Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2019

Open Access 01-12-2019 | Hypophosphatemic Rickets | Review

FGF23 and its role in X-linked hypophosphatemia-related morbidity

Authors: Signe Sparre Beck-Nielsen, Zulf Mughal, Dieter Haffner, Ola Nilsson, Elena Levtchenko, Gema Ariceta, Carmen de Lucas Collantes, Dirk Schnabel, Ravi Jandhyala, Outi Mäkitie

Published in: Orphanet Journal of Rare Diseases | Issue 1/2019

Login to get access

Abstract

Background

X-linked hypophosphatemia (XLH) is an inherited disease of phosphate metabolism in which inactivating mutations of the Phosphate Regulating Endopeptidase Homolog, X-Linked (PHEX) gene lead to local and systemic effects including impaired growth, rickets, osteomalacia, bone abnormalities, bone pain, spontaneous dental abscesses, hearing difficulties, enthesopathy, osteoarthritis, and muscular dysfunction. Patients with XLH present with elevated levels of fibroblast growth factor 23 (FGF23), which is thought to mediate many of the aforementioned manifestations of the disease. Elevated FGF23 has also been observed in many other diseases of hypophosphatemia, and a range of animal models have been developed to study these diseases, yet the role of FGF23 in the pathophysiology of XLH is incompletely understood.

Methods

The role of FGF23 in the pathophysiology of XLH is here reviewed by describing what is known about phenotypes associated with various PHEX mutations, animal models of XLH, and non-nutritional diseases of hypophosphatemia, and by presenting molecular pathways that have been proposed to contribute to manifestations of XLH.

Results

The pathophysiology of XLH is complex, involving a range of molecular pathways that variously contribute to different manifestations of the disease. Hypophosphatemia due to elevated FGF23 is the most obvious contributor, however localised fluctuations in tissue non-specific alkaline phosphatase (TNAP), pyrophosphate, calcitriol and direct effects of FGF23 have been observed to be associated with certain manifestations.

Conclusions

By describing what is known about these pathways, this review highlights key areas for future research that would contribute to the understanding and clinical treatment of non-nutritional diseases of hypophosphatemia, particularly XLH.
Literature
1.
go back to reference Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK. Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol. 2009;160:491–7.PubMedCrossRef Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK. Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol. 2009;160:491–7.PubMedCrossRef
2.
go back to reference Reid IR, Hardy DC, Murphy WA, Teitelbaum SL, Bergfeld MA, Whyte MP. X-Linked Hypophosphatemia: A Clinical, Biochemical, and Histopathologic Assessment of Morbidity in Adults. Medicine (Baltimore). 1989;68:336.CrossRef Reid IR, Hardy DC, Murphy WA, Teitelbaum SL, Bergfeld MA, Whyte MP. X-Linked Hypophosphatemia: A Clinical, Biochemical, and Histopathologic Assessment of Morbidity in Adults. Medicine (Baltimore). 1989;68:336.CrossRef
3.
go back to reference Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res. 2011;26:1381–8.PubMedCrossRef Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res. 2011;26:1381–8.PubMedCrossRef
4.
go back to reference Barros NM, Hoac B, Neves RL, Addison WN, Assis DM, Murshed M, et al. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Min Res. 2013;28:688–99.CrossRef Barros NM, Hoac B, Neves RL, Addison WN, Assis DM, Murshed M, et al. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Min Res. 2013;28:688–99.CrossRef
5.
go back to reference Liu S, Guo R, Simpson LG, Xiao Z-S, Burnham CE, Quarles LD. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem. 2003;278:37419–26.PubMedCrossRef Liu S, Guo R, Simpson LG, Xiao Z-S, Burnham CE, Quarles LD. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem. 2003;278:37419–26.PubMedCrossRef
6.
go back to reference Benet-Pages A, Lorenz-Depiereux B, Zischka H, White KE, Econs MJ, Strom TM. FGF23 is processed by proprotein convertases but not by PHEX. Bone. 2004;35:455–62.PubMedCrossRef Benet-Pages A, Lorenz-Depiereux B, Zischka H, White KE, Econs MJ, Strom TM. FGF23 is processed by proprotein convertases but not by PHEX. Bone. 2004;35:455–62.PubMedCrossRef
7.
go back to reference Murali SK, Andrukhova O, Clinkenbeard EL, White KE, Erben RG. Excessive Osteocytic Fgf23 Secretion Contributes to Pyrophosphate Accumulation and Mineralization Defect in Hyp Mice. PLoS Biol. 2016;14:e1002427.PubMedPubMedCentralCrossRef Murali SK, Andrukhova O, Clinkenbeard EL, White KE, Erben RG. Excessive Osteocytic Fgf23 Secretion Contributes to Pyrophosphate Accumulation and Mineralization Defect in Hyp Mice. PLoS Biol. 2016;14:e1002427.PubMedPubMedCentralCrossRef
8.
go back to reference Imel EA, DiMeglio LA, Hui SL, Carpenter TO, Econs MJ. Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab. 2010;95:1846–50.PubMedPubMedCentralCrossRef Imel EA, DiMeglio LA, Hui SL, Carpenter TO, Econs MJ. Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab. 2010;95:1846–50.PubMedPubMedCentralCrossRef
9.
