujita K, Fukuda M, Fukui H, Horie M, Endoh S, Uchida K, Shichiri M, Morimoto Y, Ogami A, Iwahashi H. Intratracheal instillation of single-wall carbon nanotubes in the rat lung induces time-dependent changes in gene expression. Nanotoxicology. 2015;9:290–301.PubMedCrossRef
176.
go back to reference Oh JH, Yang MJ, Yang YS, Park HJ, Heo SH, Lee EH, Song CW, Yoon S. Microarray-Based Analysis of the Lung Recovery Process After Stainless-Steel Welding Fume Exposure in Sprague–Dawley Rats. Inhal Toxicol. 2009;21:347–73.PubMedCrossRef Oh JH, Yang MJ, Yang YS, Park HJ, Heo SH, Lee EH, Song CW, Yoon S. Microarray-Based Analysis of the Lung Recovery Process After Stainless-Steel Welding Fume Exposure in Sprague–Dawley Rats. Inhal Toxicol. 2009;21:347–73.PubMedCrossRef
177.
go back to reference Morissette MC, Lamontagne M, Berube JC, Gaschler G, Williams A, Yauk C, Couture C, Laviolette M, Hogg JC, Timens W, et al. Impact of cigarette smoke on the human and mouse lungs: a gene-expression comparison study. PLoS One. 2014;9:e92498.PubMedPubMedCentralCrossRef Morissette MC, Lamontagne M, Berube JC, Gaschler G, Williams A, Yauk C, Couture C, Laviolette M, Hogg JC, Timens W, et al. Impact of cigarette smoke on the human and mouse lungs: a gene-expression comparison study. PLoS One. 2014;9:e92498.PubMedPubMedCentralCrossRef
178.
go back to reference Aoki N, Zganiacz A, Margetts P, Xing Z. Differential regulation of DAP12 and molecules associated with DAP12 during host responses to mycobacterial infection. Infect Immun. 2004;72:2477–83.PubMedPubMedCentralCrossRef Aoki N, Zganiacz A, Margetts P, Xing Z. Differential regulation of DAP12 and molecules associated with DAP12 during host responses to mycobacterial infection. Infect Immun. 2004;72:2477–83.PubMedPubMedCentralCrossRef
179.
go back to reference Grant RW, Vester Boler BM, Ridge TK, Graves TK, Swanson KS. Adipose tissue transcriptome changes during obesity development in female dogs. Physiol Genomics. 2011;43:295–307.PubMedCrossRef Grant RW, Vester Boler BM, Ridge TK, Graves TK, Swanson KS. Adipose tissue transcriptome changes during obesity development in female dogs. Physiol Genomics. 2011;43:295–307.PubMedCrossRef
180.
go back to reference Chen Q, Zhang K, Jin Y, Zhu T, Cheng B, Shu Q, Fang X. Triggering receptor expressed on myeloid cells-2 protects against polymicrobial sepsis by enhancing bacterial clearance. Am J Respir Crit Care Med. 2013;188:201–12.PubMedCrossRef Chen Q, Zhang K, Jin Y, Zhu T, Cheng B, Shu Q, Fang X. Triggering receptor expressed on myeloid cells-2 protects against polymicrobial sepsis by enhancing bacterial clearance. Am J Respir Crit Care Med. 2013;188:201–12.PubMedCrossRef
181.
go back to reference Crotti TN, Dharmapatni A, Alias E, Zannettino ACW, Smith MD, Haynes DR: The immunoreceptor tyrosine-based activation motif (ITAM) -related factors are increased in synovial tissue and vasculature of rheumatoid arthritic joints. Arthritis Res Ther. 2012;14:R245. Crotti TN, Dharmapatni A, Alias E, Zannettino ACW, Smith MD, Haynes DR: The immunoreceptor tyrosine-based activation motif (ITAM) -related factors are increased in synovial tissue and vasculature of rheumatoid arthritic joints. Arthritis Res Ther. 2012;14:R245.
182.
go back to reference Sun M, Zhu M, Chen K, Nie X, Deng Q, Hazlett LD, Wu Y, Li M, Wu M, Huang X. TREM-2 promotes host resistance against Pseudomonas aeruginosa infection by suppressing corneal inflammation via a PI3K/Akt signaling pathway. Invest Ophthalmol Vis Sci. 2013;54:3451–62.PubMedPubMedCentralCrossRef Sun M, Zhu M, Chen K, Nie X, Deng Q, Hazlett LD, Wu Y, Li M, Wu M, Huang X. TREM-2 promotes host resistance against Pseudomonas aeruginosa infection by suppressing corneal inflammation via a PI3K/Akt signaling pathway. Invest Ophthalmol Vis Sci. 2013;54:3451–62.PubMedPubMedCentralCrossRef
183.
go back to reference Wang XQ, Tao BB, Li B, Wang XH, Zhang WC, Wan L, Hua XM, Li ST. Overexpression of TREM2 enhances glioma cell proliferation and invasion: a therapeutic target in human glioma. Oncotarget. 2016;7:2354–66.PubMedCrossRef Wang XQ, Tao BB, Li B, Wang XH, Zhang WC, Wan L, Hua XM, Li ST. Overexpression of TREM2 enhances glioma cell proliferation and invasion: a therapeutic target in human glioma. Oncotarget. 2016;7:2354–66.PubMedCrossRef
184.
go back to reference Chakrabarti S, Multani S, Dabholkar J, Saranath D. Whole genome expression profiling in chewing-tobacco-associated oral cancers: a pilot study. Med Oncol. 2015;32 Chakrabarti S, Multani S, Dabholkar J, Saranath D. Whole genome expression profiling in chewing-tobacco-associated oral cancers: a pilot study. Med Oncol. 2015;32
185.
go back to reference Warnecke-Eberz U, Metzger R, Holscher AH, Drebber U, Bollschweiler E. Diagnostic marker signature for esophageal cancer from transcriptome analysis. Tumor Biol. 2016;37:6349–58.CrossRef Warnecke-Eberz U, Metzger R, Holscher AH, Drebber U, Bollschweiler E. Diagnostic marker signature for esophageal cancer from transcriptome analysis. Tumor Biol. 2016;37:6349–58.CrossRef
186.
go back to reference Zhang SL, Chen TS, Xiao L, Ye Y, Xia W, Zhang H. TREM2 siRNA inhibits cell proliferation of human liver cancer cell lines. Int J Clin Exp Pathol. 2016;9:4318–28. Zhang SL, Chen TS, Xiao L, Ye Y, Xia W, Zhang H. TREM2 siRNA inhibits cell proliferation of human liver cancer cell lines. Int J Clin Exp Pathol. 2016;9:4318–28.
187.
go back to reference Alias E, Dharmapatni A, Holding AC, Atkins GJ, Findlay DM, Howie DW, Crotti TN, Haynes DR: Polyethylene particles stimulate expression of ITAM-related molecules in peri-implant tissues and when stimulating osteoclastogenesis in vitro. Acta Biomater 2012, 8:3104–3112. Alias E, Dharmapatni A, Holding AC, Atkins GJ, Findlay DM, Howie DW, Crotti TN, Haynes DR: Polyethylene particles stimulate expression of ITAM-related molecules in peri-implant tissues and when stimulating osteoclastogenesis in vitro. Acta Biomater 2012, 8:31043112.
188.
go back to reference Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone. 2009;44:87–101.PubMedCrossRef Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone. 2009;44:87–101.PubMedCrossRef
189.
go back to reference Seno H, Miyoshi H, Brown SL, Geske MJ, Colonna M, Stappenbeck TS. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc Natl Acad Sci U S A. 2009;106:256–61.PubMedCrossRef Seno H, Miyoshi H, Brown SL, Geske MJ, Colonna M, Stappenbeck TS. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc Natl Acad Sci U S A. 2009;106:256–61.PubMedCrossRef
190.
go back to reference Correale C, Genua M, Vetrano S, Mazzini E, Martinoli C, Spinelli A, Arena V, Peyrin-Biroulet L, Caprioli F, Passini N, et al. Bacterial sensor triggering receptor expressed on myeloid cells-2 regulates the mucosal inflammatory response. Gastroenterology. 2013;144:346–56.PubMedCrossRef Correale C, Genua M, Vetrano S, Mazzini E, Martinoli C, Spinelli A, Arena V, Peyrin-Biroulet L, Caprioli F, Passini N, et al. Bacterial sensor triggering receptor expressed on myeloid cells-2 regulates the mucosal inflammatory response. Gastroenterology. 2013;144:346–56.PubMedCrossRef
191.
go back to reference Marcussen M, Bodker JS, Christensen HS, Johansen P, Nielsen S, Christiansen I, Bergmann OJ, Bogsted M, Dybkaer K, Vyberg M, Johnsen HE. Molecular Characteristics of High-Dose Melphalan Associated Oral Mucositis in Patients with Multiple Myeloma: A Gene Expression Study on Human Mucosa. PLoS One. 2017;12(1):e0169286.PubMedPubMedCentralCrossRef Marcussen M, Bodker JS, Christensen HS, Johansen P, Nielsen S, Christiansen I, Bergmann OJ, Bogsted M, Dybkaer K, Vyberg M, Johnsen HE. Molecular Characteristics of High-Dose Melphalan Associated Oral Mucositis in Patients with Multiple Myeloma: A Gene Expression Study on Human Mucosa. PLoS One. 2017;12(1):e0169286.PubMedPubMedCentralCrossRef
192.
