Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2021

Open Access 01-12-2021 | Langerhans Cell Histiocytosis | Review

Bone fragility in patients affected by congenital diseases non skeletal in origin

Authors: L. Masi, S. Ferrari, M. K. Javaid, S. Papapoulos, D. D. Pierroz, M. L. Brandi, IOF Skeletal Rare Diseases Working Group

Published in: Orphanet Journal of Rare Diseases | Issue 1/2021

Login to get access

Abstract

Background

Bone tissue represents a large systemic compartment of the human body, with an active metabolism, that controls mineral deposition and removal, and where several factors may play a role. For these reasons, several non-skeletal diseases may influence bone metabolism. It is of a crucial importance to classify these disorders in order to facilitate diagnosis and clinical management. This article reports a taxonomic classification of non-skeletal rare congenital disorders, which have an impact on bone metabolism

Methods

The International Osteoporosis Foundation (IOF) Skeletal Rare Diseases Working Group (SRD-WG), comprised of basic and clinical scientists, has decided to review the taxonomy of non-skeletal rare disorders that may alter bone physiology.

Results

The taxonomy of non-skeletal rare congenital disorders which impact bone comprises a total of 6 groups of disorders that may influence the activity of bone cells or the characteristics of bone matrix.

Conclusions

This paper provides the first comprehensive taxonomy of non-skeletal rare congenital disorders with impact on bone physiology.
Literature
1.
go back to reference Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3:481.PubMedPubMedCentralCrossRef Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3:481.PubMedPubMedCentralCrossRef
2.
3.
go back to reference Masi L, Agnusdei D, Bilezikian J, Chappard D, Chapurlat R, Cianferotti L, et al. Taxonomy of rare genetic metabolic bone disorders. Osteoporos Int. 2015;26:2529–58.PubMedCrossRef Masi L, Agnusdei D, Bilezikian J, Chappard D, Chapurlat R, Cianferotti L, et al. Taxonomy of rare genetic metabolic bone disorders. Osteoporos Int. 2015;26:2529–58.PubMedCrossRef
4.
go back to reference de Duve C. Lysosomes, new group of cytooplasmic particles. In: Hayashi T editor Subcellular particles New-York: Ronald Press 1059; 128–159 de Duve C. Lysosomes, new group of cytooplasmic particles. In: Hayashi T editor Subcellular particles New-York: Ronald Press 1059; 128–159
5.
go back to reference De Duve C. From cytases to lysosomes. Fed Proc 1064; 23:1045–1049 De Duve C. From cytases to lysosomes. Fed Proc 1064; 23:1045–1049
7.
go back to reference Duve C. Exploring cells with a centrifuge. Science 1075; 189:186–194 Duve C. Exploring cells with a centrifuge. Science 1075; 189:186–194
8.
go back to reference Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol. 2004;5:554–65.PubMedCrossRef Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol. 2004;5:554–65.PubMedCrossRef
9.
go back to reference Gaucher PCE. De l'epithelioma primitif de la rate, hypertrophie idiopathique de la rate sans leucémie [MD Thesis]. 1882; Paris, France. Gaucher PCE. De l'epithelioma primitif de la rate, hypertrophie idiopathique de la rate sans leucémie [MD Thesis]. 1882; Paris, France.
10.
go back to reference Fabry J. Ein beitrag zur Kenntnis der Purpura haemorrhagica nodularis (purpura papulosa haemorrhagica Hebrae). Arch Dermatol Syph. 1898;43:187–200.CrossRef Fabry J. Ein beitrag zur Kenntnis der Purpura haemorrhagica nodularis (purpura papulosa haemorrhagica Hebrae). Arch Dermatol Syph. 1898;43:187–200.CrossRef
11.
go back to reference Kruer MC, Steiner RD, Griesemer DA. Lysosomal Storage Disease. 2013; Medscape Kruer MC, Steiner RD, Griesemer DA. Lysosomal Storage Disease. 2013; Medscape
12.
go back to reference Wang RY, Bodamer OA, Watson MS, Wilcox WR; ACMG Work Group on Diagnostic Confirmation of Lysosomal Storage Diseases. Lysosomal storage diseases: diagnostic confirmation and management of presymptomatic individuals. Genet Med 2011; 13:457–484 Wang RY, Bodamer OA, Watson MS, Wilcox WR; ACMG Work Group on Diagnostic Confirmation of Lysosomal Storage Diseases. Lysosomal storage diseases: diagnostic confirmation and management of presymptomatic individuals. Genet Med 2011; 13:457–484
13.
go back to reference Dingle JT. The role of lysosomal enzymes in skeletal tissues. J Bone Joint Surg Br. 1973;55:87–95.PubMedCrossRef Dingle JT. The role of lysosomal enzymes in skeletal tissues. J Bone Joint Surg Br. 1973;55:87–95.PubMedCrossRef
14.
go back to reference Page-Thomas DP. Lysosomal enzymes in experimental and rheumatoid arthritis. In Lysosomes in Biology and Pathology Edited by JT Dingle and HB Fell Amsterdam, Holland 1969; 2:87–110 Page-Thomas DP. Lysosomal enzymes in experimental and rheumatoid arthritis. In Lysosomes in Biology and Pathology Edited by JT Dingle and HB Fell Amsterdam, Holland 1969; 2:87–110
15.
go back to reference Platt FM, Boland B, van der Spoel AC. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol. 2012;199:723–34.PubMedPubMedCentralCrossRef Platt FM, Boland B, van der Spoel AC. The cell biology of disease: lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J Cell Biol. 2012;199:723–34.PubMedPubMedCentralCrossRef
16.
go back to reference Marcucci G, Zimran A, Bembi B, Kanis J, Reginster JY, Rizzoli R, et al. Gaucher disease and bone manifestations. Calcif Tissue Int. 2014;95:477–94.PubMedCrossRef Marcucci G, Zimran A, Bembi B, Kanis J, Reginster JY, Rizzoli R, et al. Gaucher disease and bone manifestations. Calcif Tissue Int. 2014;95:477–94.PubMedCrossRef
18.
go back to reference Andria G, Fowler B, Sbatio G (2000) Disorders of sulfur amino acid metabolism. In: J. Fernandes et al (ed) Inborn metabolic diseases. Springer, Berlin, 18:224–231 Andria G, Fowler B, Sbatio G (2000) Disorders of sulfur amino acid metabolism. In: J. Fernandes et al (ed) Inborn metabolic diseases. Springer, Berlin, 18:224–231
19.