go back to reference Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect. 2014;3:R13–30.PubMedPubMedCentralCrossRef Linglart A, Biosse-Duplan M, Briot K, Chaussain C, Esterle L, Guillaume-Czitrom S, et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect. 2014;3:R13–30.PubMedPubMedCentralCrossRef
10.
go back to reference Makitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E. Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2003;88:3591–7.PubMedCrossRef Makitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E. Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2003;88:3591–7.PubMedCrossRef
11.
go back to reference Antoniucci DM, Yamashita T, Portale AA. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab. 2006;91:3144–9.PubMedCrossRef Antoniucci DM, Yamashita T, Portale AA. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab. 2006;91:3144–9.PubMedCrossRef
12.
go back to reference Burnett SM, Gunawardene SC, Bringhurst FR, Juppner H, Lee H, Finkelstein JS. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Min Res. 2006;21:1187–96.CrossRef Burnett SM, Gunawardene SC, Bringhurst FR, Juppner H, Lee H, Finkelstein JS. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Min Res. 2006;21:1187–96.CrossRef
13.
go back to reference Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD. Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol. 2008;3:658–64.PubMedPubMedCentralCrossRef Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD. Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol. 2008;3:658–64.PubMedPubMedCentralCrossRef
14.
go back to reference Raeder H, Shaw N, Netelenbos C, Bjerknes R. A case of X-linked hypophosphatemic rickets: complications and the therapeutic use of cinacalcet. Eur J Endocrinol. 2008;159(Suppl 1):S101–5.PubMedCrossRef Raeder H, Shaw N, Netelenbos C, Bjerknes R. A case of X-linked hypophosphatemic rickets: complications and the therapeutic use of cinacalcet. Eur J Endocrinol. 2008;159(Suppl 1):S101–5.PubMedCrossRef
15.
go back to reference Bai X, Miao D, Xiao S, Qiu D, St-Arnaud R, Petkovich M, et al. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders. J Clin Invest. 2016;126:667–80.PubMedPubMedCentralCrossRef Bai X, Miao D, Xiao S, Qiu D, St-Arnaud R, Petkovich M, et al. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders. J Clin Invest. 2016;126:667–80.PubMedPubMedCentralCrossRef
16.
go back to reference Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000;277:494–8.PubMedCrossRef Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000;277:494–8.PubMedCrossRef
17.
go back to reference Yoshiko Y, Wang H, Minamizaki T, Ijuin C, Yamamoto R, Suemune S, et al. Mineralized tissue cells are a principal source of FGF23. Bone. 2007;40:1565–73.PubMedCrossRef Yoshiko Y, Wang H, Minamizaki T, Ijuin C, Yamamoto R, Suemune S, et al. Mineralized tissue cells are a principal source of FGF23. Bone. 2007;40:1565–73.PubMedCrossRef
18.
go back to reference Jiang B, Cao Z, Lu Y, Janik C, Lauziere S, Xie Y, et al. DMP1 C-terminal mutant mice recapture the human ARHR tooth phenotype. J Bone Min Res. 2010;25:2155–64.CrossRef Jiang B, Cao Z, Lu Y, Janik C, Lauziere S, Xie Y, et al. DMP1 C-terminal mutant mice recapture the human ARHR tooth phenotype. J Bone Min Res. 2010;25:2155–64.CrossRef
19.
go back to reference Tagliabracci VS, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U A. 2014;111:5520–5.CrossRef Tagliabracci VS, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U A. 2014;111:5520–5.CrossRef
20.
go back to reference Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, et al. Mutant FGF-23 Responsible for Autosomal Dominant Hypophosphatemic Rickets Is Resistant to Proteolytic Cleavage and Causes Hypophosphatemia in Vivo. Endocrinology. 2002;143:3179–82.PubMedCrossRef Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, et al. Mutant FGF-23 Responsible for Autosomal Dominant Hypophosphatemic Rickets Is Resistant to Proteolytic Cleavage and Causes Hypophosphatemia in Vivo. Endocrinology. 2002;143:3179–82.PubMedCrossRef
21.
go back to reference Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K, Kato S, et al. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280:2543–9.PubMedCrossRef Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K, Kato S, et al. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280:2543–9.PubMedCrossRef
22.
go back to reference Clinkenbeard EL, Cass TA, Ni P, Hum JM, Bellido T, Allen MR, et al. Conditional Deletion of Murine Fgf23: Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia. J Bone Min Res. 2016;31:1247–57.CrossRef Clinkenbeard EL, Cass TA, Ni P, Hum JM, Bellido T, Allen MR, et al. Conditional Deletion of Murine Fgf23: Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia. J Bone Min Res. 2016;31:1247–57.CrossRef
23.
go back to reference Scanni R, vonRotz M, Jehle S, Hulter HN, Krapf R. The human response to acute enteral and parenteral phosphate loads. J Am Soc Nephrol. 2014;25:2730–9.PubMedPubMedCentralCrossRef Scanni R, vonRotz M, Jehle S, Hulter HN, Krapf R. The human response to acute enteral and parenteral phosphate loads. J Am Soc Nephrol. 2014;25:2730–9.PubMedPubMedCentralCrossRef
24.
go back to reference Hori M, Kinoshita Y, Taguchi M, Fukumoto S. Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells. J Bone Min Metab. 2016;34:132–9.CrossRef Hori M, Kinoshita Y, Taguchi M, Fukumoto S. Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells. J Bone Min Metab. 2016;34:132–9.CrossRef
25.