go back to reference Preusse C, Goebel HH, Pehl D, Rinnenthal JL, Kley RA, Allenbach Y, Heppner FL, Vorgerd M, Authier FJ, Gherardi R, Stenzel W. Th2-M2 immunity in lesions of muscular sarcoidosis and macrophagic myofasciitis. Neuropathol Appl Neurobiol. 2015;41:952–63.PubMedCrossRef Preusse C, Goebel HH, Pehl D, Rinnenthal JL, Kley RA, Allenbach Y, Heppner FL, Vorgerd M, Authier FJ, Gherardi R, Stenzel W. Th2-M2 immunity in lesions of muscular sarcoidosis and macrophagic myofasciitis. Neuropathol Appl Neurobiol. 2015;41:952–63.PubMedCrossRef
193.
go back to reference Sieber MW, Jaenisch N, Brehm M, Guenther M, Linnartz-Gerlach B, Neumann H, Witte OW, Frahm C. Attenuated Inflammatory Response in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Knock-Out Mice following Stroke. PLoS One. 2013;8(1):e52982.PubMedPubMedCentralCrossRef Sieber MW, Jaenisch N, Brehm M, Guenther M, Linnartz-Gerlach B, Neumann H, Witte OW, Frahm C. Attenuated Inflammatory Response in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Knock-Out Mice following Stroke. PLoS One. 2013;8(1):e52982.PubMedPubMedCentralCrossRef
194.
go back to reference Kobayashi M, Konishi H, Sayo A, Takai T, Kiyama H. TREM2/DAP12 Signal Elicits Proinflammatory Response in Microglia and Exacerbates Neuropathic Pain. J Neurosci. 2016;36:11138–50.PubMedCrossRef Kobayashi M, Konishi H, Sayo A, Takai T, Kiyama H. TREM2/DAP12 Signal Elicits Proinflammatory Response in Microglia and Exacerbates Neuropathic Pain. J Neurosci. 2016;36:11138–50.PubMedCrossRef
195.
go back to reference Lunnon K, Teeling JL, Tutt AL, Cragg MS, Glennie MJ, Perry VH. Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration. J Immunol. 2011;186:7215–24.PubMedCrossRef Lunnon K, Teeling JL, Tutt AL, Cragg MS, Glennie MJ, Perry VH. Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration. J Immunol. 2011;186:7215–24.PubMedCrossRef
196.
go back to reference Poliani PL, Wang YM, Fontana E, Robinette ML, Yamanish Y, Gilfillan S, Colonna M. TREM2 sustains microglial expansion during aging and response to demyelination. J Clin Investig. 2015;125:2161–70.PubMedPubMedCentralCrossRef Poliani PL, Wang YM, Fontana E, Robinette ML, Yamanish Y, Gilfillan S, Colonna M. TREM2 sustains microglial expansion during aging and response to demyelination. J Clin Investig. 2015;125:2161–70.PubMedPubMedCentralCrossRef
197.
go back to reference Petkovic F, Campbell IL, Gonzalez B, Castellano B. Astrocyte-Targeted Production of Interleukin-6 Reduces Astroglial and Microglial Activation in the Cuprizone Demyelination Model: Implications for Myelin Clearance and Oligodendrocyte Maturation. Glia. 2016;64:2104–19.PubMedCrossRef Petkovic F, Campbell IL, Gonzalez B, Castellano B. Astrocyte-Targeted Production of Interleukin-6 Reduces Astroglial and Microglial Activation in the Cuprizone Demyelination Model: Implications for Myelin Clearance and Oligodendrocyte Maturation. Glia. 2016;64:2104–19.PubMedCrossRef
198.
go back to reference Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, Rinker J, Naismith RT, Panina-Bordignon P, Passini N, et al. Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain. 2008;131:3081–91.PubMedPubMedCentralCrossRef Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, Rinker J, Naismith RT, Panina-Bordignon P, Passini N, et al. Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain. 2008;131:3081–91.PubMedPubMedCentralCrossRef
199.
go back to reference Fisher Y, Nemirovsky A, Baron R, Monsonego A. T Cells Specifically Targeted to Amyloid Plaques Enhance Plaque Clearance in a Mouse Model of Alzheimer’s Disease. PLoS One. 2010;5(5):e10830.PubMedPubMedCentralCrossRef Fisher Y, Nemirovsky A, Baron R, Monsonego A. T Cells Specifically Targeted to Amyloid Plaques Enhance Plaque Clearance in a Mouse Model of Alzheimer’s Disease. PLoS One. 2010;5(5):e10830.PubMedPubMedCentralCrossRef
200.
go back to reference Raha AA, Henderson JW, Stott SRW, Vuono R, Foscarin S, Friedland RP, Zaman SH, Raha-Chowdhury R. Neuroprotective Effect of TREM-2 in Aging and Alzheimer’s Disease Model. J Alzheimer Dis. 2017;55:199–217.CrossRef Raha AA, Henderson JW, Stott SRW, Vuono R, Foscarin S, Friedland RP, Zaman SH, Raha-Chowdhury R. Neuroprotective Effect of TREM-2 in Aging and Alzheimer’s Disease Model. J Alzheimer Dis. 2017;55:199–217.CrossRef
201.
go back to reference Jiang T, Yu JT, Zhu XC, Tan MS, Gu LZ, Zhang YD, Tan L. Triggering receptor expressed on myeloid cells 2 knockdown exacerbates aging-related neuroinflammation and cognitive deficiency in senescence-accelerated mouse prone 8 mice. Neurobiol Aging. 2014;35:1243–51.PubMedCrossRef Jiang T, Yu JT, Zhu XC, Tan MS, Gu LZ, Zhang YD, Tan L. Triggering receptor expressed on myeloid cells 2 knockdown exacerbates aging-related neuroinflammation and cognitive deficiency in senescence-accelerated mouse prone 8 mice. Neurobiol Aging. 2014;35:1243–51.PubMedCrossRef
202.
go back to reference Suarez-Calvet M, Kleinberger G, Caballero MAA, Brendel M, Rominger A, Alcolea D, Fortea J, Lleo A, Blesa R, Gispert JD, et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer's disease and associate with neuronal injury markers. Embo Molecular Medicine. 2016;8:466–76.PubMedPubMedCentralCrossRef Suarez-Calvet M, Kleinberger G, Caballero MAA, Brendel M, Rominger A, Alcolea D, Fortea J, Lleo A, Blesa R, Gispert JD, et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer's disease and associate with neuronal injury markers. Embo Molecular Medicine. 2016;8:466–76.PubMedPubMedCentralCrossRef
203.
go back to reference Henjum K, Almdahl IS, Arskog V, Minthon L, Hansson O, Fladby T, Nilsson LNG: Cerebrospinal fluid soluble TREM2 in aging and Alzheimer’s disease. Alzheimers Res Ther. 2016;8. Henjum K, Almdahl IS, Arskog V, Minthon L, Hansson O, Fladby T, Nilsson LNG: Cerebrospinal fluid soluble TREM2 in aging and Alzheimer’s disease. Alzheimers Res Ther. 2016;8.
204.
go back to reference Yoshino Y, Kawabe K, Yamazaki K, Watanabe S, Numata S, Mori Y, Yoshida T, Iga J, Ohmori T, Ueno S. Elevated TREM2 mRNA expression in leukocytes in schizophrenia but not major depressive disorder. J Neural Transm. 2016;123:637–41.PubMedCrossRef Yoshino Y, Kawabe K, Yamazaki K, Watanabe S, Numata S, Mori Y, Yoshida T, Iga J, Ohmori T, Ueno S. Elevated TREM2 mRNA expression in leukocytes in schizophrenia but not major depressive disorder. J Neural Transm. 2016;123:637–41.PubMedCrossRef
205.
go back to reference Strobel S, Grunblatt E, Riederer P, Heinsen H, Arzberger T, Al-Sarraj S, Troakes C, Ferrer I, Monoranu CM. Changes in the expression of genes related to neuroinflammation over the course of sporadic Alzheimer's disease progression: CX3CL1, TREM2, and PPAR gamma. J Neural Transm. 2015;122:1069–76.PubMedCrossRef Strobel S, Grunblatt E, Riederer P, Heinsen H, Arzberger T, Al-Sarraj S, Troakes C, Ferrer I, Monoranu CM. Changes in the expression of genes related to neuroinflammation over the course of sporadic Alzheimer's disease progression: CX3CL1, TREM2, and PPAR gamma. J Neural Transm. 2015;122:1069–76.PubMedCrossRef
206.
go back to reference Martiskainen H, Viswanathan J, Nykanen NP, Kurki M, Helisalmi S, Natunen T, Sarajarvi T, Kurkinen KMA, Pursiheimo JP, Rauramaa T, et al. Transcriptomics and mechanistic elucidation of Alzheimer's disease risk genes in the brain and in vitro models. Neurobiol Aging. 2015;36 Martiskainen H, Viswanathan J, Nykanen NP, Kurki M, Helisalmi S, Natunen T, Sarajarvi T, Kurkinen KMA, Pursiheimo JP, Rauramaa T, et al. Transcriptomics and mechanistic elucidation of Alzheimer's disease risk genes in the brain and in vitro models. Neurobiol Aging. 2015;36
207.
go back to reference Perez SE, Nadeem M, He B, Miguel JC, Malek-Ahmadi MH, Chen K, Mufson EJ. Neocortical and hippocampal TREM2 protein levels during the progression of Alzheimer's disease. Neurobiol Aging. 2017;54:133–43.PubMedCrossRef Perez SE, Nadeem M, He B, Miguel JC, Malek-Ahmadi MH, Chen K, Mufson EJ. Neocortical and hippocampal TREM2 protein levels during the progression of Alzheimer's disease. Neurobiol Aging. 2017;54:133–43.PubMedCrossRef
208.
go back to reference Yeh FL, Hansen DV, Sheng M. TREM2, Microglia, and Neurodegenerative Diseases. Trends Mol Med. 2017;23:512–33. Yeh FL, Hansen DV, Sheng M. TREM2, Microglia, and Neurodegenerative Diseases. Trends Mol Med. 2017;23:512–33.
