Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2019

Open Access 01-12-2019 | osteosarcoma | Research

Ketogenic treatment reduces the percentage of a LHON heteroplasmic mutation and increases mtDNA amount of a LHON homoplasmic mutation

Authors: Sonia Emperador, Ester López-Gallardo, Carmen Hernández-Ainsa, Mouna Habbane, Julio Montoya, M. Pilar Bayona-Bafaluy, Eduardo Ruiz-Pesini

Published in: Orphanet Journal of Rare Diseases | Issue 1/2019

Login to get access

Abstract

Background

The vision loss in Leber hereditary optic neuropathy patients is due to mitochondrial DNA mutations. No treatment has shown a clear-cut benefit on a clinically meaningful end-point. However, clinical evidences suggest two therapeutic approaches: the reduction of the mutation load in heteroplasmic patients or the elevation of mitochondrial DNA amount in homoplasmic patients.

Results

Here we show that ketogenic treatment, in cybrid cell lines, reduces the percentage of the m.13094 T > C heteroplasmic mutation and also increases the mitochondrial DNA levels of the m.11778G > A mitochondrial genotype.

Conclusions

These results suggest that ketogenic diet could be a therapeutic strategy for Leber hereditary optic neuropathy.
Literature
1.
go back to reference Emperador S, Vidal M, Hernandez-Ainsa C, Ruiz-Ruiz C, Woods D, Morales-Becerra A, Arruga J, Artuch R, Lopez-Gallardo E, Bayona-Bafaluy MP, et al. The Decrease in Mitochondrial DNA Mutation Load Parallels Visual Recovery in a Leber Hereditary Optic Neuropathy Patient. Front Neurosci. 2018;12:61.PubMedPubMedCentralCrossRef Emperador S, Vidal M, Hernandez-Ainsa C, Ruiz-Ruiz C, Woods D, Morales-Becerra A, Arruga J, Artuch R, Lopez-Gallardo E, Bayona-Bafaluy MP, et al. The Decrease in Mitochondrial DNA Mutation Load Parallels Visual Recovery in a Leber Hereditary Optic Neuropathy Patient. Front Neurosci. 2018;12:61.PubMedPubMedCentralCrossRef
3.
go back to reference Chinnery PF, Andrews RM, Turnbull DM, Howell NN. Leber hereditary optic neuropathy: Does heteroplasmy influence the inheritance and expression of the G11778A mitochondrial DNA mutation? Am J Med Genet. 2001;98(3):235–43.PubMedCrossRef Chinnery PF, Andrews RM, Turnbull DM, Howell NN. Leber hereditary optic neuropathy: Does heteroplasmy influence the inheritance and expression of the G11778A mitochondrial DNA mutation? Am J Med Genet. 2001;98(3):235–43.PubMedCrossRef
4.
go back to reference Leo-Kottler B, Jacobi F, Christ-Adler M. Leber optic neuropathy with clinical improvement. Ophthalmologe. 2000;97(12):849–54.PubMedCrossRef Leo-Kottler B, Jacobi F, Christ-Adler M. Leber optic neuropathy with clinical improvement. Ophthalmologe. 2000;97(12):849–54.PubMedCrossRef
5.
go back to reference Santra S, Gilkerson RW, Davidson M, Schon EA. Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol. 2004;56(5):662–9.PubMedCrossRef Santra S, Gilkerson RW, Davidson M, Schon EA. Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol. 2004;56(5):662–9.PubMedCrossRef
6.
go back to reference Bianco A, Martinez-Romero I, Bisceglia L, D’Agruma L, Favia P, Ruiz-Pesini E, Guerriero S, Montoya J, Petruzzella V. Mitochondrial DNA copy number differentiates the Leber’s hereditary optic neuropathy affected individuals from the unaffected mutation carriers. Brain. 2016;139(Pt 1):e1.PubMedCrossRef Bianco A, Martinez-Romero I, Bisceglia L, D’Agruma L, Favia P, Ruiz-Pesini E, Guerriero S, Montoya J, Petruzzella V. Mitochondrial DNA copy number differentiates the Leber’s hereditary optic neuropathy affected individuals from the unaffected mutation carriers. Brain. 2016;139(Pt 1):e1.PubMedCrossRef