go back to reference Wang X, Wang S, Li C, Gao T, Liu Y, Rangiani A, et al. Inactivation of a Novel FGF23 Regulator, FAM20C, Leads to Hypophosphatemic Rickets in Mice. PLOS Genet. 2012;8:e1002708.PubMedPubMedCentralCrossRef Wang X, Wang S, Li C, Gao T, Liu Y, Rangiani A, et al. Inactivation of a Novel FGF23 Regulator, FAM20C, Leads to Hypophosphatemic Rickets in Mice. PLOS Genet. 2012;8:e1002708.PubMedPubMedCentralCrossRef
26.
go back to reference Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet. 2010;86:267–72.PubMedPubMedCentralCrossRef Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet. 2010;86:267–72.PubMedPubMedCentralCrossRef
27.
go back to reference Samadfam R, Richard C, Nguyen-Yamamoto L, Bolivar I, Goltzman D. Bone formation regulates circulating concentrations of fibroblast growth factor 23. Endocrinology. 2009;150:4835–45.PubMedCrossRef Samadfam R, Richard C, Nguyen-Yamamoto L, Bolivar I, Goltzman D. Bone formation regulates circulating concentrations of fibroblast growth factor 23. Endocrinology. 2009;150:4835–45.PubMedCrossRef
28.
go back to reference Liu S, Rowe PS, Vierthaler L, Zhou J, Quarles LD. Phosphorylated acidic serine-aspartate-rich MEPE-associated motif peptide from matrix extracellular phosphoglycoprotein inhibits phosphate regulating gene with homologies to endopeptidases on the X-chromosome enzyme activity. J Endocrinol. 2007;192:261–7.PubMedPubMedCentralCrossRef Liu S, Rowe PS, Vierthaler L, Zhou J, Quarles LD. Phosphorylated acidic serine-aspartate-rich MEPE-associated motif peptide from matrix extracellular phosphoglycoprotein inhibits phosphate regulating gene with homologies to endopeptidases on the X-chromosome enzyme activity. J Endocrinol. 2007;192:261–7.PubMedPubMedCentralCrossRef
29.
go back to reference Fajol A, Honisch S, Zhang B, Schmidt S, Alkahtani S, Alarifi S, et al. Fibroblast growth factor (Fgf) 23 gene transcription depends on actin cytoskeleton reorganization. FEBS Lett. 2016;590:705–15.PubMedCrossRef Fajol A, Honisch S, Zhang B, Schmidt S, Alkahtani S, Alarifi S, et al. Fibroblast growth factor (Fgf) 23 gene transcription depends on actin cytoskeleton reorganization. FEBS Lett. 2016;590:705–15.PubMedCrossRef
30.
go back to reference Zhang B, Umbach AT, Chen H, Yan J, Fakhri H, Fajol A, et al. Up-regulation of FGF23 release by aldosterone. Biochem Biophys Res Commun. 2016;470:384–90.PubMedCrossRef Zhang B, Umbach AT, Chen H, Yan J, Fakhri H, Fajol A, et al. Up-regulation of FGF23 release by aldosterone. Biochem Biophys Res Commun. 2016;470:384–90.PubMedCrossRef
31.
go back to reference Zhang B, Yan J, Umbach AT, Fakhri H, Fajol A, Schmidt S, et al. NFkappaB-sensitive Orai1 expression in the regulation of FGF23 release. J Mol Med Berl. 2016;94:557–66.PubMedCrossRef Zhang B, Yan J, Umbach AT, Fakhri H, Fajol A, Schmidt S, et al. NFkappaB-sensitive Orai1 expression in the regulation of FGF23 release. J Mol Med Berl. 2016;94:557–66.PubMedCrossRef
32.
go back to reference Leifheit-Nestler M, Kucka J, Yoshizawa E, Behets G, D’Haese P, Bergen C, et al. Comparison of calcimimetic R568 and calcitriol in mineral homeostasis in the Hyp mouse, a murine homolog of X-linked hypophosphatemia. Bone. 2017;103:224–32.PubMedCrossRef Leifheit-Nestler M, Kucka J, Yoshizawa E, Behets G, D’Haese P, Bergen C, et al. Comparison of calcimimetic R568 and calcitriol in mineral homeostasis in the Hyp mouse, a murine homolog of X-linked hypophosphatemia. Bone. 2017;103:224–32.PubMedCrossRef
33.
go back to reference Nguyen-Yamamoto L, Karaplis AC, St-Arnaud R, Goltzman D. Fibroblast Growth Factor 23 Regulation by Systemic and Local Osteoblast-Synthesized 1,25-Dihydroxyvitamin D. J Am Soc Nephrol. 2017;28:586–97.PubMedCrossRef Nguyen-Yamamoto L, Karaplis AC, St-Arnaud R, Goltzman D. Fibroblast Growth Factor 23 Regulation by Systemic and Local Osteoblast-Synthesized 1,25-Dihydroxyvitamin D. J Am Soc Nephrol. 2017;28:586–97.PubMedCrossRef
34.
go back to reference Yamamoto H, Ramos-Molina B, Lick AN, Prideaux M, Albornoz V, Bonewald L, et al. Posttranslational processing of FGF23 in osteocytes during the osteoblast to osteocyte transition. Bone. 2016;84:120–30.PubMedCrossRef Yamamoto H, Ramos-Molina B, Lick AN, Prideaux M, Albornoz V, Bonewald L, et al. Posttranslational processing of FGF23 in osteocytes during the osteoblast to osteocyte transition. Bone. 2016;84:120–30.PubMedCrossRef
35.