209.
go back to reference Porrini V, Lanzillotta A, Branca C, Benarese M, Parrella E, Lorenzini L, Calza L, Flaibani R, Spano PF, Imbimbo BP, Pizzi M. CHF5074 (CSP-1103) induces microglia alternative activation in plaque-free Tg2576 mice and primary glial cultures exposed to beta-amyloid. Neuroscience. 2015;302:112–20.PubMedCrossRef Porrini V, Lanzillotta A, Branca C, Benarese M, Parrella E, Lorenzini L, Calza L, Flaibani R, Spano PF, Imbimbo BP, Pizzi M. CHF5074 (CSP-1103) induces microglia alternative activation in plaque-free Tg2576 mice and primary glial cultures exposed to beta-amyloid. Neuroscience. 2015;302:112–20.PubMedCrossRef
210.
go back to reference Fol R, Braudeau J, Ludewig S, Abel T, Weyer SW, Roederer JP, Brod F, Audrain M, Bemelmans AP, Buchholz CJ, et al. Viral gene transfer of APPs alpha rescues synaptic failure in an Alzheimer's disease mouse model. Acta Neuropathol. 2016;131:247–66.PubMedCrossRef Fol R, Braudeau J, Ludewig S, Abel T, Weyer SW, Roederer JP, Brod F, Audrain M, Bemelmans AP, Buchholz CJ, et al. Viral gene transfer of APPs alpha rescues synaptic failure in an Alzheimer's disease mouse model. Acta Neuropathol. 2016;131:247–66.PubMedCrossRef
211.
go back to reference Matarin M, Salih DA, Yasvoina M, Cummings DM, Guelfi S, Liu WF, Solim MAN, Moens TG, Paublete RM, Ali SS, et al. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology. Cell Rep. 2015;10:633–44.PubMedCrossRef Matarin M, Salih DA, Yasvoina M, Cummings DM, Guelfi S, Liu WF, Solim MAN, Moens TG, Paublete RM, Ali SS, et al. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology. Cell Rep. 2015;10:633–44.PubMedCrossRef
212.
go back to reference Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T. TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia. 2008;56:1438–47.PubMedCrossRef Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T. TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia. 2008;56:1438–47.PubMedCrossRef
213.
go back to reference Savage JC, Jay T, Goduni E, Quigley C, Mariani MM, Malm T, Ransohoff RM, Lamb BT, Landreth GE. Nuclear Receptors License Phagocytosis by Trem2(+) Myeloid Cells in Mouse Models of Alzheimer's Disease. J Neurosci. 2015;35:6532–43.PubMedPubMedCentralCrossRef Savage JC, Jay T, Goduni E, Quigley C, Mariani MM, Malm T, Ransohoff RM, Lamb BT, Landreth GE. Nuclear Receptors License Phagocytosis by Trem2(+) Myeloid Cells in Mouse Models of Alzheimer's Disease. J Neurosci. 2015;35:6532–43.PubMedPubMedCentralCrossRef
214.
go back to reference Jiang T, Tan L, Zhu XC, Zhang QQ, Cao L, Tan MS, Gus LZ, Wang HF, Ding ZZ, Zhang YD, Yu JT. Upregulation of TREM2 Ameliorates Neuropathology and Rescues Spatial Cognitive Impairment in a Transgenic Mouse Model of Alzheimer's Disease. Neuropsychopharmacology. 2014;39:2949–62.PubMedPubMedCentralCrossRef Jiang T, Tan L, Zhu XC, Zhang QQ, Cao L, Tan MS, Gus LZ, Wang HF, Ding ZZ, Zhang YD, Yu JT. Upregulation of TREM2 Ameliorates Neuropathology and Rescues Spatial Cognitive Impairment in a Transgenic Mouse Model of Alzheimer's Disease. Neuropsychopharmacology. 2014;39:2949–62.PubMedPubMedCentralCrossRef
215.
go back to reference Bisht K, Sharma KP, Lecours C, Sanchez MG, El Hajj H, Milior G, Olmos-Alonso A, Gomez-Nicola D, Luheshi G, Vallieres L, et al. Dark microglia: A new phenotype predominantly associated with pathological states. Glia. 2016;64:826–39.PubMedPubMedCentralCrossRef Bisht K, Sharma KP, Lecours C, Sanchez MG, El Hajj H, Milior G, Olmos-Alonso A, Gomez-Nicola D, Luheshi G, Vallieres L, et al. Dark microglia: A new phenotype predominantly associated with pathological states. Glia. 2016;64:826–39.PubMedPubMedCentralCrossRef
216.
go back to reference Jiang T, Tan L, Zhu XC, Zhou JS, Cao L, Tan MS, Wang HF, Chen Q, Zhang YD, Yu JT. Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice. Neurobiol Aging. 2015;36:3176–86.PubMedCrossRef Jiang T, Tan L, Zhu XC, Zhou JS, Cao L, Tan MS, Wang HF, Chen Q, Zhang YD, Yu JT. Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice. Neurobiol Aging. 2015;36:3176–86.PubMedCrossRef
217.
go back to reference Varvel NH, Grathwohl SA, Degenhardt K, Resch C, Bosch A, Jucker M, Neher JJ. Replacement of brain-resident myeloid cells does not alter cerebral amyloid-beta deposition in mouse models of Alzheimer's disease. J Exp Med. 2015;212:1803–9.PubMedPubMedCentralCrossRef Varvel NH, Grathwohl SA, Degenhardt K, Resch C, Bosch A, Jucker M, Neher JJ. Replacement of brain-resident myeloid cells does not alter cerebral amyloid-beta deposition in mouse models of Alzheimer's disease. J Exp Med. 2015;212:1803–9.PubMedPubMedCentralCrossRef
218.
go back to reference Yin Z, Raj D, Saiepour N, Van Dam D, Brouwer N, Holtman IR, Eggen BJL, Möller T, Tamm JA, Abdourahman A, et al.: Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer’s disease. Neurobiol Aging. 2017;55:115–122. Yin Z, Raj D, Saiepour N, Van Dam D, Brouwer N, Holtman IR, Eggen BJL, Möller T, Tamm JA, Abdourahman A, et al.: Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer’s disease. Neurobiol Aging. 2017;55:115–122.
219.
go back to reference Yuan P, Condello C, Keene CD, Wang YM, Bird TD, Paul SM, Luo WJ, Colonna M, Baddeley D, Grutzendler J. TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy. Neuron. 2016;90:724–39.PubMedPubMedCentralCrossRef Yuan P, Condello C, Keene CD, Wang YM, Bird TD, Paul SM, Luo WJ, Colonna M, Baddeley D, Grutzendler J. TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy. Neuron. 2016;90:724–39.PubMedPubMedCentralCrossRef
220.
go back to reference Mohle L, Israel N, Paarmann K, Krohn M, Pietkiewicz S, Muller A, Lavrik IN, Buguliskis JS, Schott BH, Schluter D, et al.: Chronic Toxoplasma gondii infection enhances beta-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathol Commun. 2016;4:25. Mohle L, Israel N, Paarmann K, Krohn M, Pietkiewicz S, Muller A, Lavrik IN, Buguliskis JS, Schott BH, Schluter D, et al.: Chronic Toxoplasma gondii infection enhances beta-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathol Commun. 2016;4:25.
221.
go back to reference Ydens E, Cauwels A, Asselbergh B, Goethals S, Peeraer L, Lornet G, Almeida-Souza L, Van Ginderachter JA, Timmerman V, Janssens S: Acute injury in the peripheral nervous system triggers an alternative macrophage response. J Neuroinflammation. 2012;9. Ydens E, Cauwels A, Asselbergh B, Goethals S, Peeraer L, Lornet G, Almeida-Souza L, Van Ginderachter JA, Timmerman V, Janssens S: Acute injury in the peripheral nervous system triggers an alternative macrophage response. J Neuroinflammation. 2012;9.
222.
go back to reference Wang YM, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH, et al. TREM2 Lipid Sensing Sustains the Microglial Response in an Alzheimer’s Disease Model. Cell. 2015;160:1061–71.PubMedPubMedCentralCrossRef Wang YM, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH, et al. TREM2 Lipid Sensing Sustains the Microglial Response in an Alzheimer’s Disease Model. Cell. 2015;160:1061–71.PubMedPubMedCentralCrossRef
223.
go back to reference Kober DL, Alexander-Brett JM, Karch CM, Cruchaga C, Colonna M, Holtzman MJ, Brett TJ: Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms. Elife. 2016;5:e20391. Kober DL, Alexander-Brett JM, Karch CM, Cruchaga C, Colonna M, Holtzman MJ, Brett TJ: Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms. Elife. 2016;5:e20391.
224.
go back to reference Park JS, Ji IJ, Kim DH, An HJ, Yoon SY: The Alzheimer’s Disease-Associated R47HVariant of TREM2 Has an Altered Glycosylation Pattern and Protein Stability. Front Neurosci. 2017;0:618. Park JS, Ji IJ, Kim DH, An HJ, Yoon SY: The Alzheimer’s Disease-Associated R47HVariant of TREM2 Has an Altered Glycosylation Pattern and Protein Stability. Front Neurosci. 2017;0:618.
225.
go back to reference Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E, Struyfs H, Pettkus N, Wenninger-Weinzierl A, Mazaheri F, et al.: TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Scie Transl Med. 2014;6:243ra86. Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E, Struyfs H, Pettkus N, Wenninger-Weinzierl A, Mazaheri F, et al.: TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Scie Transl Med. 2014;6:243ra86.