7.
go back to reference Ruiz-Pesini E, Emperador S, Lopez-Gallardo E, Hernandez-Ainsa C, Montoya J. Increasing mtDNA levels as therapy for mitochondrial optic neuropathies. Drug Discov Today. 2018;33(3):493–8.CrossRef Ruiz-Pesini E, Emperador S, Lopez-Gallardo E, Hernandez-Ainsa C, Montoya J. Increasing mtDNA levels as therapy for mitochondrial optic neuropathies. Drug Discov Today. 2018;33(3):493–8.CrossRef
8.
go back to reference Frey S, Geffroy G, Desquiret-Dumas V, Gueguen N, Bris C, Belal S, Amati-Bonneau P, Chevrollier A, Barth M, Henrion D, et al. The addition of ketone bodies alleviates mitochondrial dysfunction by restoring complex I assembly in a MELAS cellular model. Biochim Biophys Acta. 2017;1863(1):284–91.CrossRef Frey S, Geffroy G, Desquiret-Dumas V, Gueguen N, Bris C, Belal S, Amati-Bonneau P, Chevrollier A, Barth M, Henrion D, et al. The addition of ketone bodies alleviates mitochondrial dysfunction by restoring complex I assembly in a MELAS cellular model. Biochim Biophys Acta. 2017;1863(1):284–91.CrossRef
9.
go back to reference Karanjia R, Chahal J, Ammar M, Sadun AA. Treatment of Leber’s Hereditary Optic Neuropathy. Curr Pharm Des. 2017;23(4):624–8.PubMedCrossRef Karanjia R, Chahal J, Ammar M, Sadun AA. Treatment of Leber’s Hereditary Optic Neuropathy. Curr Pharm Des. 2017;23(4):624–8.PubMedCrossRef
10.
go back to reference Lopez-Gallardo E, Emperador S, Hernandez-Ainsa C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E. Food derived respiratory complex I inhibitors modify the effect of Leber hereditary optic neuropathy mutations. Food Chem Toxicol. 2018;120:89–97.PubMedCrossRef Lopez-Gallardo E, Emperador S, Hernandez-Ainsa C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E. Food derived respiratory complex I inhibitors modify the effect of Leber hereditary optic neuropathy mutations. Food Chem Toxicol. 2018;120:89–97.PubMedCrossRef
11.
go back to reference Gomez-Duran A, Pacheu-Grau D, Martinez-Romero I, Lopez-Gallardo E, Lopez-Perez MJ, Montoya J, Ruiz-Pesini E. Oxidative phosphorylation differences between mitochondrial DNA haplogroups modify the risk of Leber’s hereditary optic neuropathy. Biochim Biophys Acta. 2012;1822(8):1216–22.PubMedCrossRef Gomez-Duran A, Pacheu-Grau D, Martinez-Romero I, Lopez-Gallardo E, Lopez-Perez MJ, Montoya J, Ruiz-Pesini E. Oxidative phosphorylation differences between mitochondrial DNA haplogroups modify the risk of Leber’s hereditary optic neuropathy. Biochim Biophys Acta. 2012;1822(8):1216–22.PubMedCrossRef
12.
go back to reference Valente L, Piga D, Lamantea E, Carrara F, Uziel G, Cudia P, Zani A, Farina L, Morandi L, Mora M, et al. Identification of novel mutations in five patients with mitochondrial encephalomyopathy. Biochim Biophys Acta. 2009;1787(5):491–501.PubMedCrossRef Valente L, Piga D, Lamantea E, Carrara F, Uziel G, Cudia P, Zani A, Farina L, Morandi L, Mora M, et al. Identification of novel mutations in five patients with mitochondrial encephalomyopathy. Biochim Biophys Acta. 2009;1787(5):491–501.PubMedCrossRef
13.
go back to reference Desquiret-Dumas V, Gueguen N, Barth M, Chevrollier A, Hancock S, Wallace DC, Amati-Bonneau P, Henrion D, Bonneau D, Reynier P, et al. Metabolically induced heteroplasmy shifting and l-arginine treatment reduce the energetic defect in a neuronal-like model of MELAS. Biochim Biophys Acta. 2012;1822(6):1019–29.PubMedPubMedCentralCrossRef Desquiret-Dumas V, Gueguen N, Barth M, Chevrollier A, Hancock S, Wallace DC, Amati-Bonneau P, Henrion D, Bonneau D, Reynier P, et al. Metabolically induced heteroplasmy shifting and l-arginine treatment reduce the energetic defect in a neuronal-like model of MELAS. Biochim Biophys Acta. 2012;1822(6):1019–29.PubMedPubMedCentralCrossRef