go back to reference Frishberg Y, Ito N, Rinat C, Yamazaki Y, Feinstein S, Urakawa I, et al. Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Min Res. 2007;22:235–42.CrossRef Frishberg Y, Ito N, Rinat C, Yamazaki Y, Feinstein S, Urakawa I, et al. Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Min Res. 2007;22:235–42.CrossRef
36.
go back to reference Kato K, Jeanneau C, Tarp MA, Benet-Pages A, Lorenz-Depiereux B, Bennett EP, et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem. 2006;281:18370–7.PubMedCrossRef Kato K, Jeanneau C, Tarp MA, Benet-Pages A, Lorenz-Depiereux B, Bennett EP, et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem. 2006;281:18370–7.PubMedCrossRef
37.
go back to reference Ichikawa S, Imel EA, Sorenson AH, Severe R, Knudson P, Harris GJ, et al. Tumoral Calcinosis Presenting with Eyelid Calcifications due to Novel Missense Mutations in the Glycosyl Transferase Domain of the GALNT3 Gene. J Clin Endocrinol Metab. 2006;91:4472–5.PubMedCrossRef Ichikawa S, Imel EA, Sorenson AH, Severe R, Knudson P, Harris GJ, et al. Tumoral Calcinosis Presenting with Eyelid Calcifications due to Novel Missense Mutations in the Glycosyl Transferase Domain of the GALNT3 Gene. J Clin Endocrinol Metab. 2006;91:4472–5.PubMedCrossRef
38.
go back to reference Yuan B, Feng JQ, Bowman S, Liu Y, Blank RD, Lindberg I, et al. Hexa-D-arginine treatment increases 7B2*PC2 activity in hyp-mouse osteoblasts and rescues the HYP phenotype. J Bone Min Res. 2013;28:56–72.CrossRef Yuan B, Feng JQ, Bowman S, Liu Y, Blank RD, Lindberg I, et al. Hexa-D-arginine treatment increases 7B2*PC2 activity in hyp-mouse osteoblasts and rescues the HYP phenotype. J Bone Min Res. 2013;28:56–72.CrossRef
39.
go back to reference David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 2016;89:135–46.PubMedPubMedCentralCrossRef David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 2016;89:135–46.PubMedPubMedCentralCrossRef
40.
go back to reference Rowe PS. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr. 2012;22:61–86.PubMedPubMedCentralCrossRef Rowe PS. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr. 2012;22:61–86.PubMedPubMedCentralCrossRef
41.
go back to reference Kawai M. The FGF23/Klotho axis in the regulation of mineral and metabolic homeostasis. Horm Mol Biol Clin Investig. 2016;28:55–67.PubMed Kawai M. The FGF23/Klotho axis in the regulation of mineral and metabolic homeostasis. Horm Mol Biol Clin Investig. 2016;28:55–67.PubMed
43.
go back to reference Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281:6120–3.PubMedCrossRef Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281:6120–3.PubMedCrossRef
44.
go back to reference Rossaint J, Oehmichen J, Van Aken H, Reuter S, Pavenstadt HJ, Meersch M, et al. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest. 2016;126:962–74.PubMedPubMedCentralCrossRef Rossaint J, Oehmichen J, Van Aken H, Reuter S, Pavenstadt HJ, Meersch M, et al. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest. 2016;126:962–74.PubMedPubMedCentralCrossRef
46.
go back to reference Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.PubMedCrossRef Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.PubMedCrossRef
47.
go back to reference Bai X, Dinghong Q, Miao D, Goltzman D, Karaplis AC. Klotho ablation converts the biochemical and skeletal alterations in FGF23 (R176Q) transgenic mice to a Klotho-deficient phenotype. Am J Physiol Endocrinol Metab. 2009;296:E79–88.PubMedCrossRef Bai X, Dinghong Q, Miao D, Goltzman D, Karaplis AC. Klotho ablation converts the biochemical and skeletal alterations in FGF23 (R176Q) transgenic mice to a Klotho-deficient phenotype. Am J Physiol Endocrinol Metab. 2009;296:E79–88.PubMedCrossRef
48.
go back to reference Olauson H, Mencke R, Hillebrands JL, Larsson TE. Tissue expression and source of circulating alphaKlotho. Bone. 2017;100:19–35.PubMedCrossRef Olauson H, Mencke R, Hillebrands JL, Larsson TE. Tissue expression and source of circulating alphaKlotho. Bone. 2017;100:19–35.PubMedCrossRef
49.
go back to reference Murali SK, Roschger P, Zeitz U, Klaushofer K, Andrukhova O, Erben RG. FGF23 Regulates Bone Mineralization in a 1,25(OH)2 D3 and Klotho-Independent Manner. J Bone Min Res. 2016;31:129–42.CrossRef Murali SK, Roschger P, Zeitz U, Klaushofer K, Andrukhova O, Erben RG. FGF23 Regulates Bone Mineralization in a 1,25(OH)2 D3 and Klotho-Independent Manner. J Bone Min Res. 2016;31:129–42.CrossRef
50.
go back to reference Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, Nakatani T, et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci U A. 2010;107:407–12.CrossRef Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, Nakatani T, et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci U A. 2010;107:407–12.CrossRef
51.