226.
go back to reference Abduljaleel Z, Al-Allaf FA, Khan W, Athar M, Shahzad N, Taher MM, Elrobh M, Alanazi MS, El-Huneidi W: Evidence of Trem2 Variant Associated with Triple Risk of Alzheimer’s Disease. Plos One. 2014;9:e92648. Abduljaleel Z, Al-Allaf FA, Khan W, Athar M, Shahzad N, Taher MM, Elrobh M, Alanazi MS, El-Huneidi W: Evidence of Trem2 Variant Associated with Triple Risk of Alzheimer’s Disease. Plos One. 2014;9:e92648.
227.
go back to reference Kober DL, Wanhainen KM, Johnson BM, Randolph DT, Holtzman MJ, Brett TJ. Preparation, crystallization, and preliminary crystallographic analysis of wild-type and mutant human TREM-2 ectodomains linked to neurodegenerative and inflammatory diseases. Protein Expr Purif. 2014;96:32–8.PubMedPubMedCentralCrossRef Kober DL, Wanhainen KM, Johnson BM, Randolph DT, Holtzman MJ, Brett TJ. Preparation, crystallization, and preliminary crystallographic analysis of wild-type and mutant human TREM-2 ectodomains linked to neurodegenerative and inflammatory diseases. Protein Expr Purif. 2014;96:32–8.PubMedPubMedCentralCrossRef
228.
go back to reference Begum NA, Ishii K, Kurita-Taniguchi M, Tanabe M, Kobayashi M, Moriwaki Y, Matsumoto M, Fukumori Y, Azuma I, Toyoshima K, Seya T. Mycobacterium bovis BCG cell wall-specific differentially expressed genes identified by differential display and cDNA subtraction in human macrophages. Infect Immun. 2004;72:937–48.PubMedPubMedCentralCrossRef Begum NA, Ishii K, Kurita-Taniguchi M, Tanabe M, Kobayashi M, Moriwaki Y, Matsumoto M, Fukumori Y, Azuma I, Toyoshima K, Seya T. Mycobacterium bovis BCG cell wall-specific differentially expressed genes identified by differential display and cDNA subtraction in human macrophages. Infect Immun. 2004;72:937–48.PubMedPubMedCentralCrossRef
229.
go back to reference Martiskainen H, Viswanathan J, Nykänen NP, Kurki M, Helisalmi S, Natunen T, Sarajärvi T, Kurkinen KM, Pursiheimo JP, Rauramaa T, et al. Transcriptomics and mechanistic elucidation of Alzheimer's disease risk genes in the brain and in vitro models. Neurobiol Aging. 2015;36:1221.e1215–28.CrossRef Martiskainen H, Viswanathan J, Nykänen NP, Kurki M, Helisalmi S, Natunen T, Sarajärvi T, Kurkinen KM, Pursiheimo JP, Rauramaa T, et al. Transcriptomics and mechanistic elucidation of Alzheimer's disease risk genes in the brain and in vitro models. Neurobiol Aging. 2015;36:1221.e1215–28.CrossRef
230.
go back to reference Wunderlich P, Glebov K, Kemmerling N, Tien NT, Neumann H, Walter J. Sequential Proteolytic Processing of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) Protein by Ectodomain Shedding and gamma-Secretase-dependent Intramembranous Cleavage. J Biol Chem. 2013;288:33027–36.PubMedPubMedCentralCrossRef Wunderlich P, Glebov K, Kemmerling N, Tien NT, Neumann H, Walter J. Sequential Proteolytic Processing of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) Protein by Ectodomain Shedding and gamma-Secretase-dependent Intramembranous Cleavage. J Biol Chem. 2013;288:33027–36.PubMedPubMedCentralCrossRef
231.
go back to reference Ma L, Allen M, Sakae N, Ertekin-Taner N, Graff-Radford NR, Dickson DW, Younkin SG, Sevlever D. Expression and processing analyses of wild type and p.R47H TREM2 variant in Alzheimer's disease brains. Mol Neurodegener. 2016;11:72.PubMedPubMedCentralCrossRef Ma L, Allen M, Sakae N, Ertekin-Taner N, Graff-Radford NR, Dickson DW, Younkin SG, Sevlever D. Expression and processing analyses of wild type and p.R47H TREM2 variant in Alzheimer's disease brains. Mol Neurodegener. 2016;11:72.PubMedPubMedCentralCrossRef
232.
go back to reference Glebov K, Wunderlich P, Karaca I, Walter J: Functional involvement of gamma-secretase in signaling of the triggering receptor expressed on myeloid cells-2 (TREM2). J Neuroinflammation. 2016;13:17. Glebov K, Wunderlich P, Karaca I, Walter J: Functional involvement of gamma-secretase in signaling of the triggering receptor expressed on myeloid cells-2 (TREM2). J Neuroinflammation. 2016;13:17.
233.
go back to reference Gomez-Pina V, Soares-Schanoski A, Rodriguez-Rojas A, Del Fresno C, Garcia F, Vallejo-Cremades MT, Fernandez-Ruiz I, Arnalich F, Fuentes-Prior P, Lopez-Collazo E. Metalloproteinases shed TREM-1 ectodomain from lipopolysaccharide-stimulated human monocytes. J Immunol. 2007;179:4065–73.PubMedCrossRef Gomez-Pina V, Soares-Schanoski A, Rodriguez-Rojas A, Del Fresno C, Garcia F, Vallejo-Cremades MT, Fernandez-Ruiz I, Arnalich F, Fuentes-Prior P, Lopez-Collazo E. Metalloproteinases shed TREM-1 ectodomain from lipopolysaccharide-stimulated human monocytes. J Immunol. 2007;179:4065–73.PubMedCrossRef
234.
go back to reference Gibot S, Kolopp-Sarda MN, Bene MC, Bollaert PE, Lozniewski A, Mory F, Levy B, Faure GC. A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. J Exp Med. 2004;200:1419–26.PubMedPubMedCentralCrossRef Gibot S, Kolopp-Sarda MN, Bene MC, Bollaert PE, Lozniewski A, Mory F, Levy B, Faure GC. A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. J Exp Med. 2004;200:1419–26.PubMedPubMedCentralCrossRef
235.
go back to reference Mahdy AM, Lowes DA, Galley HF, Bruce JE, Webster NR. Production of soluble triggering receptor expressed on myeloid cells by lipopolysaccharide-stimulated human neutrophils involves de novo protein synthesis. Clin Vaccine Immunol. 2006;13:492–5.PubMedPubMedCentralCrossRef Mahdy AM, Lowes DA, Galley HF, Bruce JE, Webster NR. Production of soluble triggering receptor expressed on myeloid cells by lipopolysaccharide-stimulated human neutrophils involves de novo protein synthesis. Clin Vaccine Immunol. 2006;13:492–5.PubMedPubMedCentralCrossRef
236.
go back to reference Yoon SH, Lee YD, Ha J, Lee Y, Kim HH. TLT-1s, Alternative Transcripts of Triggering Receptor Expressed on Myeloid Cell-like Transcript-1 (TLT-1), Inhibits the Triggering Receptor Expressed on Myeloid Cell-2 (TREM-2)-mediated Signaling Pathway during Osteoclastogenesis. J Biol Chem. 2012;287:29620–6.PubMedPubMedCentralCrossRef Yoon SH, Lee YD, Ha J, Lee Y, Kim HH. TLT-1s, Alternative Transcripts of Triggering Receptor Expressed on Myeloid Cell-like Transcript-1 (TLT-1), Inhibits the Triggering Receptor Expressed on Myeloid Cell-2 (TREM-2)-mediated Signaling Pathway during Osteoclastogenesis. J Biol Chem. 2012;287:29620–6.PubMedPubMedCentralCrossRef
237.
go back to reference Varnum MM, Clayton KA, Yoshii-Kitahara A, Yonemoto G, Koro L, Ikezu S, Ikezu T: A split-luciferase complementation, real-time reporting assay enables monitoring of the disease-associated transmembrane protein TREM2 in live cells. J Biol Chem. 2017;292:10651–63. Varnum MM, Clayton KA, Yoshii-Kitahara A, Yonemoto G, Koro L, Ikezu S, Ikezu T: A split-luciferase complementation, real-time reporting assay enables monitoring of the disease-associated transmembrane protein TREM2 in live cells. J Biol Chem. 2017;292:10651–63.
238.
go back to reference Prada I, Ongania GN, Buonsanti C, Panina-Bordignon P, Meldolesi J. Triggering receptor expressed in myeloid cells 2 (TREM2) trafficking in microglial cells: Continuous shuttling to and from the plasma membrane regulated by cell stimulation. Neuroscience. 2006;140:1139–48.PubMedCrossRef Prada I, Ongania GN, Buonsanti C, Panina-Bordignon P, Meldolesi J. Triggering receptor expressed in myeloid cells 2 (TREM2) trafficking in microglial cells: Continuous shuttling to and from the plasma membrane regulated by cell stimulation. Neuroscience. 2006;140:1139–48.PubMedCrossRef
239.
go back to reference Lucin KM, O'Brien CE, Bieri G, Czirr E, Mosher KI, Abbey RJ, Mastroeni DF, Rogers J, Spencer B, Masliah E, Wyss-Coray T. Microglial Beclin 1 Regulates Retromer Trafficking and Phagocytosis and Is Impaired in Alzheimer's Disease. Neuron. 2013;79:873–86.PubMedPubMedCentralCrossRef Lucin KM, O'Brien CE, Bieri G, Czirr E, Mosher KI, Abbey RJ, Mastroeni DF, Rogers J, Spencer B, Masliah E, Wyss-Coray T. Microglial Beclin 1 Regulates Retromer Trafficking and Phagocytosis and Is Impaired in Alzheimer's Disease. Neuron. 2013;79:873–86.PubMedPubMedCentralCrossRef
240.