14.
go back to reference Newman JC, Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol Metab. 2014;25(1):42–52.PubMedCrossRef Newman JC, Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol Metab. 2014;25(1):42–52.PubMedCrossRef
15.
go back to reference Robinson BH, Petrova-Benedict R, Buncic JR, Wallace DC. Nonviability of cells with oxidative defects in galactose medium: a screening test for affected patient fibroblasts. Biochem Med Metab Biol. 1992;48(2):122–6.PubMedCrossRef Robinson BH, Petrova-Benedict R, Buncic JR, Wallace DC. Nonviability of cells with oxidative defects in galactose medium: a screening test for affected patient fibroblasts. Biochem Med Metab Biol. 1992;48(2):122–6.PubMedCrossRef
16.
go back to reference Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979;254(8):2669–76.PubMed Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979;254(8):2669–76.PubMed
17.
go back to reference Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 2004;64(3):985–93.PubMedCrossRef Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 2004;64(3):985–93.PubMedCrossRef
18.
go back to reference Balsa E, Soustek MS, Thomas A, Cogliati S, Garcia-Poyatos C, Martin-Garcia E, Jedrychowski M, Gygi SP, Enriquez JA, Puigserver P. ER and Nutrient Stress Promote Assembly of Respiratory Chain Supercomplexes through the PERK-eIF2alpha Axis. Mol Cell. 2019. Balsa E, Soustek MS, Thomas A, Cogliati S, Garcia-Poyatos C, Martin-Garcia E, Jedrychowski M, Gygi SP, Enriquez JA, Puigserver P. ER and Nutrient Stress Promote Assembly of Respiratory Chain Supercomplexes through the PERK-eIF2alpha Axis. Mol Cell. 2019.
19.
go back to reference Giordano C, Montopoli M, Perli E, Orlandi M, Fantin M, Ross-Cisneros FN, Caparrotta L, Martinuzzi A, Ragazzi E, Ghelli A et al: Oestrogens ameliorate mitochondrial dysfunction in Leber’s hereditary optic neuropathy. Brain 2011, 134(Pt 1):220–234.PubMedPubMedCentralCrossRef Giordano C, Montopoli M, Perli E, Orlandi M, Fantin M, Ross-Cisneros FN, Caparrotta L, Martinuzzi A, Ragazzi E, Ghelli A et al: Oestrogens ameliorate mitochondrial dysfunction in Leber’s hereditary optic neuropathy. Brain 2011, 134(Pt 1):220–234.PubMedPubMedCentralCrossRef
20.
go back to reference Palmeira CM, Rolo AP, Berthiaume J, Bjork JA, Wallace KB. Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis. Toxicol Appl Pharmacol. 2007;225(2):214–20.PubMedCrossRef Palmeira CM, Rolo AP, Berthiaume J, Bjork JA, Wallace KB. Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis. Toxicol Appl Pharmacol. 2007;225(2):214–20.PubMedCrossRef
21.
go back to reference Geffroy G, Benyahia R, Frey S, Desquiret-Dumas V, Gueguen N, Bris C, Belal S, Inisan A, Renaud A, Chevrollier A, et al. The accumulation of assembly intermediates of the mitochondrial complex I matrix arm is reduced by limiting glucose uptake in a neuronal-like model of MELAS syndrome. Biochim Biophys Acta Mol Basis Dis. 2018;1864(5 Pt A):1596–608.PubMedCrossRef Geffroy G, Benyahia R, Frey S, Desquiret-Dumas V, Gueguen N, Bris C, Belal S, Inisan A, Renaud A, Chevrollier A, et al. The accumulation of assembly intermediates of the mitochondrial complex I matrix arm is reduced by limiting glucose uptake in a neuronal-like model of MELAS syndrome. Biochim Biophys Acta Mol Basis Dis. 2018;1864(5 Pt A):1596–608.PubMedCrossRef