go back to reference ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26:345–8.CrossRef ADHR Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26:345–8.CrossRef
52.
go back to reference Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38:1310–5.PubMedPubMedCentralCrossRef Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38:1310–5.PubMedPubMedCentralCrossRef
53.
go back to reference Brownstein CA, Adler F, Nelson-Williams C, Iijima J, Li P, Imura A, et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci U A. 2008;105:3455–60.CrossRef Brownstein CA, Adler F, Nelson-Williams C, Iijima J, Li P, Imura A, et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci U A. 2008;105:3455–60.CrossRef
54.
go back to reference Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78:193–201.PubMedCrossRef Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78:193–201.PubMedCrossRef
55.
go back to reference Khosravi A, Cutler CM, Kelly MH, Chang R, Royal RE, Sherry RM, et al. Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab. 2007;92:2374–7.PubMedCrossRef Khosravi A, Cutler CM, Kelly MH, Chang R, Royal RE, Sherry RM, et al. Determination of the elimination half-life of fibroblast growth factor-23. J Clin Endocrinol Metab. 2007;92:2374–7.PubMedCrossRef
57.
go back to reference Beck-Nielsen SS, Brusgaard K, Rasmussen LM, Brixen K, Brock-Jacobsen B, Poulsen MR, et al. Phenotype presentation of hypophosphatemic rickets in adults. Calcif Tissue Int. 2010;87:108–19.PubMedCrossRef Beck-Nielsen SS, Brusgaard K, Rasmussen LM, Brixen K, Brock-Jacobsen B, Poulsen MR, et al. Phenotype presentation of hypophosphatemic rickets in adults. Calcif Tissue Int. 2010;87:108–19.PubMedCrossRef
58.
go back to reference Gaucher C, Walrant-Debray O, Nguyen T-M, Esterle L, Garabédian M, Jehan F. PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum Genet. 2009;125:401–11.PubMedCrossRef Gaucher C, Walrant-Debray O, Nguyen T-M, Esterle L, Garabédian M, Jehan F. PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum Genet. 2009;125:401–11.PubMedCrossRef
59.
go back to reference Popowska E, Pronicka E, Sulek A, Jurkiewicz D, Rowe P, Rowinska E, et al. X-linked hypophosphatemia in Polish patients. 1. Mutations in the PHEX gene. J Appl Genet. 2000;41:293–302.PubMed Popowska E, Pronicka E, Sulek A, Jurkiewicz D, Rowe P, Rowinska E, et al. X-linked hypophosphatemia in Polish patients. 1. Mutations in the PHEX gene. J Appl Genet. 2000;41:293–302.PubMed
60.
go back to reference Sabbagh Y, Boileau G, DesGroseillers L, Tenenhouse HS. Disease-causing missense mutations in the PHEX gene interfere with membrane targeting of the recombinant protein. Hum Mol Genet. 2001;10:1539–46.PubMedCrossRef Sabbagh Y, Boileau G, DesGroseillers L, Tenenhouse HS. Disease-causing missense mutations in the PHEX gene interfere with membrane targeting of the recombinant protein. Hum Mol Genet. 2001;10:1539–46.PubMedCrossRef
61.
go back to reference Beck-Nielsen SS, Brixen K, Gram J, Brusgaard K. Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets. J Hum Genet. 2012;57:453–8.PubMedCrossRef Beck-Nielsen SS, Brixen K, Gram J, Brusgaard K. Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets. J Hum Genet. 2012;57:453–8.PubMedCrossRef
62.
go back to reference Han F, Yu H, Li P, Zhang J, Tian C, Li H, et al. Mutation in Phex gene predisposes BALB/c-Phex(Hyp-Duk)/Y mice to otitis media. PLoS One. 2012;7:e43010.PubMedPubMedCentralCrossRef Han F, Yu H, Li P, Zhang J, Tian C, Li H, et al. Mutation in Phex gene predisposes BALB/c-Phex(Hyp-Duk)/Y mice to otitis media. PLoS One. 2012;7:e43010.PubMedPubMedCentralCrossRef
63.
go back to reference Yang X, Yan W, Tian Y, Ma P, Opperman LA, Wang X. Family with sequence similarity member 20C is the primary but not the only kinase for the small-integrin-binding ligand N-linked glycoproteins in bone. Faseb J. 2016;30:121–8.PubMedCrossRef Yang X, Yan W, Tian Y, Ma P, Opperman LA, Wang X. Family with sequence similarity member 20C is the primary but not the only kinase for the small-integrin-binding ligand N-linked glycoproteins in bone. Faseb J. 2016;30:121–8.PubMedCrossRef
64.
go back to reference Song H-R, Park J-W, Cho D-Y, Yang JH, Yoon H-R, Jung S-C. PHEX Gene Mutations and Genotype-Phenotype Analysis of Korean Patients with Hypophosphatemic Rickets. J Korean Med Sci. 2007;22:981–6.PubMedPubMedCentralCrossRef Song H-R, Park J-W, Cho D-Y, Yang JH, Yoon H-R, Jung S-C. PHEX Gene Mutations and Genotype-Phenotype Analysis of Korean Patients with Hypophosphatemic Rickets. J Korean Med Sci. 2007;22:981–6.PubMedPubMedCentralCrossRef
65.