go back to reference Yin J, Liu X, He Q, Zhou L, Yuan Z, Zhao S. Vps35-dependent recycling of Trem2 regulates microglial function. Traffic. 2016;17:1286–96.PubMedCrossRef Yin J, Liu X, He Q, Zhou L, Yuan Z, Zhao S. Vps35-dependent recycling of Trem2 regulates microglial function. Traffic. 2016;17:1286–96.PubMedCrossRef
241.
go back to reference Klesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal integration. Nat Immunol. 2006;7:1266–73.PubMedCrossRef Klesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal integration. Nat Immunol. 2006;7:1266–73.PubMedCrossRef
242.
go back to reference Phongsisay V. Campylobacter jejuni targets immunoglobulin-like receptor LMIR5. Mol Immunol. 2015;63:574–8.PubMedCrossRef Phongsisay V. Campylobacter jejuni targets immunoglobulin-like receptor LMIR5. Mol Immunol. 2015;63:574–8.PubMedCrossRef
243.
go back to reference Phongsisay V, Iizasa E, Hara H, Yamasaki S. 3-O-sulfo-beta-D-galactose moiety of endogenous sulfoglycolipids is a potential ligand for immunoglobulin-like receptor LMIR5. Mol Immunol. 2015;63:595–9.PubMedCrossRef Phongsisay V, Iizasa E, Hara H, Yamasaki S. 3-O-sulfo-beta-D-galactose moiety of endogenous sulfoglycolipids is a potential ligand for immunoglobulin-like receptor LMIR5. Mol Immunol. 2015;63:595–9.PubMedCrossRef
244.
go back to reference Daws MR, Sullam PM, Niemi EC, Chen TT, Tchao NK, Seaman WE. Pattern recognition by TREM-2: binding of anionic ligands. J Immunol. 2003;171:594–9.PubMedCrossRef Daws MR, Sullam PM, Niemi EC, Chen TT, Tchao NK, Seaman WE. Pattern recognition by TREM-2: binding of anionic ligands. J Immunol. 2003;171:594–9.PubMedCrossRef
245.
go back to reference N'Diaye EN, Branda CS, Branda SS, Nevarez L, Colonna M, Lowell C, Hamerman JA, Seaman WE. TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J Cell Biol. 2009;184:215–23.PubMedPubMedCentralCrossRef N'Diaye EN, Branda CS, Branda SS, Nevarez L, Colonna M, Lowell C, Hamerman JA, Seaman WE. TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J Cell Biol. 2009;184:215–23.PubMedPubMedCentralCrossRef
246.
go back to reference Charles JF, Humphrey MB, Zhao XD, Quarles E, Nakamura MC, Aderem A, Seaman WE, Smith KD. The innate immune response to Salmonella enterica serovar Typhimurium by macrophages is dependent on TREM2-DAP12. Infect Immun. 2008;76:2439–47.PubMedPubMedCentralCrossRef Charles JF, Humphrey MB, Zhao XD, Quarles E, Nakamura MC, Aderem A, Seaman WE, Smith KD. The innate immune response to Salmonella enterica serovar Typhimurium by macrophages is dependent on TREM2-DAP12. Infect Immun. 2008;76:2439–47.PubMedPubMedCentralCrossRef
247.
go back to reference Phongsisay V, Iizasa E, Hara H, Yoshida H. Pertussis toxin targets the innate immunity through DAP12, FcRgamma, and MyD88 adaptor proteins. Immunobiology. 2016; Phongsisay V, Iizasa E, Hara H, Yoshida H. Pertussis toxin targets the innate immunity through DAP12, FcRgamma, and MyD88 adaptor proteins. Immunobiology. 2016;
248.
go back to reference Phongsisay V, Iizasa E, Hara H, Yoshida H. Evidence for TLR4 and FcR gamma-CARD9 activation by cholera toxin B subunit and its direct bindings to TREM2 and LMIR5 receptors. Mol Immunol. 2015;66:463–71.PubMedCrossRef Phongsisay V, Iizasa E, Hara H, Yoshida H. Evidence for TLR4 and FcR gamma-CARD9 activation by cholera toxin B subunit and its direct bindings to TREM2 and LMIR5 receptors. Mol Immunol. 2015;66:463–71.PubMedCrossRef
249.
go back to reference Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, Bordignon PP, Meldolesi J. The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem. 2009;110:284–94.PubMedCrossRef Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, Bordignon PP, Meldolesi J. The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem. 2009;110:284–94.PubMedCrossRef
250.
go back to reference Dam TK, Brewer CF. Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology. 2010;20:270–9.PubMedCrossRef Dam TK, Brewer CF. Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology. 2010;20:270–9.PubMedCrossRef
251.
go back to reference Kober DL, Brett TJ: TREM2-Ligand Interactions in Health and Disease. J Mol Biol. 2017;429:1607–29. Kober DL, Brett TJ: TREM2-Ligand Interactions in Health and Disease. J Mol Biol. 2017;429:1607–29.
252.
go back to reference Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier L. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol. 2006;177:2051–5.PubMedCrossRef Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier L. Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol. 2006;177:2051–5.PubMedCrossRef
253.
go back to reference Ito H, Hamerman JA. TREM-2, triggering receptor expressed on myeloid cell-2, negatively regulates TLR responses in dendritic cells. Eur J Immunol. 2012;42:176–85.PubMedCrossRef Ito H, Hamerman JA. TREM-2, triggering receptor expressed on myeloid cell-2, negatively regulates TLR responses in dendritic cells. Eur J Immunol. 2012;42:176–85.PubMedCrossRef
254.
go back to reference Cannon JP, O'Driscoll M, Litman GW. Specific lipid recognition is a general feature of CD300 and TREM molecules. Immunogenetics. 2012;64:39–47.PubMedCrossRef Cannon JP, O'Driscoll M, Litman GW. Specific lipid recognition is a general feature of CD300 and TREM molecules. Immunogenetics. 2012;64:39–47.PubMedCrossRef
255.
go back to reference Jendresen C, Årskog V, Daws MR, Nilsson LNG. The Alzheimer’s disease risk factors apolipoprotein E and TREM2 are linked in a receptor signaling pathway. J Neuroinflammation. 2017;14:59.PubMedPubMedCentralCrossRef Jendresen C, Årskog V, Daws MR, Nilsson LNG. The Alzheimer’s disease risk factors apolipoprotein E and TREM2 are linked in a receptor signaling pathway. J Neuroinflammation. 2017;14:59.PubMedPubMedCentralCrossRef
256.
go back to reference Daws MR, Lanier LL, Seaman WE, Ryan JC. Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family. Eur J Immunol. 2001;31:783–91.PubMedCrossRef Daws MR, Lanier LL, Seaman WE, Ryan JC. Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family. Eur J Immunol. 2001;31:783–91.PubMedCrossRef
257.
go back to reference Hamerman JA, Ni M, Killebrew JR, Chu CL, Lowell CA. The expanding roles of ITAM adapters FcRgamma and DAP12 in myeloid cells. Immunol Rev. 2009;232:42–58.PubMedPubMedCentralCrossRef Hamerman JA, Ni M, Killebrew JR, Chu CL, Lowell CA. The expanding roles of ITAM adapters FcRgamma and DAP12 in myeloid cells. Immunol Rev. 2009;232:42–58.PubMedPubMedCentralCrossRef
258.
go back to reference Yuan P, Condello C, Keene CD, Wang YM, Bird TD, Paul SM, Luo WJ, Colonna M, Baddeley D, Grutzendler J. TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy (vol 90, pg 724, 2016). Neuron. 2016;92:252–64.PubMedCrossRef Yuan P, Condello C, Keene CD, Wang YM, Bird TD, Paul SM, Luo WJ, Colonna M, Baddeley D, Grutzendler J. TREM2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy (vol 90, pg 724, 2016). Neuron. 2016;92:252–64.PubMedCrossRef
259.
go back to reference Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature. 1998;391:703–7.PubMedCrossRef Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature. 1998;391:703–7.PubMedCrossRef
260.
go back to reference Peng QS, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB: TREM2-and DAP12-Dependent Activation of PI3K Requires DAP10 and Is Inhibited by SHIP1. Sci Signal. 2010;3:ra38. Peng QS, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB: TREM2-and DAP12-Dependent Activation of PI3K Requires DAP10 and Is Inhibited by SHIP1. Sci Signal. 2010;3:ra38.