22.
go back to reference Weber K, Ridderskamp D, Alfert M, Hoyer S, Wiesner RJ. Cultivation in glucose-deprived medium stimulates mitochondrial biogenesis and oxidative metabolism in HepG2 hepatoma cells. Biol Chem. 2002;383(2):283–90.PubMedCrossRef Weber K, Ridderskamp D, Alfert M, Hoyer S, Wiesner RJ. Cultivation in glucose-deprived medium stimulates mitochondrial biogenesis and oxidative metabolism in HepG2 hepatoma cells. Biol Chem. 2002;383(2):283–90.PubMedCrossRef
23.
go back to reference Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60(2):223–35.PubMedCrossRef Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, Shaw R, Smith Y, Geiger JD, Dingledine RJ. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60(2):223–35.PubMedCrossRef
24.
go back to reference Al-Zaid NS, Dashti HM, Mathew TC, Juggi JS. Low carbohydrate ketogenic diet enhances cardiac tolerance to global ischaemia. Acta Cardiol. 2007;62(4):381–9.PubMedCrossRef Al-Zaid NS, Dashti HM, Mathew TC, Juggi JS. Low carbohydrate ketogenic diet enhances cardiac tolerance to global ischaemia. Acta Cardiol. 2007;62(4):381–9.PubMedCrossRef
25.
go back to reference Nylen K, Velazquez JL, Sayed V, Gibson KM, Burnham WM, Snead OC 3rd. The effects of a ketogenic diet on ATP concentrations and the number of hippocampal mitochondria in Aldh5a1(−/−) mice. Biochim Biophys Acta. 2009;1790(3):208–12.PubMedPubMedCentralCrossRef Nylen K, Velazquez JL, Sayed V, Gibson KM, Burnham WM, Snead OC 3rd. The effects of a ketogenic diet on ATP concentrations and the number of hippocampal mitochondria in Aldh5a1(−/−) mice. Biochim Biophys Acta. 2009;1790(3):208–12.PubMedPubMedCentralCrossRef
26.
go back to reference Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Lisanti MP, Sotgia F. Ketone bodies and two-compartment tumor metabolism: stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle. 2012;11(21):3956–63.PubMedPubMedCentralCrossRef Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Lisanti MP, Sotgia F. Ketone bodies and two-compartment tumor metabolism: stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells. Cell Cycle. 2012;11(21):3956–63.PubMedPubMedCentralCrossRef
27.
go back to reference Srivastava S, Kashiwaya Y, King MT, Baxa U, Tam J, Niu G, Chen X, Clarke K, Veech RL. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. FASEB J. 2012;26(6):2351–62.PubMedPubMedCentralCrossRef Srivastava S, Kashiwaya Y, King MT, Baxa U, Tam J, Niu G, Chen X, Clarke K, Veech RL. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. FASEB J. 2012;26(6):2351–62.PubMedPubMedCentralCrossRef
28.
go back to reference Hasan-Olive MM, Lauritzen KH, Ali M, Rasmussen LJ, Storm-Mathisen J, Bergersen LH. A Ketogenic Diet Improves Mitochondrial Biogenesis and Bioenergetics via the PGC1alpha-SIRT3-UCP2 Axis. Neurochem Res. 2019;44(1):22–37.PubMedCrossRef Hasan-Olive MM, Lauritzen KH, Ali M, Rasmussen LJ, Storm-Mathisen J, Bergersen LH. A Ketogenic Diet Improves Mitochondrial Biogenesis and Bioenergetics via the PGC1alpha-SIRT3-UCP2 Axis. Neurochem Res. 2019;44(1):22–37.PubMedCrossRef
29.
go back to reference Garcia-Roves P, Huss JM, Han DH, Hancock CR, Iglesias-Gutierrez E, Chen M, Holloszy JO. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc Natl Acad Sci U S A. 2007;104(25):10709–10,713.PubMedPubMedCentralCrossRef Garcia-Roves P, Huss JM, Han DH, Hancock CR, Iglesias-Gutierrez E, Chen M, Holloszy JO. Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc Natl Acad Sci U S A. 2007;104(25):10709–10,713.PubMedPubMedCentralCrossRef