go back to reference Morey M, Castro-Feijoo L, Barreiro J, Cabanas P, Pombo M, Gil M, et al. Genetic diagnosis of X-linked dominant Hypophosphatemic Rickets in a cohort study: tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type. BMC Med Genet. 2011;12:116.PubMedPubMedCentralCrossRef Morey M, Castro-Feijoo L, Barreiro J, Cabanas P, Pombo M, Gil M, et al. Genetic diagnosis of X-linked dominant Hypophosphatemic Rickets in a cohort study: tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type. BMC Med Genet. 2011;12:116.PubMedPubMedCentralCrossRef
66.
go back to reference Nakamura Y, Takagi M, Takeda R, Miyai K, Hasegawa Y. Hypertension is a characteristic complication of X-linked hypophosphatemia. Endocr J. 2017;64:283–9.PubMedCrossRef Nakamura Y, Takagi M, Takeda R, Miyai K, Hasegawa Y. Hypertension is a characteristic complication of X-linked hypophosphatemia. Endocr J. 2017;64:283–9.PubMedCrossRef
67.
go back to reference Chesher D, Oddy M, Darbar U, Sayal P, Casey A, Ryan A, et al. Outcome of adult patients with X-linked hypophosphatemia caused by PHEX gene mutations. J Inherit Metab Dis. 2018;41:865–76.PubMedPubMedCentralCrossRef Chesher D, Oddy M, Darbar U, Sayal P, Casey A, Ryan A, et al. Outcome of adult patients with X-linked hypophosphatemia caused by PHEX gene mutations. J Inherit Metab Dis. 2018;41:865–76.PubMedPubMedCentralCrossRef
68.
69.
go back to reference Eicher EM, Southard JL, Scriver CR, Glorieux FH. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci U A. 1976;73:4667–71.CrossRef Eicher EM, Southard JL, Scriver CR, Glorieux FH. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci U A. 1976;73:4667–71.CrossRef
70.
go back to reference Lyon MF, Scriver CR, Baker LR, Tenenhouse HS, Kronick J, Mandla S. The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc Natl Acad Sci U A. 1986;83:4899–903.CrossRef Lyon MF, Scriver CR, Baker LR, Tenenhouse HS, Kronick J, Mandla S. The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc Natl Acad Sci U A. 1986;83:4899–903.CrossRef
71.
go back to reference Sabbagh Y, Gauthier C, Tenenhouse HS. The X chromosome deletion in HYP mice extends into the intergenic region but does not include the SAT gene downstream from Phex. Cytogenet Genome Res. 2002;99:344–9.PubMedCrossRef Sabbagh Y, Gauthier C, Tenenhouse HS. The X chromosome deletion in HYP mice extends into the intergenic region but does not include the SAT gene downstream from Phex. Cytogenet Genome Res. 2002;99:344–9.PubMedCrossRef
72.
go back to reference Du L, Desbarats M, Cornibert S, Malo D, Ecarot B. Fine genetic mapping of the Hyp mutation on mouse chromosome X. Genomics. 1996;32:177–83.PubMedCrossRef Du L, Desbarats M, Cornibert S, Malo D, Ecarot B. Fine genetic mapping of the Hyp mutation on mouse chromosome X. Genomics. 1996;32:177–83.PubMedCrossRef
73.
go back to reference Lorenz B, Francis F, Gempel K, Boddrich A, Josten M, Schmahl W, et al. Spermine deficiency in Gy mice caused by deletion of the spermine synthase gene. Hum Mol Genet. 1998;7:541–7.PubMedCrossRef Lorenz B, Francis F, Gempel K, Boddrich A, Josten M, Schmahl W, et al. Spermine deficiency in Gy mice caused by deletion of the spermine synthase gene. Hum Mol Genet. 1998;7:541–7.PubMedCrossRef
74.
go back to reference Erben RG, Mayer D, Weber K, Jonsson K, Juppner H, Lanske B. Overexpression of human PHEX under the human beta-actin promoter does not fully rescue the Hyp mouse phenotype. J Bone Min Res. 2005;20:1149–60.CrossRef Erben RG, Mayer D, Weber K, Jonsson K, Juppner H, Lanske B. Overexpression of human PHEX under the human beta-actin promoter does not fully rescue the Hyp mouse phenotype. J Bone Min Res. 2005;20:1149–60.CrossRef
75.
go back to reference Carpinelli MR, Wicks IP, Sims NA, O’Donnell K, Hanzinikolas K, Burt R, et al. An ethyl-nitrosourea-induced point mutation in phex causes exon skipping, x-linked hypophosphatemia, and rickets. Am J Pathol. 2002;161:1925–33.PubMedPubMedCentralCrossRef Carpinelli MR, Wicks IP, Sims NA, O’Donnell K, Hanzinikolas K, Burt R, et al. An ethyl-nitrosourea-induced point mutation in phex causes exon skipping, x-linked hypophosphatemia, and rickets. Am J Pathol. 2002;161:1925–33.PubMedPubMedCentralCrossRef
76.
go back to reference Owen C, Chen F, Flenniken AM, Osborne LR, Ichikawa S, Adamson SL, et al. A novel Phex mutation in a new mouse model of hypophosphatemic rickets. J Cell Biochem. 2012;113:2432–41.PubMedCrossRef Owen C, Chen F, Flenniken AM, Osborne LR, Ichikawa S, Adamson SL, et al. A novel Phex mutation in a new mouse model of hypophosphatemic rickets. J Cell Biochem. 2012;113:2432–41.PubMedCrossRef
77.