261.
go back to reference Otero K, Shinohara M, Zhao H, Cella M, Gilfillan S, Colucci A, Faccio R, Ross FP, Teitelbaum SL, Takayanagi H, Colonna M. TREM2 and beta-Catenin Regulate Bone Homeostasis by Controlling the Rate of Osteoclastogenesis. J Immunol. 2012;188:2612–21.PubMedPubMedCentralCrossRef Otero K, Shinohara M, Zhao H, Cella M, Gilfillan S, Colucci A, Faccio R, Ross FP, Teitelbaum SL, Takayanagi H, Colonna M. TREM2 and beta-Catenin Regulate Bone Homeostasis by Controlling the Rate of Osteoclastogenesis. J Immunol. 2012;188:2612–21.PubMedPubMedCentralCrossRef
262.
go back to reference Whittaker GC, Orr SJ, Quigley L, Hughes L, Francischetti IM, Zhang W, McVicar DW. The linker for activation of B cells (LAB)/non-T cell activation linker (NTAL) regulates triggering receptor expressed on myeloid cells (TREM)-2 signaling and macrophage inflammatory responses independently of the linker for activation of T cells. J Biol Chem. 2010;285:2976–85.PubMedCrossRef Whittaker GC, Orr SJ, Quigley L, Hughes L, Francischetti IM, Zhang W, McVicar DW. The linker for activation of B cells (LAB)/non-T cell activation linker (NTAL) regulates triggering receptor expressed on myeloid cells (TREM)-2 signaling and macrophage inflammatory responses independently of the linker for activation of T cells. J Biol Chem. 2010;285:2976–85.PubMedCrossRef
263.
go back to reference Zhu M, Li D, Wu Y, Huang X, Wu M. TREM-2 promotes macrophage-mediated eradication of Pseudomonas aeruginosa via a PI3K/Akt pathway. Scand J Immunol. 2014;79:187–96.PubMedCrossRef Zhu M, Li D, Wu Y, Huang X, Wu M. TREM-2 promotes macrophage-mediated eradication of Pseudomonas aeruginosa via a PI3K/Akt pathway. Scand J Immunol. 2014;79:187–96.PubMedCrossRef
264.
go back to reference Cameron B, Landreth GE. Inflammation, Microglia and Alzheimer’s Disease. Neurobiol Dis. 2010;37:503–9.PubMedCrossRef Cameron B, Landreth GE. Inflammation, Microglia and Alzheimer’s Disease. Neurobiol Dis. 2010;37:503–9.PubMedCrossRef
265.
go back to reference Linnartz B, Neumann H. Microglial activatory (immunoreceptor tyrosine-based activation motif)- and inhibitory (immunoreceptor tyrosine-based inhibition motif)-signaling receptors for recognition of the neuronal glycocalyx. Glia. 2013;61:37–46.PubMedCrossRef Linnartz B, Neumann H. Microglial activatory (immunoreceptor tyrosine-based activation motif)- and inhibitory (immunoreceptor tyrosine-based inhibition motif)-signaling receptors for recognition of the neuronal glycocalyx. Glia. 2013;61:37–46.PubMedCrossRef
266.
go back to reference Barrow AD, Trowsdale J. You say ITAM and I say ITIM, let's call the whole thing off: the ambiguity of immunoreceptor signalling. Eur J Immunol. 2006;36:1646–53.PubMedCrossRef Barrow AD, Trowsdale J. You say ITAM and I say ITIM, let's call the whole thing off: the ambiguity of immunoreceptor signalling. Eur J Immunol. 2006;36:1646–53.PubMedCrossRef
267.
go back to reference O’Neill SK, Getahun A, Gauld SB, Merrell KT, Tamir I, Smith MJ, Dal Porto JM, Li QZ, Cambier JC. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity. 2011;35:746–56.PubMedPubMedCentralCrossRef O’Neill SK, Getahun A, Gauld SB, Merrell KT, Tamir I, Smith MJ, Dal Porto JM, Li QZ, Cambier JC. Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity. 2011;35:746–56.PubMedPubMedCentralCrossRef
268.
go back to reference Nakamura K, Malykhin A, Coggeshall KM. The Src homology 2 domain-containing inositol 5-phosphatase negatively regulates Fcgamma receptor-mediated phagocytosis through immunoreceptor tyrosine-based activation motif-bearing phagocytic receptors. Blood. 2002;100:3374–82.PubMedCrossRef Nakamura K, Malykhin A, Coggeshall KM. The Src homology 2 domain-containing inositol 5-phosphatase negatively regulates Fcgamma receptor-mediated phagocytosis through immunoreceptor tyrosine-based activation motif-bearing phagocytic receptors. Blood. 2002;100:3374–82.PubMedCrossRef
269.
go back to reference Maresco DL, Osborne JM, Cooney D, Coggeshall KM, Anderson CL. The SH2-Containing 5′-Inositol Phosphatase (SHIP) Is Tyrosine Phosphorylated after Fcγ Receptor Clustering in Monocytes. J Immunol. 1999;162:6458–65.PubMed Maresco DL, Osborne JM, Cooney D, Coggeshall KM, Anderson CL. The SH2-Containing 5′-Inositol Phosphatase (SHIP) Is Tyrosine Phosphorylated after Fcγ Receptor Clustering in Monocytes. J Immunol. 1999;162:6458–65.PubMed
270.
go back to reference Peng QS, Long CL, Malhotra S, Humphrey MB: A Physical Interaction Between the Adaptor Proteins DOK3 and DAP12 Is Required to Inhibit Lipopolysaccharide Signaling in Macrophages. Sci Signal. 2013;6:ra72. Peng QS, Long CL, Malhotra S, Humphrey MB: A Physical Interaction Between the Adaptor Proteins DOK3 and DAP12 Is Required to Inhibit Lipopolysaccharide Signaling in Macrophages. Sci Signal. 2013;6:ra72.
271.
go back to reference Montalvo V, Quigley L, Vistica BP, Boelte KC, Nugent LF, Takai T, McVicar DW, Gery I. Environmental factors determine DAP12 deficiency to either enhance or suppress immunopathogenic processes. Immunology. 2013;140:475–82.PubMedPubMedCentralCrossRef Montalvo V, Quigley L, Vistica BP, Boelte KC, Nugent LF, Takai T, McVicar DW, Gery I. Environmental factors determine DAP12 deficiency to either enhance or suppress immunopathogenic processes. Immunology. 2013;140:475–82.PubMedPubMedCentralCrossRef
272.
go back to reference Malik M, Parikh I, Vasquez JB, Smith C, Tai L, Bu GJ, Ladu MJ, Fardo DW, Rebeck GW, Estus S. Genetics ignite focus on microglial inflammation in Alzheimer’s disease. Mol Neurodegener. 2015;10:52. Malik M, Parikh I, Vasquez JB, Smith C, Tai L, Bu GJ, Ladu MJ, Fardo DW, Rebeck GW, Estus S. Genetics ignite focus on microglial inflammation in Alzheimer’s disease. Mol Neurodegener. 2015;10:52.
273.
go back to reference Takegahara N, Takamatsu H, Toyofuku T, Tsujimura T, Okuno T, Yukawa K, Mizui M, Yamamoto M, Prasad DVR, Suzuki K, et al. Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat Cell Biol. 2006;8:615–22.PubMedCrossRef Takegahara N, Takamatsu H, Toyofuku T, Tsujimura T, Okuno T, Yukawa K, Mizui M, Yamamoto M, Prasad DVR, Suzuki K, et al. Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat Cell Biol. 2006;8:615–22.PubMedCrossRef
274.
go back to reference Zhang Y, Su J, Wu S, Teng Y, Yin Z, Guo Y, Li J, Li K, Yao L, Li X. DDR2 (discoidin domain receptor 2) suppresses osteoclastogenesis and is a potential therapeutic target in osteoporosis. Sci Signal. 2015;8:ra31.PubMedCrossRef Zhang Y, Su J, Wu S, Teng Y, Yin Z, Guo Y, Li J, Li K, Yao L, Li X. DDR2 (discoidin domain receptor 2) suppresses osteoclastogenesis and is a potential therapeutic target in osteoporosis. Sci Signal. 2015;8:ra31.PubMedCrossRef
275.
go back to reference Fernandez-Vega I, de Heredia-Goni KP, Santos-Juanes J, Imizcoz MG, Zaldumbide L, Zarranz JJ, Ferrer I. Sporadic adult-onset leucodystrophy with axonal spheroids and pigmented glia with no mutations in the known targeted genes. Histopathology. 2016;68:308–12.PubMedCrossRef Fernandez-Vega I, de Heredia-Goni KP, Santos-Juanes J, Imizcoz MG, Zaldumbide L, Zarranz JJ, Ferrer I. Sporadic adult-onset leucodystrophy with axonal spheroids and pigmented glia with no mutations in the known targeted genes. Histopathology. 2016;68:308–12.PubMedCrossRef
276.
go back to reference Haselmayer P, Grosse-Hovest L, von Landenberg P, Schild H, Radsak MP. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood. 2007;110:1029–35.PubMedCrossRef Haselmayer P, Grosse-Hovest L, von Landenberg P, Schild H, Radsak MP. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood. 2007;110:1029–35.PubMedCrossRef
277.
go back to reference Bouchon A, Facchetti F, Weigand MA, Colonna M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature. 2001;410:1103–7.PubMedCrossRef Bouchon A, Facchetti F, Weigand MA, Colonna M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature. 2001;410:1103–7.PubMedCrossRef
278.
go back to reference Kim Y, Sato K, Asagiri M, Morita I, Soma K, Takayanagi H. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J Biol Chem. 2005;280:32905–13.PubMedCrossRef Kim Y, Sato K, Asagiri M, Morita I, Soma K, Takayanagi H. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J Biol Chem. 2005;280:32905–13.PubMedCrossRef
279.
go back to reference Xiang X, Werner G, Bohrmann B, Mazaheri F, Capell A, Feederle R, Knuesel I, Kleinberger G, Haass C. TREM2-deficiency reduces the efficacy of immunotherapeutic amyloid clearance. J Neurochem. 2016;138:422. Xiang X, Werner G, Bohrmann B, Mazaheri F, Capell A, Feederle R, Knuesel I, Kleinberger G, Haass C. TREM2-deficiency reduces the efficacy of immunotherapeutic amyloid clearance. J Neurochem. 2016;138:422.
