Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2019

Open Access 01-12-2019 | Ventricular Septal Defect | Research

Assessing the criteria for definition of perimembranous ventricular septal defects in light of the search for consensus

Authors: Justin T. Tretter, Vi-Hue Tran, Seth Gray, Hieu Ta, Rohit S. Loomba, William O’Connor, Diane E. Spicer, Andrew C. Cook, Robert H. Anderson

Published in: Orphanet Journal of Rare Diseases | Issue 1/2019

Login to get access

Abstract

Background

Discussions continue as to whether ventricular septal defects are best categorized according to their right ventricular geography or their borders. This is especially true when considering the perimembranous defect. Our aim, therefore, was to establish the phenotypic feature of the perimembranous defect, and to establish the ease of distinguishing its geographical variants.

Methods and results

We assessed unrepaired isolated perimembranous ventricular defects from six historic archives, subcategorizing them using the ICD-11 coding system. We identified 365 defects, of which 94 (26%) were deemed to open centrally, 168 (46%) to open to the outlet, and 84 (23%) to the inlet of the right ventricle, with 19 (5%) being confluent. In all hearts, the unifying phenotypic feature was fibrous continuity between the leaflets of the mitral and tricuspid valves. This was often directly between the valves, but in all instances incorporated continuity through the atrioventricular portion of the membranous septum. In contrast, we observed fibrous continuity between the leaflets of the tricuspid and aortic valves in only 298 (82%) of the specimens. When found, discontinuity most commonly was seen in the outlet and central defects. There were no discrepancies between evaluators in distinguishing the borders, but there was occasional disagreement in determining the right ventricular geography of the defect.