go back to reference Lorenz-Depiereux B, Guido VE, Johnson KR, Zheng QY, Gagnon LH, Bauschatz JD, et al. New intragenic deletions in the Phex gene clarify X-linked hypophosphatemia-related abnormalities in mice. Mamm Genome. 2004;15:151–61.PubMedPubMedCentralCrossRef Lorenz-Depiereux B, Guido VE, Johnson KR, Zheng QY, Gagnon LH, Bauschatz JD, et al. New intragenic deletions in the Phex gene clarify X-linked hypophosphatemia-related abnormalities in mice. Mamm Genome. 2004;15:151–61.PubMedPubMedCentralCrossRef
78.
go back to reference Zivicnjak M, Schnabel D, Staude H, Even G, Marx M, Beetz R, et al. Three-year growth hormone treatment in short children with X-linked hypophosphatemic rickets: effects on linear growth and body disproportion. J Clin Endocrinol Metab. 2011;96:E2097–105.PubMedCrossRef Zivicnjak M, Schnabel D, Staude H, Even G, Marx M, Beetz R, et al. Three-year growth hormone treatment in short children with X-linked hypophosphatemic rickets: effects on linear growth and body disproportion. J Clin Endocrinol Metab. 2011;96:E2097–105.PubMedCrossRef
79.
go back to reference Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623–8.PubMedCrossRef Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623–8.PubMedCrossRef
80.
go back to reference Tiosano D, Hochberg Z. Hypophosphatemia: the common denominator of all rickets. J Bone Min Metab. 2009;27:392–401.CrossRef Tiosano D, Hochberg Z. Hypophosphatemia: the common denominator of all rickets. J Bone Min Metab. 2009;27:392–401.CrossRef
82.
go back to reference Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U A. 2001;98:6500–5.CrossRef Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U A. 2001;98:6500–5.CrossRef
83.
go back to reference Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG, et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004;23:421–32.PubMedPubMedCentralCrossRef Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG, et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004;23:421–32.PubMedPubMedCentralCrossRef
84.
go back to reference Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Min Res. 2008;23:939–48.CrossRef Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, et al. Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Min Res. 2008;23:939–48.CrossRef
85.
go back to reference Sitara D, Kim S, Razzaque MS, Bergwitz C, Taguchi T, Schuler C, et al. Genetic evidence of serum phosphate-independent functions of FGF-23 on bone. PLoS Genet. 2008;4:e1000154.PubMedPubMedCentralCrossRef Sitara D, Kim S, Razzaque MS, Bergwitz C, Taguchi T, Schuler C, et al. Genetic evidence of serum phosphate-independent functions of FGF-23 on bone. PLoS Genet. 2008;4:e1000154.PubMedPubMedCentralCrossRef
86.
go back to reference Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, et al. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem. 2003;278:2206–11.PubMedCrossRef Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, et al. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem. 2003;278:2206–11.PubMedCrossRef
87.
go back to reference Segawa H, Kawakami E, Kaneko I, Kuwahata M, Ito M, Kusano K, et al. Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflugers Arch. 2003;446:585–92.PubMedCrossRef Segawa H, Kawakami E, Kaneko I, Kuwahata M, Ito M, Kusano K, et al. Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflugers Arch. 2003;446:585–92.PubMedCrossRef
88.
go back to reference Bai X, Miao D, Li J, Goltzman D, Karaplis AC. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology. 2004;145:5269–79.PubMedCrossRef Bai X, Miao D, Li J, Goltzman D, Karaplis AC. Transgenic mice overexpressing human fibroblast growth factor 23 (R176Q) delineate a putative role for parathyroid hormone in renal phosphate wasting disorders. Endocrinology. 2004;145:5269–79.PubMedCrossRef
89.
go back to reference Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci U A. 2005;102:9637–42.CrossRef Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci U A. 2005;102:9637–42.CrossRef
90.
go back to reference Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2004;145:3087–94.PubMedCrossRef Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2004;145:3087–94.PubMedCrossRef
91.
go back to reference Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone. 2012;51:621–8.PubMedPubMedCentralCrossRef Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone. 2012;51:621–8.PubMedPubMedCentralCrossRef
92.
go back to reference Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, et al. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Ren Physiol. 2009;297:F671–8.CrossRef Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, et al. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Ren Physiol. 2009;297:F671–8.CrossRef
93.
go back to reference Myakala K, Motta S, Murer H, Wagner CA, Koesters R, Biber J, et al. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Am J Physiol Ren Physiol. 2014;306:F833–43.CrossRef Myakala K, Motta S, Murer H, Wagner CA, Koesters R, Biber J, et al. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Am J Physiol Ren Physiol. 2014;306:F833–43.CrossRef
94.
go back to reference Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Ren Physiol. 2005;289:F1088–95.CrossRef Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Ren Physiol. 2005;289:F1088–95.CrossRef
95.
go back to reference Tenenhouse HS, Beck L. Renal Na(+)-phosphate cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int. 1996;49:1027–32.PubMedCrossRef Tenenhouse HS, Beck L. Renal Na(+)-phosphate cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int. 1996;49:1027–32.PubMedCrossRef
96.