280.
go back to reference Zhong L, Chen XF, Zhang ZL, Wang Z, Shi XZ, Xu K, Zhang YW, Xu HX, Bu GJ. DAP12 Stabilizes the C-terminal Fragment of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) and Protects against LPS-induced Pro-inflammatory Response. J Biol Chem. 2015;290:15866–77.PubMedPubMedCentralCrossRef Zhong L, Chen XF, Zhang ZL, Wang Z, Shi XZ, Xu K, Zhang YW, Xu HX, Bu GJ. DAP12 Stabilizes the C-terminal Fragment of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) and Protects against LPS-induced Pro-inflammatory Response. J Biol Chem. 2015;290:15866–77.PubMedPubMedCentralCrossRef
281.
go back to reference Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M, Calhoun ME. Dynamics of the Microglial/Amyloid Interaction Indicate a Role in Plaque Maintenance. J Neurosci. 2008;28:4283–92.PubMedPubMedCentralCrossRef Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M, Calhoun ME. Dynamics of the Microglial/Amyloid Interaction Indicate a Role in Plaque Maintenance. J Neurosci. 2008;28:4283–92.PubMedPubMedCentralCrossRef
282.
go back to reference Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature. 2008;451:720–4.PubMedPubMedCentralCrossRef Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature. 2008;451:720–4.PubMedPubMedCentralCrossRef
283.
go back to reference Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol. 1989;24:173–82.PubMedCrossRef Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol. 1989;24:173–82.PubMedCrossRef
284.
go back to reference Wegiel J, Wisniewski HM. The complex of microglial cells and amyloid star in three-dimensional reconstruction. Acta Neuropathol. 1990;81:116–24.PubMedCrossRef Wegiel J, Wisniewski HM. The complex of microglial cells and amyloid star in three-dimensional reconstruction. Acta Neuropathol. 1990;81:116–24.PubMedCrossRef
285.
go back to reference Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM. Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol. 1998;152:307–17.PubMedPubMedCentral Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM. Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol. 1998;152:307–17.PubMedPubMedCentral
286.
go back to reference Ulrich JD, Finn MB, Wang YM, Shen A, Mahan TE, Jiang H, Stewart FR, Piccio L, Colonna M, Holtzman DM. Altered microglial response to A beta plaques in APPPS1–21 mice heterozygous for TREM2. Mol Neurodegener. 2014;9. Ulrich JD, Finn MB, Wang YM, Shen A, Mahan TE, Jiang H, Stewart FR, Piccio L, Colonna M, Holtzman DM. Altered microglial response to A beta plaques in APPPS1–21 mice heterozygous for TREM2. Mol Neurodegener. 2014;9.
287.
go back to reference Jay TR, Hirsch AM, Broihier ML, Miller CM, Neilson LE, Ransohoff RM, Lamb BT, Landreth GE. Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer’s Disease. J Neurosci. 2017;37:637–47.PubMedPubMedCentralCrossRef Jay TR, Hirsch AM, Broihier ML, Miller CM, Neilson LE, Ransohoff RM, Lamb BT, Landreth GE. Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer’s Disease. J Neurosci. 2017;37:637–47.PubMedPubMedCentralCrossRef
288.
go back to reference Cantoni C, Bollman B, Licastro D, Xie MQ, Mikesell R, Schmidt R, Yuede CM, Galimberti D, Olivecrona G, Klein RS, et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 2015;129:429–47.PubMedPubMedCentralCrossRef Cantoni C, Bollman B, Licastro D, Xie MQ, Mikesell R, Schmidt R, Yuede CM, Galimberti D, Olivecrona G, Klein RS, et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 2015;129:429–47.PubMedPubMedCentralCrossRef
289.
go back to reference Nguyen MD, Julien J-P, Rivest S. Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci. 2002;3:216–27.PubMedCrossRef Nguyen MD, Julien J-P, Rivest S. Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci. 2002;3:216–27.PubMedCrossRef
290.
go back to reference Wu HM, Zhang LF, Ding PS, Liu YJ, Wu X, Zhou JN. Microglial activation mediates host neuronal survival induced by neural stem cells. J Cell Mol Med. 2014;18:1300–12.PubMedPubMedCentralCrossRef Wu HM, Zhang LF, Ding PS, Liu YJ, Wu X, Zhou JN. Microglial activation mediates host neuronal survival induced by neural stem cells. J Cell Mol Med. 2014;18:1300–12.PubMedPubMedCentralCrossRef
291.
go back to reference Kim H, Walczak P, Kerr C, Galpoththawela C, Gilad AA, Muja N, Bulte JWM. Immunomodulation by Transplanted Human Embryonic Stem Cell-Derived Oligodendroglial Progenitors in Experimental Autoimmune Encephalomyelitis. Stem Cells. 2012;30:2820–9.PubMedPubMedCentralCrossRef Kim H, Walczak P, Kerr C, Galpoththawela C, Gilad AA, Muja N, Bulte JWM. Immunomodulation by Transplanted Human Embryonic Stem Cell-Derived Oligodendroglial Progenitors in Experimental Autoimmune Encephalomyelitis. Stem Cells. 2012;30:2820–9.PubMedPubMedCentralCrossRef
292.
go back to reference Mazaheri F, Snaidero N, Kleinberger G, Madore C, Daria A, Werner G, Krasemann S, Capell A, Trümbach D, Wurst W, et al. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Reports. 2017;1186–1198. Mazaheri F, Snaidero N, Kleinberger G, Madore C, Daria A, Werner G, Krasemann S, Capell A, Trümbach D, Wurst W, et al. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Reports. 2017;1186–1198.
293.
go back to reference Humphrey MB, Ogasawara K, Yao W, Spusta SC, Daws MR, Lane NE, Lanier LL, Nakamura MC. The signaling adapter protein DAP12 regulates multinucleation during osteoclast development. J Bone Miner Res. 2004;19:224–34.PubMedCrossRef Humphrey MB, Ogasawara K, Yao W, Spusta SC, Daws MR, Lane NE, Lanier LL, Nakamura MC. The signaling adapter protein DAP12 regulates multinucleation during osteoclast development. J Bone Miner Res. 2004;19:224–34.PubMedCrossRef
295.
go back to reference Jiang T, Zhang YD, Chen Q, Gao Q, Zhu XC, Zhou JS, Shi JQ, Lu H, Tan L, Yu JT. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology. 2016;105:196–206.PubMedCrossRef Jiang T, Zhang YD, Chen Q, Gao Q, Zhu XC, Zhou JS, Shi JQ, Lu H, Tan L, Yu JT. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology. 2016;105:196–206.PubMedCrossRef
296.
go back to reference Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169:1276–90.PubMedCrossRef Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169:1276–90.PubMedCrossRef
298.
go back to reference Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.PubMedPubMedCentralCrossRef Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.PubMedPubMedCentralCrossRef
299.
go back to reference Takahashi K, Prinz M, Neumann H. Clearance of tissue debris by TREM2-transduced myeloid cells promotes recovery of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2006;178:27–8. Takahashi K, Prinz M, Neumann H. Clearance of tissue debris by TREM2-transduced myeloid cells promotes recovery of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2006;178:27–8.
300.
go back to reference Jiang T, Y Wan, Y Zhang, J Zhou, Q Gao, X Zhu, J Shi, H Lu, L Tan, Yu J: TREM2 Overexpression has no improvement on neuropathology and cognitive impairment in aging APPswe/PS1dE9 mice. Mol Neurobiol. 2017;54:855–65. Jiang T, Y Wan, Y Zhang, J Zhou, Q Gao, X Zhu, J Shi, H Lu, L Tan, Yu J: TREM2 Overexpression has no improvement on neuropathology and cognitive impairment in aging APPswe/PS1dE9 mice. Mol Neurobiol. 2017;54:855–65.
301.
go back to reference Camargo LM, Zhang XD, Loerch P, Caceres RM, Marine SD, Uva P, Ferrer M, de Rinaldis E, Stone DJ, Majercak J, et al. Pathway-Based Analysis of Genome-Wide siRNA Screens Reveals the Regulatory Landscape of App Processing. Plos One. 2015;10:e0115369. Camargo LM, Zhang XD, Loerch P, Caceres RM, Marine SD, Uva P, Ferrer M, de Rinaldis E, Stone DJ, Majercak J, et al. Pathway-Based Analysis of Genome-Wide siRNA Screens Reveals the Regulatory Landscape of App Processing. Plos One. 2015;10:e0115369.
302.
go back to reference Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Abeta42 hotspots around plaques. Nat Commun. 2015;6:6176.PubMedPubMedCentralCrossRef Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Abeta42 hotspots around plaques. Nat Commun. 2015;6:6176.PubMedPubMedCentralCrossRef
303.
go back to reference Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe D. Naturally secreted oligomers of amyloid protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–9.PubMedCrossRef Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe D. Naturally secreted oligomers of amyloid protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–9.PubMedCrossRef
304.
go back to reference Kayed R, Lasagna-Reeves C. Molecular Mechanisms of Amyloid Oligomers Toxicity. J Alzheimers Dis. 2013;33:S67–78.PubMedCrossRef Kayed R, Lasagna-Reeves C. Molecular Mechanisms of Amyloid Oligomers Toxicity. J Alzheimers Dis. 2013;33:S67–78.PubMedCrossRef
305.
go back to reference Hu X, X Li, M Zhao, A Gottesdiener, W Luo, Paul S. Tau pathogenesis is promoted by Abeta 1–42 but not Abeta 1–40. Mol Neurodegener. 2014;9:52. Hu X, X Li, M Zhao, A Gottesdiener, W Luo, Paul S. Tau pathogenesis is promoted by Abeta 1–42 but not Abeta 1–40. Mol Neurodegener. 2014;9:52.