go back to reference Miles EW, Kraus JP. Cystathionineβ-synthase: structure, Function, regulation, and location of homocystinuria causing mutations. J Biol Chem. 2004;279:29871–4.PubMedCrossRef Miles EW, Kraus JP. Cystathionineβ-synthase: structure, Function, regulation, and location of homocystinuria causing mutations. J Biol Chem. 2004;279:29871–4.PubMedCrossRef
20.
go back to reference Reish O, Townsend D, Berry SA, Tsai MY, King RA. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet. 1995;57:127–32.PubMedPubMedCentral Reish O, Townsend D, Berry SA, Tsai MY, King RA. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet. 1995;57:127–32.PubMedPubMedCentral
21.
go back to reference Testai FD, Gorelick PB. Inherited metabolic disorders and stroke part 2: homocystinuria, organic acidurias, and urea cycle disorders. Arch Neurol. 2010;67:148–53.PubMedCrossRef Testai FD, Gorelick PB. Inherited metabolic disorders and stroke part 2: homocystinuria, organic acidurias, and urea cycle disorders. Arch Neurol. 2010;67:148–53.PubMedCrossRef
22.
go back to reference Yap S. Homocystinuria due to cystathionine β-synthase deficiency. Orphanet encyclopedia, February 2005. http://wwworphanet/data/patho/GB/uk-CbSpdf Yap S. Homocystinuria due to cystathionine β-synthase deficiency. Orphanet encyclopedia, February 2005. http://​wwworphanet/​data/​patho/​GB/​uk-CbSpdf
23.
go back to reference Mudd SH, Levy HL, and Kraus JP (2002) in The metabolic and molecular bases of inherited disease (Scriver, C. R., Beaudet, A. L., Valle, D., Sly, W. S., Chiles, D., Kinsler, K. W., and Vogelstein, B., eds) 8th Ed., Vol. 2, pp. 2007–2056, McGraw-Hill, Inc., New York Mudd SH, Levy HL, and Kraus JP (2002) in The metabolic and molecular bases of inherited disease (Scriver, C. R., Beaudet, A. L., Valle, D., Sly, W. S., Chiles, D., Kinsler, K. W., and Vogelstein, B., eds) 8th Ed., Vol. 2, pp. 2007–2056, McGraw-Hill, Inc., New York
24.
go back to reference Kraus JP, Janosik M, Kozich V, Mandell R, Shih V, Sperandeo MP, et al. Cystathionine beta-synthase mutations in homocystinuria. Hum Mutat. 1999;13:362–75.PubMedCrossRef Kraus JP, Janosik M, Kozich V, Mandell R, Shih V, Sperandeo MP, et al. Cystathionine beta-synthase mutations in homocystinuria. Hum Mutat. 1999;13:362–75.PubMedCrossRef
25.
go back to reference Robert K, Maurin N, Vayssettes C, Siauve N, Janel N. Cystathionine beta synthase deficiency affects mouse endochondral ossification. Anat Rec A Discov Mol Cell Evol Biol. 2005;282:1–7.PubMed Robert K, Maurin N, Vayssettes C, Siauve N, Janel N. Cystathionine beta synthase deficiency affects mouse endochondral ossification. Anat Rec A Discov Mol Cell Evol Biol. 2005;282:1–7.PubMed
26.
go back to reference Kriebitzsch C, Verlinden L, Eelen G, van Schoor NM, Swart K, Lips P, et al. 1,25-dihydroxyvitamin D3 influences cellular homocysteine levels in murine preosteoblastic MC3T3-E1 cells by direct regulation of cystathionine beta-synthase. J Bone Miner Res. 2011;26:2991–3000.PubMedCrossRef Kriebitzsch C, Verlinden L, Eelen G, van Schoor NM, Swart K, Lips P, et al. 1,25-dihydroxyvitamin D3 influences cellular homocysteine levels in murine preosteoblastic MC3T3-E1 cells by direct regulation of cystathionine beta-synthase. J Bone Miner Res. 2011;26:2991–3000.PubMedCrossRef
27.
go back to reference Saposnik G, Ray JG, Sheridan P, Lonn E. Homocysteine-lowering therapy and stroke risk, severity, and disability: additional findings from the HOPE 2 trial. Stroke. 2009;40:1365–72.PubMedCrossRef Saposnik G, Ray JG, Sheridan P, Lonn E. Homocysteine-lowering therapy and stroke risk, severity, and disability: additional findings from the HOPE 2 trial. Stroke. 2009;40:1365–72.PubMedCrossRef
28.
go back to reference Majors AK, Pyeritz RE. A deficiency of cysteine impairs fibrillin-1 deposition: implications for the pathogenesis of cystathionine beta-synthase deficiency. Mol Genet Metab. 2000;70:252–60.PubMedCrossRef Majors AK, Pyeritz RE. A deficiency of cysteine impairs fibrillin-1 deposition: implications for the pathogenesis of cystathionine beta-synthase deficiency. Mol Genet Metab. 2000;70:252–60.PubMedCrossRef
29.
go back to reference Lim JS, Lee DH. Changes in bone mineral density and body composition of children with well-controlled homocystinuria caused by CBS deficiency. Osteoporos Int. 2013;24:2535–8.PubMedCrossRef Lim JS, Lee DH. Changes in bone mineral density and body composition of children with well-controlled homocystinuria caused by CBS deficiency. Osteoporos Int. 2013;24:2535–8.PubMedCrossRef
30.
go back to reference van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med. 2004;350:2033–41.PubMedCrossRef van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, et al. Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med. 2004;350:2033–41.PubMedCrossRef
31.
go back to reference Morris AM, Kožich V, Santra S Andria G, Ben-Omran TI, Chakrapani AB, et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis 2017; 40:49–74 Morris AM, Kožich V, Santra S Andria G, Ben-Omran TI, Chakrapani AB, et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J Inherit Metab Dis 2017; 40:49–74
32.
go back to reference Mistry JB, Bukhari M, Taylor AM. Alkaptonuria. Rare Dis 2013; 1:e27475 Mistry JB, Bukhari M, Taylor AM. Alkaptonuria. Rare Dis 2013; 1:e27475
33.
go back to reference Watts RW, Watts RA. Alkaptonuria: a 60-year follow-up. Rheumatology (Oxford). 2007;46:358–9.CrossRef Watts RW, Watts RA. Alkaptonuria: a 60-year follow-up. Rheumatology (Oxford). 2007;46:358–9.CrossRef
34.
go back to reference Fernández-Cañón JM, Granadino B, Beltrán-Valero de Bernabé D, Renedo M, Fernández-Ruiz E, Peñalva MA,et al. The molecular basis of alkaptonuria. Nat Genet 1996; 14:19–24. Fernández-Cañón JM, Granadino B, Beltrán-Valero de Bernabé D, Renedo M, Fernández-Ruiz E, Peñalva MA,et al. The molecular basis of alkaptonuria. Nat Genet 1996; 14:19–24.
35.
go back to reference Taylor AM, Boyde A, Wilson PJ, Jarvis JC, Jarvis JC, Davidson JS, Hunt JA, et al. The role of calcified cartilage and subchondral bone in the initiation and progression of ochronotic arthropathy in alkaptonuria. Arthritis Rheum. 2011;63:3887–96.PubMedCrossRef Taylor AM, Boyde A, Wilson PJ, Jarvis JC, Jarvis JC, Davidson JS, Hunt JA, et al. The role of calcified cartilage and subchondral bone in the initiation and progression of ochronotic arthropathy in alkaptonuria. Arthritis Rheum. 2011;63:3887–96.PubMedCrossRef