30.
go back to reference Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K, Tulkki V, Mattila I, Seppanen-Laakso T, Oresic M, Tyynismaa H, Suomalainen A. Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet. 2010;19(10):1974–84.PubMedCrossRef Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K, Tulkki V, Mattila I, Seppanen-Laakso T, Oresic M, Tyynismaa H, Suomalainen A. Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet. 2010;19(10):1974–84.PubMedCrossRef
31.
go back to reference Lauritzen KH, Hasan-Olive MM, Regnell CE, Kleppa L, Scheibye-Knudsen M, Gjedde A, Klungland A, Bohr VA, Storm-Mathisen J, Bergersen LH. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging. 2016;48:34–47.PubMedPubMedCentralCrossRef Lauritzen KH, Hasan-Olive MM, Regnell CE, Kleppa L, Scheibye-Knudsen M, Gjedde A, Klungland A, Bohr VA, Storm-Mathisen J, Bergersen LH. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging. 2016;48:34–47.PubMedPubMedCentralCrossRef
32.
go back to reference Li Y, Li HZ, Hu P, Deng J, Banoei MM, Sharma LK, Bai Y. Generation and bioenergetic analysis of cybrids containing mitochondrial DNA from mouse skeletal muscle during aging. Nucleic Acids Res. 2010;38(6):1913–21.PubMedCrossRef Li Y, Li HZ, Hu P, Deng J, Banoei MM, Sharma LK, Bai Y. Generation and bioenergetic analysis of cybrids containing mitochondrial DNA from mouse skeletal muscle during aging. Nucleic Acids Res. 2010;38(6):1913–21.PubMedCrossRef
33.
go back to reference Zhou H, Nie K, Qiu R, Xiong J, Shao X, Wang B, Shen L, Lyu J, Fang H. Generation and Bioenergetic Profiles of Cybrids with East Asian mtDNA Haplogroups. Oxid Med Cell Longev. 2017;2017:1062314.PubMedPubMedCentral Zhou H, Nie K, Qiu R, Xiong J, Shao X, Wang B, Shen L, Lyu J, Fang H. Generation and Bioenergetic Profiles of Cybrids with East Asian mtDNA Haplogroups. Oxid Med Cell Longev. 2017;2017:1062314.PubMedPubMedCentral
34.
go back to reference Nishioka T, Soemantri A, Ishida T. mtDNA/nDNA ratio in 14,484 LHON mitochondrial mutation carriers. J Hum Genet. 2004;49(12):701–5.PubMedCrossRef Nishioka T, Soemantri A, Ishida T. mtDNA/nDNA ratio in 14,484 LHON mitochondrial mutation carriers. J Hum Genet. 2004;49(12):701–5.PubMedCrossRef
35.
go back to reference Kang HC, Lee YM, Kim HD, Lee JS, Slama A. Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia. 2007;48(1):82–8.PubMed Kang HC, Lee YM, Kim HD, Lee JS, Slama A. Safe and effective use of the ketogenic diet in children with epilepsy and mitochondrial respiratory chain complex defects. Epilepsia. 2007;48(1):82–8.PubMed
36.
go back to reference Joshi CN, Greenberg CR, Mhanni AA, Salman MS. Ketogenic diet in Alpers-Huttenlocher syndrome. Pediatr Neurol. 2009;40(4):314–6.PubMedCrossRef Joshi CN, Greenberg CR, Mhanni AA, Salman MS. Ketogenic diet in Alpers-Huttenlocher syndrome. Pediatr Neurol. 2009;40(4):314–6.PubMedCrossRef
37.
go back to reference Buda P, Piekutowska-Abramczuk D, Karkucinska-Wieckowska A, Jurkiewicz E, Chelstowska S, Pajdowska M, Migdal M, Ksiazyk J, Kotulska K, Pronicka E. “Drop attacks” as first clinical symptoms in a child carrying MTTK m.8344A > G mutation. Folia Neuropathol. 2013;51(4):347–54.PubMedCrossRef Buda P, Piekutowska-Abramczuk D, Karkucinska-Wieckowska A, Jurkiewicz E, Chelstowska S, Pajdowska M, Migdal M, Ksiazyk J, Kotulska K, Pronicka E. “Drop attacks” as first clinical symptoms in a child carrying MTTK m.8344A > G mutation. Folia Neuropathol. 2013;51(4):347–54.PubMedCrossRef
38.