306.
go back to reference Lupton MK, Strike L, Hansell NK, Wen W, Mather KA, Armstrong NJ, Thalamuthu A, McMahon KL, de Zubicaray GI, Assareh AA, et al. The effect of increased genetic risk for Alzheimer's disease on hippocampal and amygdala volume. Neurobiol Aging. 2016;40:68–77.PubMedPubMedCentralCrossRef Lupton MK, Strike L, Hansell NK, Wen W, Mather KA, Armstrong NJ, Thalamuthu A, McMahon KL, de Zubicaray GI, Assareh AA, et al. The effect of increased genetic risk for Alzheimer's disease on hippocampal and amygdala volume. Neurobiol Aging. 2016;40:68–77.PubMedPubMedCentralCrossRef
307.
go back to reference Engelman CD, Koscik RL, Jonaitis EM, Hermann BP, La Rue A, Sager MA. Investigation of triggering receptor expressed on myeloid cells 2 variant in the Wisconsin Registry for Alzheimer’s Prevention. Neurobiol Aging. 2014;35:1252–4.PubMedCrossRef Engelman CD, Koscik RL, Jonaitis EM, Hermann BP, La Rue A, Sager MA. Investigation of triggering receptor expressed on myeloid cells 2 variant in the Wisconsin Registry for Alzheimer’s Prevention. Neurobiol Aging. 2014;35:1252–4.PubMedCrossRef
308.
go back to reference Montalbetti L, Ratti MT, Greco B, Aprile C, Moglia A, Soragna D. Neuropsychological tests and functional nuclear neuroimaging provide evidence of subclinical impairment in Nasu-Hakola disease heterozygotes. Funct Neurol. 2005;20:71–5.PubMed Montalbetti L, Ratti MT, Greco B, Aprile C, Moglia A, Soragna D. Neuropsychological tests and functional nuclear neuroimaging provide evidence of subclinical impairment in Nasu-Hakola disease heterozygotes. Funct Neurol. 2005;20:71–5.PubMed
309.
go back to reference Satoh J, Motohashi N, Kino Y, Ishida T, Yagishita S, Jinnai K, Arai N, Nakamagoe K, Tamaoka A, Saito Y, Arima K: LC3, an autophagosome marker, is expressed on oligodendrocytes in Nasu-Hakola disease brains. Orphanet J Rare Dis. 2014;9:68. Satoh J, Motohashi N, Kino Y, Ishida T, Yagishita S, Jinnai K, Arai N, Nakamagoe K, Tamaoka A, Saito Y, Arima K: LC3, an autophagosome marker, is expressed on oligodendrocytes in Nasu-Hakola disease brains. Orphanet J Rare Dis. 2014;9:68.
310.
go back to reference Nakamagoe K, Shioya A, Yamaguchi T, Takahashi H, Koide R, Monzen T, Satoh J, Tamaoka A. A Japanese Case with Nasu-Hakola Disease of DAP12 Gene Mutation Exhibiting Precuneus Hypoperfusion. Intern Med. 2011;50:2839–44.PubMedCrossRef Nakamagoe K, Shioya A, Yamaguchi T, Takahashi H, Koide R, Monzen T, Satoh J, Tamaoka A. A Japanese Case with Nasu-Hakola Disease of DAP12 Gene Mutation Exhibiting Precuneus Hypoperfusion. Intern Med. 2011;50:2839–44.PubMedCrossRef
311.
go back to reference Bianchin MM, Lima JE, Natel J, Sakamoto AC. The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. Neurology. 2006;66:615–6.PubMedCrossRef Bianchin MM, Lima JE, Natel J, Sakamoto AC. The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. Neurology. 2006;66:615–6.PubMedCrossRef
312.
go back to reference Piccio L, Cantoni C, Bollman B, Cignarella F, Mikesell R. TREM2 regulates microglia activation in response to CNS demyelination. Mult Scler J. 2016;22:54. Piccio L, Cantoni C, Bollman B, Cignarella F, Mikesell R. TREM2 regulates microglia activation in response to CNS demyelination. Mult Scler J. 2016;22:54.
313.
go back to reference Ohrfelt A, Axelsson M, Malmestrom C, Novakova L, Heslegrave A, Blennow K, Lycke J, Zetterberg H. Soluble TREM-2 in cerebrospinal fluid from patients with multiple sclerosis treated with natalizumab or mitoxantrone. Mult Scler J. 2016;22:1587–95.CrossRef Ohrfelt A, Axelsson M, Malmestrom C, Novakova L, Heslegrave A, Blennow K, Lycke J, Zetterberg H. Soluble TREM-2 in cerebrospinal fluid from patients with multiple sclerosis treated with natalizumab or mitoxantrone. Mult Scler J. 2016;22:1587–95.CrossRef
314.
go back to reference Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P, Ohrfelt A, Blennow K, Hardy J, Schott J, et al. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer's disease. Mol Neurodegener. 2016;11:3. Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P, Ohrfelt A, Blennow K, Hardy J, Schott J, et al. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer's disease. Mol Neurodegener. 2016;11:3.
315.
go back to reference McIntee FL, P Giannoni, S Blais, G Sommer, TA Neubert, A Rostagno, Ghiso J. In vivo Differential Brain Clearance and Catabolism of Monomeric and Oligomeric Alzheimer's Aβ protein. Front Aging Neurosci. 2016;8:223. McIntee FL, P Giannoni, S Blais, G Sommer, TA Neubert, A Rostagno, Ghiso J. In vivo Differential Brain Clearance and Catabolism of Monomeric and Oligomeric Alzheimer's Aβ protein. Front Aging Neurosci. 2016;8:223.
316.
go back to reference Gispert JD, Suarez-Calvet M, Monte GC, Tucholka A, Falcon C, Rojas S, Rami L, Sanchez-Valle R, Llado A, Kleinberger G, et al. Cerebrospinal fluid sTREM2 levels are associated with gray matter volume increases and reduced diffusivity in early Alzheimer's disease. Alzheimers Dement. 2016;12:1259–72.PubMedCrossRef Gispert JD, Suarez-Calvet M, Monte GC, Tucholka A, Falcon C, Rojas S, Rami L, Sanchez-Valle R, Llado A, Kleinberger G, et al. Cerebrospinal fluid sTREM2 levels are associated with gray matter volume increases and reduced diffusivity in early Alzheimer's disease. Alzheimers Dement. 2016;12:1259–72.PubMedCrossRef
317.
go back to reference Cooper-Knock J, Green C, Altschuler G, Wei W, Bury JJ, Heath PR, Wyles M, Gelsthorpe C, Highley JR, Lorente-Pons A, et al. A data-driven approach links microglia to pathology and prognosis in amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2016;22:1587–95. Cooper-Knock J, Green C, Altschuler G, Wei W, Bury JJ, Heath PR, Wyles M, Gelsthorpe C, Highley JR, Lorente-Pons A, et al. A data-driven approach links microglia to pathology and prognosis in amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2016;22:1587–95.
318.
go back to reference Gispert JD, Monté GC, Suárez-Calvet M, Falcon C, Tucholka A, Rojas S, Rami L, Sánchez-Valle R, Lladó A, Kleinberger G, et al. The APOE ε4 genotype modulates CSF YKL-40 levels and their structural brain correlates in the continuum of Alzheimer’s disease but not those of sTREM2. Alzheimer’s Dement. 2016;6:50–9. Gispert JD, Monté GC, Suárez-Calvet M, Falcon C, Tucholka A, Rojas S, Rami L, Sánchez-Valle R, Lladó A, Kleinberger G, et al. The APOE ε4 genotype modulates CSF YKL-40 levels and their structural brain correlates in the continuum of Alzheimer’s disease but not those of sTREM2. Alzheimer’s Dement. 2016;6:50–9.
320.
go back to reference Song FH, Qian Y, Peng X, Han GC, Wang JJ, Bai ZX, Crack PJ, Lei HX. Perturbation of the transcriptome: implications of the innate immune system in Alzheimer's disease. Curr Opin Pharmacol. 2016;26:47–53.PubMedCrossRef Song FH, Qian Y, Peng X, Han GC, Wang JJ, Bai ZX, Crack PJ, Lei HX. Perturbation of the transcriptome: implications of the innate immune system in Alzheimer's disease. Curr Opin Pharmacol. 2016;26:47–53.PubMedCrossRef
321.
go back to reference Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA. 2009;302:385–93.PubMedCrossRef Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA. 2009;302:385–93.PubMedCrossRef
322.
go back to reference Black RA, CT Rauch, CJ Kozlosky, JJ Peschon, JL Slack, MF Wolfson, BJ Castner, KL Stocking, P Reddy, S Srinivasan, et al.: A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997, 385:729-733. Black RA, CT Rauch, CJ Kozlosky, JJ Peschon, JL Slack, MF Wolfson, BJ Castner, KL Stocking, P Reddy, S Srinivasan, et al.: A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997, 385:729-733.
323.
go back to reference Lu Y, Liu W, Wang X. TREM2 variants and risk of Alzheimer’s disease: a meta-analysis. Neurol Sci. 2015;36:1881–8.PubMedCrossRef Lu Y, Liu W, Wang X. TREM2 variants and risk of Alzheimer’s disease: a meta-analysis. Neurol Sci. 2015;36:1881–8.PubMedCrossRef
324.
go back to reference Jonsson T, Stefansson K. TREM2 and Neurodegenerative Disease. N Engl J Med. 2013;369:1564–70.CrossRef Jonsson T, Stefansson K. TREM2 and Neurodegenerative Disease. N Engl J Med. 2013;369:1564–70.CrossRef
325.
go back to reference Guerreiro R, Bilgic B, Guven G, Bras J, Rohrer J, Lohmann E, Hanagasi H, Gruvit H, Emre M. A novel compound heterozygous mutation in TREM2 found in a Turkish frontotemporal dementia-like family. Neurobiol Aging. 2013;34:2890e1–5.CrossRef Guerreiro R, Bilgic B, Guven G, Bras J, Rohrer J, Lohmann E, Hanagasi H, Gruvit H, Emre M. A novel compound heterozygous mutation in TREM2 found in a Turkish frontotemporal dementia-like family. Neurobiol Aging. 2013;34:2890e1–5.CrossRef
Metadata
Title
TREM2 in Neurodegenerative Diseases
Authors
Taylor R. Jay
Victoria E. von Saucken
Gary E. Landreth
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2017
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-017-0197-5

Other articles of this Issue 1/2017

Molecular Neurodegeneration 1/2017 Go to the issue