36.
go back to reference Catterall JB, Barr D, Bolognesi M, Robert D, Zura RD, Kraus VB. Post-translational aging of proteins in osteoarthritic cartilage and synovial fluid as measured by isomerized aspartate. Arthritis Res Ther. 2009;11:R55.PubMedPubMedCentralCrossRef Catterall JB, Barr D, Bolognesi M, Robert D, Zura RD, Kraus VB. Post-translational aging of proteins in osteoarthritic cartilage and synovial fluid as measured by isomerized aspartate. Arthritis Res Ther. 2009;11:R55.PubMedPubMedCentralCrossRef
37.
go back to reference Phornphutkul C, Introne WJ, Perry MB, Bernardini I, Murphey MD, Fitzpatrick DL, et al. Natural history of alkaptonuria. N Engl J Med. 2002;347:2111–21.PubMedCrossRef Phornphutkul C, Introne WJ, Perry MB, Bernardini I, Murphey MD, Fitzpatrick DL, et al. Natural history of alkaptonuria. N Engl J Med. 2002;347:2111–21.PubMedCrossRef
38.
go back to reference Balint G, Szebenyi B. Hereditary disorders mimicking and/or causing premature osteoarthritis. Baillieres Best Pract Res Clin Rheumatol. 2000;14:219–50.PubMedCrossRef Balint G, Szebenyi B. Hereditary disorders mimicking and/or causing premature osteoarthritis. Baillieres Best Pract Res Clin Rheumatol. 2000;14:219–50.PubMedCrossRef
39.
go back to reference Felson DT, Neogi T. Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum. 2004;50:341–4.PubMedCrossRef Felson DT, Neogi T. Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum. 2004;50:341–4.PubMedCrossRef
40.
go back to reference Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P, et al. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis Cartilage. 2008;16:638–46.PubMedCrossRef Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P, et al. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis Cartilage. 2008;16:638–46.PubMedCrossRef
41.
go back to reference Aliberti G, Pulignano I, Schiappoli A, Minisola S, Romagnoli E, Proietta M. Bone metabolism in ochronotic patients. J Intern Med. 2003;254:296–300.PubMedCrossRef Aliberti G, Pulignano I, Schiappoli A, Minisola S, Romagnoli E, Proietta M. Bone metabolism in ochronotic patients. J Intern Med. 2003;254:296–300.PubMedCrossRef
42.
go back to reference Intronea WY,. Perryb PB, Troendlec J, Tsiloud E, Kaysere Ma, Suwannarate P, et al. A 3-year randomized therapeutic trial of nitisinone in Alkaptonuria. Mol Genet Metab 2001; 103(4): 307–314 Intronea WY,. Perryb PB, Troendlec J, Tsiloud E, Kaysere Ma, Suwannarate P, et al. A 3-year randomized therapeutic trial of nitisinone in Alkaptonuria. Mol Genet Metab 2001; 103(4): 307–314
43.
go back to reference Lee YW, Lee DH, Kim ND, Lee ST, Ahn JY, Choi TY, et al. Mutation analysis of PAH gene and characterization of a recurrent deletion mutation in Korean patients with phenylketonuria. Exp Mol Med. 2008;5:533–40.CrossRef Lee YW, Lee DH, Kim ND, Lee ST, Ahn JY, Choi TY, et al. Mutation analysis of PAH gene and characterization of a recurrent deletion mutation in Korean patients with phenylketonuria. Exp Mol Med. 2008;5:533–40.CrossRef
44.
go back to reference Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30:e57.PubMedPubMedCentralCrossRef Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30:e57.PubMedPubMedCentralCrossRef
45.
go back to reference Demirdas S, Coakley KE, Bisschop PH, Hollak CE, Bosch AM, Singh RH. Bone health in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis. 2015;10:17.PubMedPubMedCentralCrossRef Demirdas S, Coakley KE, Bisschop PH, Hollak CE, Bosch AM, Singh RH. Bone health in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis. 2015;10:17.PubMedPubMedCentralCrossRef
46.
go back to reference van Wegberg AMG, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis. 2017;12:162.PubMedPubMedCentralCrossRef van Wegberg AMG, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis. 2017;12:162.PubMedPubMedCentralCrossRef
47.
go back to reference Sadeghi N, Oveisi MR, Jannat B, Jannat B, Hajimahmoodi M, Behzad M, et al. The relationship between bone health and plasma zinc, copper lead and cadmium concentration in osteoporotic women. J Environ Health Sci Eng. 2014;12:125.PubMedPubMedCentralCrossRef Sadeghi N, Oveisi MR, Jannat B, Jannat B, Hajimahmoodi M, Behzad M, et al. The relationship between bone health and plasma zinc, copper lead and cadmium concentration in osteoporotic women. J Environ Health Sci Eng. 2014;12:125.PubMedPubMedCentralCrossRef
49.
go back to reference Cartwright GE. Copper metabolism in human subjects In: McElroy WD, Glass B, eds Symposium on copper metabolism Baltimore: John Hopkins Press 1950; 274–314. Cartwright GE. Copper metabolism in human subjects In: McElroy WD, Glass B, eds Symposium on copper metabolism Baltimore: John Hopkins Press 1950; 274–314.
50.
go back to reference Scheinberg IH, Sternlieb I. Copper metabolism. Pharmacol Rev. 1960;12:355–81.PubMed Scheinberg IH, Sternlieb I. Copper metabolism. Pharmacol Rev. 1960;12:355–81.PubMed
51.
go back to reference Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev. 2007;87:1011–46.PubMedCrossRef Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev. 2007;87:1011–46.PubMedCrossRef
52.
go back to reference Amador E, Domene R, Fuentes C, Carreño JC, Enríquez G. Long-term skeletal findings in Menkes diseases. Pediatr Radiol. 2010;40:1426–9.PubMedCrossRef Amador E, Domene R, Fuentes C, Carreño JC, Enríquez G. Long-term skeletal findings in Menkes diseases. Pediatr Radiol. 2010;40:1426–9.PubMedCrossRef
53.
go back to reference Stanley PH, Gwinn JL, Sutcliffe J. The osseus abnormalities in Menkes syndrome. Ann Radiol (Paris). 1976;19:167–72. Stanley PH, Gwinn JL, Sutcliffe J. The osseus abnormalities in Menkes syndrome. Ann Radiol (Paris). 1976;19:167–72.
54.
go back to reference Kanumakala S, Boneh A, Zacharin M. Pamidronate treatment improves bone mineral density in children with Menkes disease. J Inherit Metab Dis. 2002;25:391–8.PubMedCrossRef Kanumakala S, Boneh A, Zacharin M. Pamidronate treatment improves bone mineral density in children with Menkes disease. J Inherit Metab Dis. 2002;25:391–8.PubMedCrossRef