Conclusions

The unifying feature of perimembranous defects, rather than being aortic-to-tricuspid valvar fibrous continuity, is fibrous continuity between the leaflets of the atrioventricular valves. While right ventricular geography is important in classification, it is the borders which are more objectively defined.
Literature
1.
go back to reference Roberts WC. The 2 most common congenital heart diseases. Am J Cardiol. 1984;53:1198.CrossRef Roberts WC. The 2 most common congenital heart diseases. Am J Cardiol. 1984;53:1198.CrossRef
2.
go back to reference Lopez L, Houyel L, Colan SD, Anderson RH, Beland MJ, Aiello VD, Bailliard F, Cohen MS, Jacobs JP, Kurosawa H, Sanders SP, Walters HL 3rd, Weinberg PM, Boris JR, Cook AC, Crucean A, Everett AD, Gaynor JW, Giroud J, Guleserian KJ, Hughes ML, Juraszek AL, Krogmann ON, Maruszewski BJ, St Louis JD, Seslar SP, Spicer DE, Srivastava S, Stellin G, Tchervenkov CI, Wang L, Franklin RCG. Classification of ventricular septal defects for the eleventh iteration of the international classification of diseases - striving for consensus: a report from the International Society for Nomenclature of Paediatric and congenital heart disease. Ann Thorac Surg. 2018;106:1578–89.CrossRef Lopez L, Houyel L, Colan SD, Anderson RH, Beland MJ, Aiello VD, Bailliard F, Cohen MS, Jacobs JP, Kurosawa H, Sanders SP, Walters HL 3rd, Weinberg PM, Boris JR, Cook AC, Crucean A, Everett AD, Gaynor JW, Giroud J, Guleserian KJ, Hughes ML, Juraszek AL, Krogmann ON, Maruszewski BJ, St Louis JD, Seslar SP, Spicer DE, Srivastava S, Stellin G, Tchervenkov CI, Wang L, Franklin RCG. Classification of ventricular septal defects for the eleventh iteration of the international classification of diseases - striving for consensus: a report from the International Society for Nomenclature of Paediatric and congenital heart disease. Ann Thorac Surg. 2018;106:1578–89.CrossRef
3.
go back to reference Mostefa-Kara M, Houyel L, Bonnet D. Anatomy of the ventricular septal defect in congenital heart defects: a random association? Orphanet J Rare Dis. 2018;13:118.CrossRef Mostefa-Kara M, Houyel L, Bonnet D. Anatomy of the ventricular septal defect in congenital heart defects: a random association? Orphanet J Rare Dis. 2018;13:118.CrossRef
4.
go back to reference Spicer DE, Hsu HH, Co-Vu J, Anderson RH, Fricker FJ. Ventricular septal defect. Orphanet J Rare Dis. 2014;9:144.CrossRef Spicer DE, Hsu HH, Co-Vu J, Anderson RH, Fricker FJ. Ventricular septal defect. Orphanet J Rare Dis. 2014;9:144.CrossRef
5.
go back to reference Tretter JT, Sarwark AE, Anderson RH, Spicer DE. Assessment of the anatomical variation to be found in the normal tricuspid valve. Clin Anat. 2016;29:399–407.CrossRef Tretter JT, Sarwark AE, Anderson RH, Spicer DE. Assessment of the anatomical variation to be found in the normal tricuspid valve. Clin Anat. 2016;29:399–407.CrossRef
6.
go back to reference Restivo A, di Gioia CR, Anderson RH, Carletti R, Gallo P. The Eisenmenger malformation: a morphologic study. Cardiol Young. 2016;26:269–79.CrossRef Restivo A, di Gioia CR, Anderson RH, Carletti R, Gallo P. The Eisenmenger malformation: a morphologic study. Cardiol Young. 2016;26:269–79.CrossRef
7.
go back to reference Anderson RH, Spicer DE, Mohun TJ, Hikspoors J, Lamers WH. Remodeling of the embryonic interventricular communication in regard to the description and classification of ventricular septal defects. Anat Rec (Hoboken, NJ: 2007). 2019;302:19–31.CrossRef Anderson RH, Spicer DE, Mohun TJ, Hikspoors J, Lamers WH. Remodeling of the embryonic interventricular communication in regard to the description and classification of ventricular septal defects. Anat Rec (Hoboken, NJ: 2007). 2019;302:19–31.CrossRef
8.
go back to reference Milo S, Ho SY, Wilkinson JL, Anderson RH. Surgical anatomy and atrioventricular conduction tissues of hearts with isolated ventricular septal defects. J Thorac Cardiovasc Surg. 1980;79:244–55.PubMed Milo S, Ho SY, Wilkinson JL, Anderson RH. Surgical anatomy and atrioventricular conduction tissues of hearts with isolated ventricular septal defects. J Thorac Cardiovasc Surg. 1980;79:244–55.PubMed
9.
go back to reference Spicer DE, Anderson RH, Backer CL. Clarifying the surgical morphology of inlet ventricular septal defects. Ann Thorac Surg. 2013;95:236–41.CrossRef Spicer DE, Anderson RH, Backer CL. Clarifying the surgical morphology of inlet ventricular septal defects. Ann Thorac Surg. 2013;95:236–41.CrossRef
10.
go back to reference Kurosawa H, Becker AE. Modification of the precise relationship of the atrioventricular conduction bundle to the margins of the ventricular septal defects by the trabecula septomarginalis. J Thorac Cardiovasc Surg. 1984;87:605–15.PubMed Kurosawa H, Becker AE. Modification of the precise relationship of the atrioventricular conduction bundle to the margins of the ventricular septal defects by the trabecula septomarginalis. J Thorac Cardiovasc Surg. 1984;87:605–15.PubMed
11.
go back to reference Ebadi A, Spicer DE, Backer CL, Fricker FJ, Anderson RH. Double-outlet right ventricle revisited. J Thorac Cardiovasc Surg. 2017;154:598–604.CrossRef Ebadi A, Spicer DE, Backer CL, Fricker FJ, Anderson RH. Double-outlet right ventricle revisited. J Thorac Cardiovasc Surg. 2017;154:598–604.CrossRef
Metadata
Title
Assessing the criteria for definition of perimembranous ventricular septal defects in light of the search for consensus
Authors
Justin T. Tretter
Vi-Hue Tran
Seth Gray
Hieu Ta
Rohit S. Loomba
William O’Connor
Diane E. Spicer
Andrew C. Cook
Robert H. Anderson
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2019
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-019-1044-2

Other articles of this Issue 1/2019

Orphanet Journal of Rare Diseases 1/2019 Go to the issue