go back to reference Steriade C, Andrade DM, Faghfoury H, Tarnopolsky MA, Tai P. Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) may respond to adjunctive ketogenic diet. Pediatr Neurol. 2014;50(5):498–502.PubMedCrossRef Steriade C, Andrade DM, Faghfoury H, Tarnopolsky MA, Tai P. Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) may respond to adjunctive ketogenic diet. Pediatr Neurol. 2014;50(5):498–502.PubMedCrossRef
39.
go back to reference Zarnowski T, Choragiewicz TJ, Schuettauf F, Zrenner E, Rejdak R, Gasior M, Zarnowska I, Thaler S. Ketogenic diet attenuates NMDA-induced damage to rat’s retinal ganglion cells in an age-dependent manner. Ophthalmic Res. 2015;53(3):162–7.PubMedCrossRef Zarnowski T, Choragiewicz TJ, Schuettauf F, Zrenner E, Rejdak R, Gasior M, Zarnowska I, Thaler S. Ketogenic diet attenuates NMDA-induced damage to rat’s retinal ganglion cells in an age-dependent manner. Ophthalmic Res. 2015;53(3):162–7.PubMedCrossRef
40.
go back to reference Harun-Or-Rashid M, Pappenhagen N, Palmer PG, Smith MA, Gevorgyan V, Wilson GN, Crish SD, Inman DM. Structural and Functional Rescue of Chronic Metabolically Stressed Optic Nerves through Respiration. J Neurosci. 2018;38(22):5122–39.PubMedPubMedCentralCrossRef Harun-Or-Rashid M, Pappenhagen N, Palmer PG, Smith MA, Gevorgyan V, Wilson GN, Crish SD, Inman DM. Structural and Functional Rescue of Chronic Metabolically Stressed Optic Nerves through Respiration. J Neurosci. 2018;38(22):5122–39.PubMedPubMedCentralCrossRef
41.
go back to reference Storoni M, Robert MP, Plant GT. The therapeutic potential of a calorie-restricted ketogenic diet for the management of Leber hereditary optic neuropathy. Nutr Neurosci. 2017:1–9. Storoni M, Robert MP, Plant GT. The therapeutic potential of a calorie-restricted ketogenic diet for the management of Leber hereditary optic neuropathy. Nutr Neurosci. 2017:1–9.
42.
go back to reference Chomyn A. Platelet-mediated transformation of human mitochondrial DNA-less cells. Methods Enzymol. 1996;264:334–9.PubMedCrossRef Chomyn A. Platelet-mediated transformation of human mitochondrial DNA-less cells. Methods Enzymol. 1996;264:334–9.PubMedCrossRef
43.
go back to reference Marcuello A, Gonzalez-Alonso J, Calbet JA, Damsgaard R, Lopez-Perez MJ, Diez-Sanchez C. Skeletal muscle mitochondrial DNA content in exercising humans. J Appl Physiol (1985). 2005;99(4):1372–7.CrossRef Marcuello A, Gonzalez-Alonso J, Calbet JA, Damsgaard R, Lopez-Perez MJ, Diez-Sanchez C. Skeletal muscle mitochondrial DNA content in exercising humans. J Appl Physiol (1985). 2005;99(4):1372–7.CrossRef
44.
go back to reference Gomez-Duran A, Pacheu-Grau D, Lopez-Gallardo E, Diez-Sanchez C, Montoya J, Lopez-Perez MJ, Ruiz-Pesini E. Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum Mol Genet. 2010;19(17):3343–53.PubMedCrossRef Gomez-Duran A, Pacheu-Grau D, Lopez-Gallardo E, Diez-Sanchez C, Montoya J, Lopez-Perez MJ, Ruiz-Pesini E. Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum Mol Genet. 2010;19(17):3343–53.PubMedCrossRef
Metadata
Title
Ketogenic treatment reduces the percentage of a LHON heteroplasmic mutation and increases mtDNA amount of a LHON homoplasmic mutation
Authors
Sonia Emperador
Ester López-Gallardo
Carmen Hernández-Ainsa
Mouna Habbane
Julio Montoya
M. Pilar Bayona-Bafaluy
Eduardo Ruiz-Pesini
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2019
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-019-1128-z

Other articles of this Issue 1/2019

Orphanet Journal of Rare Diseases 1/2019 Go to the issue