55.
go back to reference Ogataa R, Chonga PF, Maeda K. Long surviving classical Menkes disease treated with weekly intravenous copper therapy. J Trace Elem Med Biol. 2019;54:172–4.CrossRef Ogataa R, Chonga PF, Maeda K. Long surviving classical Menkes disease treated with weekly intravenous copper therapy. J Trace Elem Med Biol. 2019;54:172–4.CrossRef
56.
go back to reference Esmaeili L, Perez MG, Jafari M, Paquin J, Ispas-Szabo P, Pop V, et al. Copper complexes for biomedical applications: structural insights, antioxidant activity and neuron compatibility. J Inorg Biochem. 2019;192:87–97.PubMedCrossRef Esmaeili L, Perez MG, Jafari M, Paquin J, Ispas-Szabo P, Pop V, et al. Copper complexes for biomedical applications: structural insights, antioxidant activity and neuron compatibility. J Inorg Biochem. 2019;192:87–97.PubMedCrossRef
57.
go back to reference Teradaa K, Schilskyb ML, Miuraa N, Sugiyama T. ATP7B (WND) protein. Int J Biochem Cell Biol. 1998;30:1063–7.CrossRef Teradaa K, Schilskyb ML, Miuraa N, Sugiyama T. ATP7B (WND) protein. Int J Biochem Cell Biol. 1998;30:1063–7.CrossRef
58.
go back to reference Merle U, Schaefer M, Ferenci P, Stremmel W. Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study. Gut. 2007;56:115–20.PubMedPubMedCentralCrossRef Merle U, Schaefer M, Ferenci P, Stremmel W. Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study. Gut. 2007;56:115–20.PubMedPubMedCentralCrossRef
59.
go back to reference Weiss KH, Van de Moortele M, Gotthardt DN, Pfeiffenberger J, Seessle J, Ullrich E, et al. Bone demineralisation in a large cohort of Wilson disease patients. J Inherit Metab Dis. 2015;38:949–95.PubMedCrossRef Weiss KH, Van de Moortele M, Gotthardt DN, Pfeiffenberger J, Seessle J, Ullrich E, et al. Bone demineralisation in a large cohort of Wilson disease patients. J Inherit Metab Dis. 2015;38:949–95.PubMedCrossRef
60.
go back to reference Xie YZ, Zhang XZ, Xu XH, Zhen-xin Z, Yiung-kun F. Radiologic study of 42 cases of Wilson disease. Skeletal Radiol. 1985;13:114–9.PubMedCrossRef Xie YZ, Zhang XZ, Xu XH, Zhen-xin Z, Yiung-kun F. Radiologic study of 42 cases of Wilson disease. Skeletal Radiol. 1985;13:114–9.PubMedCrossRef
61.
go back to reference Hegedus D, Ferencz V, Lakatos PL Meszaros S, Lakatos P, Horvath C, et al. Decreased bone density, elevated serum osteoprotegerin, and beta cross-laps in Wilson disease. J Bone Miner Res 2002; 17:1961–1967. Hegedus D, Ferencz V, Lakatos PL Meszaros S, Lakatos P, Horvath C, et al. Decreased bone density, elevated serum osteoprotegerin, and beta cross-laps in Wilson disease. J Bone Miner Res 2002; 17:1961–1967.
62.
go back to reference Kikuyama A, Fukuda K, Mori S, Okada M, Yamaguchi H, Hamanishi C. Hydrogen peroxide induces apoptosis of osteocytes: involvement of calcium ion and caspase activity. Calcif Tissue Int. 2002;71:243–8.PubMedCrossRef Kikuyama A, Fukuda K, Mori S, Okada M, Yamaguchi H, Hamanishi C. Hydrogen peroxide induces apoptosis of osteocytes: involvement of calcium ion and caspase activity. Calcif Tissue Int. 2002;71:243–8.PubMedCrossRef
64.
go back to reference Heinz WK, Aftab A, Frederick A. WTX101 in patients newly diagnosed with Wilson disease: final results of a global, prospective phase 2 trial. Amsterdam: EASL; 2017. Late Breaking Abstract. Heinz WK, Aftab A, Frederick A. WTX101 in patients newly diagnosed with Wilson disease: final results of a global, prospective phase 2 trial. Amsterdam: EASL; 2017. Late Breaking Abstract.
65.
go back to reference Brewer GJ, Askari F, Lorincz MT, Carlson M, Schilsky M, Kluin KJ, et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine ina double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol 2006; 63:521–7. Brewer GJ, Askari F, Lorincz MT, Carlson M, Schilsky M, Kluin KJ, et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine ina double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol 2006; 63:521–7.
66.
go back to reference (2011) Orphan Lung Disease. In: European Respiratory Society Monographs; J-F Cordier Ed 1–341. (2011) Orphan Lung Disease. In: European Respiratory Society Monographs; J-F Cordier Ed 1–341.
68.
go back to reference Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066–73.PubMedCrossRef Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245:1066–73.PubMedCrossRef
69.
go back to reference Bobadilla JL, Macek M Jr, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations–correlation with incidence data and application to screening. Hum Mutat. 2002;19:575–606.PubMedCrossRef Bobadilla JL, Macek M Jr, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations–correlation with incidence data and application to screening. Hum Mutat. 2002;19:575–606.PubMedCrossRef
70.
71.
go back to reference Mischler EH, Chesney PJ, Chesney RW, Mazess RB. Demineralization in cystic fibrosis detected by direct photon absorptiometry. Am J Dis Child. 1979;133:632–5.PubMedCrossRef Mischler EH, Chesney PJ, Chesney RW, Mazess RB. Demineralization in cystic fibrosis detected by direct photon absorptiometry. Am J Dis Child. 1979;133:632–5.PubMedCrossRef
72.
go back to reference Jacquot J, Delion M, Gangloff S, Braux J, Velard F. Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies. Osteoporos Int. 2016;27:1401–12.PubMedCrossRef Jacquot J, Delion M, Gangloff S, Braux J, Velard F. Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies. Osteoporos Int. 2016;27:1401–12.PubMedCrossRef
73.
go back to reference Stalvey MS, Clines KL, Havasi V, McKibbin CR, Dunn LK, Chung WJ, Clines GA. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease. PLoS One 20013; 13, 8:e80098 Stalvey MS, Clines KL, Havasi V, McKibbin CR, Dunn LK, Chung WJ, Clines GA. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease. PLoS One 20013; 13, 8:e80098
74.
go back to reference Shapiro BJ, Veeraraghavan S. Lung transplantation for cystic fibrosis: an update and practical considerations for referring candidates. Curr Opin Pulm Med. 1999;5:365–70.PubMedCrossRef Shapiro BJ, Veeraraghavan S. Lung transplantation for cystic fibrosis: an update and practical considerations for referring candidates. Curr Opin Pulm Med. 1999;5:365–70.PubMedCrossRef
75.
go back to reference Bronckers A, Kalogeraki L, Jorna HJ, Bervoets TJ, Lyaruu DM, Zandieh-Doulabi B, et al. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells. Bone. 2010;46:1188–96.PubMedCrossRef Bronckers A, Kalogeraki L, Jorna HJ, Bervoets TJ, Lyaruu DM, Zandieh-Doulabi B, et al. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells. Bone. 2010;46:1188–96.PubMedCrossRef
76.
go back to reference Liang H, Yang L, Ma T, Zhao Y. Functional expression of cystic fibrosis transmembrane conductance regulator in mouse chondrocytes. Clin Exp Pharmacol Physiol. 2010;37:506–8.PubMedCrossRef Liang H, Yang L, Ma T, Zhao Y. Functional expression of cystic fibrosis transmembrane conductance regulator in mouse chondrocytes. Clin Exp Pharmacol Physiol. 2010;37:506–8.PubMedCrossRef
77.
go back to reference Gimenez A, Le Henaff C, Norez C, Guillaume C, Ravoninjatovo B, Laurent-Maquin D, et al. Deficit of osteoprotegerin release by osteoblasts from a patient with cystic fibrosis. Eur Respir J. 2012;39:780–1.CrossRef Gimenez A, Le Henaff C, Norez C, Guillaume C, Ravoninjatovo B, Laurent-Maquin D, et al. Deficit of osteoprotegerin release by osteoblasts from a patient with cystic fibrosis. Eur Respir J. 2012;39:780–1.CrossRef
78.
go back to reference Matsuzaki E, Hiratsuka S, Hamachi T, Takahashi-Yanaga F, Hashimoto Y, Higashi K, et al. Sphingosine-1-phosphate promotes the nuclear translocation of beta-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines. Bone. 2013;55:315–24.PubMedCrossRef Matsuzaki E, Hiratsuka S, Hamachi T, Takahashi-Yanaga F, Hashimoto Y, Higashi K, et al. Sphingosine-1-phosphate promotes the nuclear translocation of beta-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines. Bone. 2013;55:315–24.PubMedCrossRef
79.
go back to reference Rogan MP, Reznikov LR, Pezzulo AA, Gansemer ND, Samuel M, Prather RS, et al. Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc Natl Acad Sci USA. 2010;107:20571–5.PubMedCrossRefPubMedCentral Rogan MP, Reznikov LR, Pezzulo AA, Gansemer ND, Samuel M, Prather RS, et al. Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc Natl Acad Sci USA. 2010;107:20571–5.PubMedCrossRefPubMedCentral
80.
go back to reference Rafeeq MM, Murad HAS. Cystic fibrosis: current therapeutic targets and future approaches. Rafeeq Murad J Transl Med. 2010;15:8. Rafeeq MM, Murad HAS. Cystic fibrosis: current therapeutic targets and future approaches. Rafeeq Murad J Transl Med. 2010;15:8.
81.
go back to reference Misbahuddin M, Rafeeq and Murad Has. Cystic fibrosis: current therapeutic targets and future approaches. Refeeq Murad J Transl Med 2015; 15:84 Misbahuddin M, Rafeeq and Murad Has. Cystic fibrosis: current therapeutic targets and future approaches. Refeeq Murad J Transl Med 2015; 15:84
82.
84.
go back to reference Gulen T, Hagglund H, Dahlen B, Nilsson G. Mastocytosis: the puzzling clinical spectrum and challenging diagnostic aspects of an enigmatic disease. J Intern Med. 2016;279:211–28.PubMedCrossRef Gulen T, Hagglund H, Dahlen B, Nilsson G. Mastocytosis: the puzzling clinical spectrum and challenging diagnostic aspects of an enigmatic disease. J Intern Med. 2016;279:211–28.PubMedCrossRef
85.
go back to reference Johnson MR, Verstovsek S, Jorgensen JL, Manshouri T, Luthra R, Jones DM, et al. Utility of the World Heath Organization classification criteria for the diagnosis of systemic mastocytosis in bone marrow. Mod Pathol. 2009;22:50–7.PubMedCrossRef Johnson MR, Verstovsek S, Jorgensen JL, Manshouri T, Luthra R, Jones DM, et al. Utility of the World Heath Organization classification criteria for the diagnosis of systemic mastocytosis in bone marrow. Mod Pathol. 2009;22:50–7.PubMedCrossRef
86.
go back to reference Nagata H, Worobec AS, Oh CK, B A Chowdhury, S Tannenbaum, Y Suzuki, et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologi disorder. Proc Natl Acad Sci USA 1995; 92:10560–10564 Nagata H, Worobec AS, Oh CK, B A Chowdhury, S Tannenbaum, Y Suzuki, et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologi disorder. Proc Natl Acad Sci USA 1995; 92:10560–10564
87.
go back to reference Barete S, Assous N, de Gennes C, Grandpeix C, Feger F, Palmerini F, et al. Systemic mastocytosis and bone involvement in a cohort of 75 patients. Ann Rheum Dis. 2010;69:1838–41.PubMedCrossRef Barete S, Assous N, de Gennes C, Grandpeix C, Feger F, Palmerini F, et al. Systemic mastocytosis and bone involvement in a cohort of 75 patients. Ann Rheum Dis. 2010;69:1838–41.PubMedCrossRef
88.
go back to reference Vaes M, Benghiat FS, Hermine O (2017) Targeted Treatment Options in Mastocytosis. Frontiers in Medicine Vol. 4, Article 110 Vaes M, Benghiat FS, Hermine O (2017) Targeted Treatment Options in Mastocytosis. Frontiers in Medicine Vol. 4, Article 110
89.
go back to reference Rossini M, Zanotti R, Orsolini G, Tripi G, Viapiana O, Idolazzi L, et al. Prevalence, pathogenesis, and treatment options for mastocytosis-related osteoporosis. Osteoporos Int. 2016;27:2411–21.PubMedCrossRef Rossini M, Zanotti R, Orsolini G, Tripi G, Viapiana O, Idolazzi L, et al. Prevalence, pathogenesis, and treatment options for mastocytosis-related osteoporosis. Osteoporos Int. 2016;27:2411–21.PubMedCrossRef
90.
go back to reference Herman M, Chaudry S. Thalassemia McMaster Pathophysiology Review 2018 Herman M, Chaudry S. Thalassemia McMaster Pathophysiology Review 2018
91.
go back to reference Thein SL. Pathophysiology of beta thalassemia--a guide to molecular therapies. Hematology Am Soc Hematol Educ Program 2005; 31–37 Thein SL. Pathophysiology of beta thalassemia--a guide to molecular therapies. Hematology Am Soc Hematol Educ Program 2005; 31–37
92.
go back to reference De Sanctis V, Stea S, Savarino L, Scialpi V, Traina GC, Chiarelli GM, et al. Growth hormone secretion and bone histomorphometric study in thalassaemic patients with acquired skeletal dysplasia secondary to desferrioxamine. J Pediatr Endocrinol Metab. 1998;11(Suppl 3):827–33.PubMed De Sanctis V, Stea S, Savarino L, Scialpi V, Traina GC, Chiarelli GM, et al. Growth hormone secretion and bone histomorphometric study in thalassaemic patients with acquired skeletal dysplasia secondary to desferrioxamine. J Pediatr Endocrinol Metab. 1998;11(Suppl 3):827–33.PubMed
93.
go back to reference Voskaridou E, Terpos E. New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br J Haematol. 2004;127:127–213.PubMedCrossRef Voskaridou E, Terpos E. New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br J Haematol. 2004;127:127–213.PubMedCrossRef
94.
go back to reference Skordis N, Toumba M. Bone disease in thalassaemia major: recent advances in pathogenesis and clinical aspects. Pediatr Endocrinol Rev. 2011;8(Suppl 2):300–6.PubMed Skordis N, Toumba M. Bone disease in thalassaemia major: recent advances in pathogenesis and clinical aspects. Pediatr Endocrinol Rev. 2011;8(Suppl 2):300–6.PubMed
96.
go back to reference Morabito N, Gaudio A, Lasco A, Atteritano M, Pizzoleo MA, Cincotta M, et al. Osteoprotegerin and RANKL in the pathogenesis of thalassemia induced osteoporosis: new pieces of the puzzle. J Bone Mineral Res. 2004;19:722–7.CrossRef Morabito N, Gaudio A, Lasco A, Atteritano M, Pizzoleo MA, Cincotta M, et al. Osteoprotegerin and RANKL in the pathogenesis of thalassemia induced osteoporosis: new pieces of the puzzle. J Bone Mineral Res. 2004;19:722–7.CrossRef
97.
98.
99.
go back to reference Oldenburg J. Optimal treatment strategies for hemophilia: achievements and limitations of current prophylactic regimens. Blood. 2015;125:2038–44.PubMedCrossRef Oldenburg J. Optimal treatment strategies for hemophilia: achievements and limitations of current prophylactic regimens. Blood. 2015;125:2038–44.PubMedCrossRef
100.
go back to reference Gallacher SJ, Deighan C, Wallace AM, Cowan RA, Fraser WD, Fenner JA, et al. Association of severe haemophilia A with osteoporosis: a densitometric and biochemical study. Q J Med. 1994;87:181–6.PubMed Gallacher SJ, Deighan C, Wallace AM, Cowan RA, Fraser WD, Fenner JA, et al. Association of severe haemophilia A with osteoporosis: a densitometric and biochemical study. Q J Med. 1994;87:181–6.PubMed
101.
go back to reference Iorio A, Fabbriciani G, Marcucci M, Brozzetti M, Filipponi P. Bone mineral density in haemophilia patients. A meta-analysis. Thromb Haemost. 2010;103:596–603.PubMedCrossRef Iorio A, Fabbriciani G, Marcucci M, Brozzetti M, Filipponi P. Bone mineral density in haemophilia patients. A meta-analysis. Thromb Haemost. 2010;103:596–603.PubMedCrossRef
102.
go back to reference Booth J, Lu M, Gallo D, Ito D, ValentinO LV. Increased risk of adverse bone health outcomes in people with bleeding disorders. Blood. 2016;128:250.CrossRef Booth J, Lu M, Gallo D, Ito D, ValentinO LV. Increased risk of adverse bone health outcomes in people with bleeding disorders. Blood. 2016;128:250.CrossRef
103.
go back to reference Hathaway WE, Christian MJ, Clarke SL, Hasiba U. Comparison of continuous and intermittent Factor VIII concentrate therapy in hemophilia A. Am J Hematol. 1984;17(1):85–8.PubMedCrossRef Hathaway WE, Christian MJ, Clarke SL, Hasiba U. Comparison of continuous and intermittent Factor VIII concentrate therapy in hemophilia A. Am J Hematol. 1984;17(1):85–8.PubMedCrossRef
104.
go back to reference Fomi ME, Togarrati PP, Muenc MM. Progress and challenges in the development of a cell-based therapy for hemophilia A. J Thromb Haemost. 1988;12(12):1954–2196.CrossRef Fomi ME, Togarrati PP, Muenc MM. Progress and challenges in the development of a cell-based therapy for hemophilia A. J Thromb Haemost. 1988;12(12):1954–2196.CrossRef
105.
go back to reference Dolana G, Bensonb G, Duffyc A. Haemophilia B: Where are we now and what does the future hold? Blood Rev 2018; 52–66 Dolana G, Bensonb G, Duffyc A. Haemophilia B: Where are we now and what does the future hold? Blood Rev 2018; 52–66
106.
go back to reference Khawaji M, Akesson K, Berntorp E. Long-term prophylaxis in severe haemophilia seems to preserve bone mineral density. Haemophilia. 2009;15:261–6.PubMedCrossRef Khawaji M, Akesson K, Berntorp E. Long-term prophylaxis in severe haemophilia seems to preserve bone mineral density. Haemophilia. 2009;15:261–6.PubMedCrossRef
108.
109.
go back to reference Osunkwo I. An update on the recent literature on sickle cell bone disease. Wolters Kluwer Health | Lippincott Williams & Wilkins (2013) Osunkwo I. An update on the recent literature on sickle cell bone disease. Wolters Kluwer Health | Lippincott Williams & Wilkins (2013)
110.
go back to reference Sarrai M, Duroseau H, D‘Augustine J, Moktan S, Bellevue R. Bone mass density in adults with sickle cell disease. Br J Haematol. 2007; 136: 666–672 Sarrai M, Duroseau H, D‘Augustine J, Moktan S, Bellevue R. Bone mass density in adults with sickle cell disease. Br J Haematol. 2007; 136: 666–672
112.
go back to reference Arora R, Aggarwal S, Deme S. Ghosal hematodiaphyseal dysplasia—a concise review including an illustrative patient. Skeletal Radiol. 2015;44:447–545.PubMedCrossRef Arora R, Aggarwal S, Deme S. Ghosal hematodiaphyseal dysplasia—a concise review including an illustrative patient. Skeletal Radiol. 2015;44:447–545.PubMedCrossRef
113.
go back to reference Geneviève D, Proulle V, Isidor B, Bellais S, Serre V, Djouadi F, Picard C, Vignon-Savoye C, Bader-Meunier B, Blanche S, de Vernejoul M-C, Legeai-Mallet L, Fischer A-M, Le Merrer M, Dreyfus M, Gaussem P, Munnich A, Cormier-Daire V. Thromboxane synthase mutations in an increased bone density disorder (Ghosal syndrome). Nat Genet. 2008;40:284–6.PubMedCrossRef Geneviève D, Proulle V, Isidor B, Bellais S, Serre V, Djouadi F, Picard C, Vignon-Savoye C, Bader-Meunier B, Blanche S, de Vernejoul M-C, Legeai-Mallet L, Fischer A-M, Le Merrer M, Dreyfus M, Gaussem P, Munnich A, Cormier-Daire V. Thromboxane synthase mutations in an increased bone density disorder (Ghosal syndrome). Nat Genet. 2008;40:284–6.PubMedCrossRef
114.
go back to reference Sharma R, Schwartz JE, Nalepa G. Chronic pancytopenia and increased bone density due to TBXAS1 deficiency. Blood. 2016;128:1503.CrossRef Sharma R, Schwartz JE, Nalepa G. Chronic pancytopenia and increased bone density due to TBXAS1 deficiency. Blood. 2016;128:1503.CrossRef
115.
go back to reference Sharma R, Potchanant ES, Schwartz JE, Nalepa G. Chronic steroid-response pancytopenia and increased bone density due to thromboxane synthase deficiency. Pediatr Blood Cancer. 2018;65:e26777.CrossRef Sharma R, Potchanant ES, Schwartz JE, Nalepa G. Chronic steroid-response pancytopenia and increased bone density due to thromboxane synthase deficiency. Pediatr Blood Cancer. 2018;65:e26777.CrossRef
116.
go back to reference Borzutzky ML, Reyes V, Figueroa C, García C, Cavieres M. Osteoporosis in children with severe congenital neutropenia: bone mineral density and treatment with bisphosphonates. J Pediatr Hematol Oncol. 2006;28:205–9.PubMedCrossRef Borzutzky ML, Reyes V, Figueroa C, García C, Cavieres M. Osteoporosis in children with severe congenital neutropenia: bone mineral density and treatment with bisphosphonates. J Pediatr Hematol Oncol. 2006;28:205–9.PubMedCrossRef
117.
go back to reference Rosenberg PS, Alter BP, Bolyard AA, Bonilla MA, Boxer LA, Cham B, et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood. 2006;107:4628–35.PubMedPubMedCentralCrossRef Rosenberg PS, Alter BP, Bolyard AA, Bonilla MA, Boxer LA, Cham B, et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood. 2006;107:4628–35.PubMedPubMedCentralCrossRef
118.
go back to reference Elhasid R, Hofbauer LC, Ish-Shalom S, Ben-Arush M, Koc O, Rowe JW. Familial severe congenital neutropenia associated with infantile osteoporosis: a new entity. Am J Hematol. 2003;72:34–7.PubMedCrossRef Elhasid R, Hofbauer LC, Ish-Shalom S, Ben-Arush M, Koc O, Rowe JW. Familial severe congenital neutropenia associated with infantile osteoporosis: a new entity. Am J Hematol. 2003;72:34–7.PubMedCrossRef
119.
go back to reference Writing Group of the Histiocyte Society. Histiocytosis syndromes in children. Lancet 1987; i: 208–209 Writing Group of the Histiocyte Society. Histiocytosis syndromes in children. Lancet 1987; i: 208–209
120.
go back to reference Favara BE, Feller AC, Pauli M, Jaffe ES, Weiss LM, Arico M. Contemporary classification of histiocytic disorders. The WHO Committee On Histiocytic/Reticulum Cell Proliferations. Reclassification Working Group of the Histiocyte Society. Med Pediatr Oncol 1997; 29:157–166 Favara BE, Feller AC, Pauli M, Jaffe ES, Weiss LM, Arico M. Contemporary classification of histiocytic disorders. The WHO Committee On Histiocytic/Reticulum Cell Proliferations. Reclassification Working Group of the Histiocyte Society. Med Pediatr Oncol 1997; 29:157–166
121.
go back to reference Shahlaee AH (2008) Histiocytic disorders In Arceci RJ, Hann IM, Smith OP, editors Pediatric Hematology 3rd ed Hoboken, NJ: Wiley 340–35 Shahlaee AH (2008) Histiocytic disorders In Arceci RJ, Hann IM, Smith OP, editors Pediatric Hematology 3rd ed Hoboken, NJ: Wiley 340–35
122.
123.
go back to reference Keen RW Ischemic and infiltrative disorders. In: Primers on the Metabolic Bone Diseases and Diosrders of Mineral Metabolism Eighth Edition Wiley-Blackwell (Ed. J Rosen) 805–809 Keen RW Ischemic and infiltrative disorders. In: Primers on the Metabolic Bone Diseases and Diosrders of Mineral Metabolism Eighth Edition Wiley-Blackwell (Ed. J Rosen) 805–809
124.
go back to reference Makras P, Terpos E, Kanakis G, Papatheodorou A, Anastasilakis AD, Kokkoris P, et al. Reduced bone mineral density in adult patients with Langerhans cell histiocytosis. Pediatr Blood Cancer. 2012;58:819–22.PubMedCrossRef Makras P, Terpos E, Kanakis G, Papatheodorou A, Anastasilakis AD, Kokkoris P, et al. Reduced bone mineral density in adult patients with Langerhans cell histiocytosis. Pediatr Blood Cancer. 2012;58:819–22.PubMedCrossRef
125.
go back to reference Makras P, Polyzos SA, Anastasilakis AD, Terpos E, Kanakis G, Schini M, et al. Serum osteoprotegerin, RANKL, and Dkk-1 levels in adults with Langerhans cell histiocytosis. J Clin Endocrinol Metab. 2012;97:E618-621.PubMedCrossRef Makras P, Polyzos SA, Anastasilakis AD, Terpos E, Kanakis G, Schini M, et al. Serum osteoprotegerin, RANKL, and Dkk-1 levels in adults with Langerhans cell histiocytosis. J Clin Endocrinol Metab. 2012;97:E618-621.PubMedCrossRef
126.
go back to reference Monsereenusorn C, Rodriguez-Galindo C. Clinical characteristics and treatment of langerhans cell histiocytosis. Hematol Oncol Clin North Am. 2015;29:853–73.PubMedCrossRef Monsereenusorn C, Rodriguez-Galindo C. Clinical characteristics and treatment of langerhans cell histiocytosis. Hematol Oncol Clin North Am. 2015;29:853–73.PubMedCrossRef
127.
go back to reference Makras P, Salagianni M, Revelos K, Anastasilakis AD, Schini M, Tsoli M, et al. Rationale for the application of RANKL inhibition in the treatment of Langerhans cell histiocytosis. J Clin Endocrinol Metab. 2015;100:E282-286.PubMedCrossRef Makras P, Salagianni M, Revelos K, Anastasilakis AD, Schini M, Tsoli M, et al. Rationale for the application of RANKL inhibition in the treatment of Langerhans cell histiocytosis. J Clin Endocrinol Metab. 2015;100:E282-286.PubMedCrossRef
128.
go back to reference Makras P, Tsoli M, Anastasilakis AD, Thanou M4, Kaltsas G. Denosumab for the treatment of adult multisystem Langerhans cell histiocytosis. Metabolism 2017; 69:107–111 Makras P, Tsoli M, Anastasilakis AD, Thanou M4, Kaltsas G. Denosumab for the treatment of adult multisystem Langerhans cell histiocytosis. Metabolism 2017; 69:107–111
129.
go back to reference Chester W. Lipoidgranulomatose. Virchows Arch Pathol Anat. 1930;279:561–602.CrossRef Chester W. Lipoidgranulomatose. Virchows Arch Pathol Anat. 1930;279:561–602.CrossRef
130.
go back to reference Diamond EL, Dagna L, Hyman DH, Cavalli G, Janku F, Estrada-Veras J, et al. Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. Blood. 2014;124:483–92.PubMedPubMedCentralCrossRef Diamond EL, Dagna L, Hyman DH, Cavalli G, Janku F, Estrada-Veras J, et al. Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. Blood. 2014;124:483–92.PubMedPubMedCentralCrossRef
131.
go back to reference Dion E, Graef C, Miquel A, Haroche J, Wechsler B, Amoura Z, et al. Bone involvement in Erdheim-Chester disease: imaging findings including periostitis and partial epiphyseal involvement. Radiology. 2006;238:632–9.PubMedCrossRef Dion E, Graef C, Miquel A, Haroche J, Wechsler B, Amoura Z, et al. Bone involvement in Erdheim-Chester disease: imaging findings including periostitis and partial epiphyseal involvement. Radiology. 2006;238:632–9.PubMedCrossRef
132.
go back to reference Badalian-Very G, Vergilio JA, Degar BA, MacConaill LE, Brandner B, Calicchio ML. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 2010; 116:1919–1923 Badalian-Very G, Vergilio JA, Degar BA, MacConaill LE, Brandner B, Calicchio ML. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 2010; 116:1919–1923
133.
134.
go back to reference Civesa M, Simonea V, Rizzoa FM. Erdheim-Chester disease: a systematic review. Crit Rev Oncol Hematol. 2015;95(1):1–11.CrossRef Civesa M, Simonea V, Rizzoa FM. Erdheim-Chester disease: a systematic review. Crit Rev Oncol Hematol. 2015;95(1):1–11.CrossRef
136.
go back to reference Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.PubMedCrossRef Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.PubMedCrossRef
137.
go back to reference Julu PO, Kerr AM, Apartopoulos F, Al-Rawas S, Engerstrom I, Engerstrom L, et al. Characterisation of breathing and associate central autonomic dysfunction in the Rett disorder. Arch Dis Child. 2001;85:29–37.PubMedPubMedCentralCrossRef Julu PO, Kerr AM, Apartopoulos F, Al-Rawas S, Engerstrom I, Engerstrom L, et al. Characterisation of breathing and associate central autonomic dysfunction in the Rett disorder. Arch Dis Child. 2001;85:29–37.PubMedPubMedCentralCrossRef
138.
go back to reference Ellison KA, Fill CP, Terwilliger J, DeGennaro LJ, Martin-Gallardo A, Anvret M, et al. Examination of X chromosome markers in Rett syndrome: exclusion mapping with a novel variation on multilocus linkage analysis. Am J Hum Genet. 1992;50:278–87.PubMedPubMedCentral Ellison KA, Fill CP, Terwilliger J, DeGennaro LJ, Martin-Gallardo A, Anvret M, et al. Examination of X chromosome markers in Rett syndrome: exclusion mapping with a novel variation on multilocus linkage analysis. Am J Hum Genet. 1992;50:278–87.PubMedPubMedCentral
139.
go back to reference Jefferson AL, Woodhead HJ, Fyfe S, Briody J, Bebbington A, Strauss BJ, et al. Bone mineral content and density in Rett syndrome and their contributing factors. Pediatr Res. 2011;69:293–8.PubMedPubMedCentralCrossRef Jefferson AL, Woodhead HJ, Fyfe S, Briody J, Bebbington A, Strauss BJ, et al. Bone mineral content and density in Rett syndrome and their contributing factors. Pediatr Res. 2011;69:293–8.PubMedPubMedCentralCrossRef
140.
go back to reference Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–9.PubMedCrossRef Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–9.PubMedCrossRef
141.
go back to reference Lotan M, Reves-Siesel R, Eliav-Shalev RS, Merrick J. Osteoporosis in Rett syndrome: a case study presenting a novel management intervention for severe osteoporosis. Osteoporos Int. 2013;24:3059–63.PubMedCrossRef Lotan M, Reves-Siesel R, Eliav-Shalev RS, Merrick J. Osteoporosis in Rett syndrome: a case study presenting a novel management intervention for severe osteoporosis. Osteoporos Int. 2013;24:3059–63.PubMedCrossRef
143.
go back to reference Zanchetta MB, Scioscia MF, Zanchetta JR. Bone microarchitecture in Rett syndrome and treatment with teriparatide: a case report. Osteoporos Int. 2016;27:2873–7.PubMedCrossRef Zanchetta MB, Scioscia MF, Zanchetta JR. Bone microarchitecture in Rett syndrome and treatment with teriparatide: a case report. Osteoporos Int. 2016;27:2873–7.PubMedCrossRef
144.
go back to reference Jefferson A, Leonard H, Siafarikas A, Woodhead H, Fyfe S, Ward LM, et al. Clinical guidelines for management of bone health in rett syndrome based on expert consensus and available evidence. PLoS ONE. 2016;11:e0146824.PubMedPubMedCentralCrossRef Jefferson A, Leonard H, Siafarikas A, Woodhead H, Fyfe S, Ward LM, et al. Clinical guidelines for management of bone health in rett syndrome based on expert consensus and available evidence. PLoS ONE. 2016;11:e0146824.PubMedPubMedCentralCrossRef
145.
go back to reference Ludecke HJ, Schaper J, Meinecke P, Momeni P, Gross S, von Holtum D, et al. Genotypic and phenotypic spectrum in tricho-rhino-phalangeal syndrome types I and III. Am J Hum Genet. 2001;68:81–91.PubMedCrossRef Ludecke HJ, Schaper J, Meinecke P, Momeni P, Gross S, von Holtum D, et al. Genotypic and phenotypic spectrum in tricho-rhino-phalangeal syndrome types I and III. Am J Hum Genet. 2001;68:81–91.PubMedCrossRef
146.
go back to reference Napierala D, Garcia-Rojas X, Sam K, Wakui K, Chen C, Mendoza-Londono R, et al. Mutations and promoter SNPs in RUNX2, a transcriptional regulator of bone formation. Mol Genet Metab. 2005;86:257–68.PubMedCrossRef Napierala D, Garcia-Rojas X, Sam K, Wakui K, Chen C, Mendoza-Londono R, et al. Mutations and promoter SNPs in RUNX2, a transcriptional regulator of bone formation. Mol Genet Metab. 2005;86:257–68.PubMedCrossRef
147.
go back to reference Macchiaiolo M, Mennini M, Digilio MC, Buonuomo PS, Lepri FR, Gnazzo M, et al. Thricho-rhino-phalangeal syndrome and severe osteoporosis: a rare association or a feature? An effective therapeutic approach with biphosphonates. Am J Med Genet A. 2014;164A(3):760–3.PubMedCrossRef Macchiaiolo M, Mennini M, Digilio MC, Buonuomo PS, Lepri FR, Gnazzo M, et al. Thricho-rhino-phalangeal syndrome and severe osteoporosis: a rare association or a feature? An effective therapeutic approach with biphosphonates. Am J Med Genet A. 2014;164A(3):760–3.PubMedCrossRef
Metadata
Title
Bone fragility in patients affected by congenital diseases non skeletal in origin
Authors
L. Masi
S. Ferrari
M. K. Javaid
S. Papapoulos
D. D. Pierroz
M. L. Brandi
IOF Skeletal Rare Diseases Working Group
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2021
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-020-01611-5

Other articles of this Issue 1/2021

Orphanet Journal of Rare Diseases 1/2021 Go to the issue