go back to reference Olauson H, Lindberg K, Amin R, Sato T, Jia T, Goetz R, et al. Parathyroid-specific deletion of Klotho unravels a novel calcineurin-dependent FGF23 signaling pathway that regulates PTH secretion. PLoS Genet. 2013;9:e1003975.PubMedPubMedCentralCrossRef Olauson H, Lindberg K, Amin R, Sato T, Jia T, Goetz R, et al. Parathyroid-specific deletion of Klotho unravels a novel calcineurin-dependent FGF23 signaling pathway that regulates PTH secretion. PLoS Genet. 2013;9:e1003975.PubMedPubMedCentralCrossRef
97.
go back to reference Rizzoli R, Fleisch H, Bonjour JP. Role of 1,25-dihydroxyvitamin D3 on intestinal phosphate absorption in rats with a normal vitamin D supply. J Clin Invest. 1977;60:639–47.PubMedPubMedCentralCrossRef Rizzoli R, Fleisch H, Bonjour JP. Role of 1,25-dihydroxyvitamin D3 on intestinal phosphate absorption in rats with a normal vitamin D supply. J Clin Invest. 1977;60:639–47.PubMedPubMedCentralCrossRef
98.
go back to reference Syal A, Schiavi S, Chakravarty S, Dwarakanath V, Quigley R, Baum M. Fibroblast growth factor-23 increases mouse PGE2 production in vivo and in vitro. Am J Physiol Ren Physiol. 2006;290:F450–5.CrossRef Syal A, Schiavi S, Chakravarty S, Dwarakanath V, Quigley R, Baum M. Fibroblast growth factor-23 increases mouse PGE2 production in vivo and in vitro. Am J Physiol Ren Physiol. 2006;290:F450–5.CrossRef
99.
go back to reference Baum M, Loleh S, Saini N, Seikaly M, Dwarakanath V, Quigley R. Correction of proximal tubule phosphate transport defect in Hyp mice in vivo and in vitro with indomethacin. Proc Natl Acad Sci U A. 2003;100:11098–103.CrossRef Baum M, Loleh S, Saini N, Seikaly M, Dwarakanath V, Quigley R. Correction of proximal tubule phosphate transport defect in Hyp mice in vivo and in vitro with indomethacin. Proc Natl Acad Sci U A. 2003;100:11098–103.CrossRef
100.
go back to reference Seikaly MG, Waber PG, Baum M. Urinary prostaglandins and the effect of indomethacin on phosphate excretion in children with hypophosphatemic rickets. Pediatr Res. 2008;64:210–2.PubMedPubMedCentralCrossRef Seikaly MG, Waber PG, Baum M. Urinary prostaglandins and the effect of indomethacin on phosphate excretion in children with hypophosphatemic rickets. Pediatr Res. 2008;64:210–2.PubMedPubMedCentralCrossRef
101.
go back to reference Shiang R, Thompson LM, Zhu YZ, Church DM, Fielder TJ, Bocian M, et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 1994;78:335–42.PubMedCrossRef Shiang R, Thompson LM, Zhu YZ, Church DM, Fielder TJ, Bocian M, et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 1994;78:335–42.PubMedCrossRef
102.
go back to reference Xiao ZS, Crenshaw M, Guo R, Nesbitt T, Drezner MK, Quarles LD. Intrinsic mineralization defect in Hyp mouse osteoblasts. Am J Physiol. 1998;275(4 Pt 1):E700–8.PubMed Xiao ZS, Crenshaw M, Guo R, Nesbitt T, Drezner MK, Quarles LD. Intrinsic mineralization defect in Hyp mouse osteoblasts. Am J Physiol. 1998;275(4 Pt 1):E700–8.PubMed
103.
go back to reference van der Meijden K, van Essen HW, Bloemers FW, Schulten EA, Lips P, Bravenboer N. Regulation of CYP27B1 mRNA Expression in Primary Human Osteoblasts. Calcif Tissue Int. 2016;99:164–73.PubMedPubMedCentralCrossRef van der Meijden K, van Essen HW, Bloemers FW, Schulten EA, Lips P, Bravenboer N. Regulation of CYP27B1 mRNA Expression in Primary Human Osteoblasts. Calcif Tissue Int. 2016;99:164–73.PubMedPubMedCentralCrossRef
104.
go back to reference Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1984;246(6 Pt 1):E493–8.PubMed Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1984;246(6 Pt 1):E493–8.PubMed
105.
go back to reference Chang PL, Ridall AL, Prince CW. Calcitriol regulation of osteopontin expression in mouse epidermal cells. Endocrinology. 1994;135:863–9.PubMedCrossRef Chang PL, Ridall AL, Prince CW. Calcitriol regulation of osteopontin expression in mouse epidermal cells. Endocrinology. 1994;135:863–9.PubMedCrossRef
106.
go back to reference Addison WN, Azari F, Sorensen ES, Kaartinen MT, McKee MD. Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem. 2007;282:15872–83.PubMedCrossRef Addison WN, Azari F, Sorensen ES, Kaartinen MT, McKee MD. Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem. 2007;282:15872–83.PubMedCrossRef
107.
go back to reference Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122:1803–15.PubMedPubMedCentralCrossRef Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122:1803–15.PubMedPubMedCentralCrossRef
108.
go back to reference Addison WN, Masica DL, Gray JJ, McKee MD. Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Min Res. 2010;25:695–705.CrossRef Addison WN, Masica DL, Gray JJ, McKee MD. Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Min Res. 2010;25:695–705.CrossRef
109.
go back to reference Martin A, David V, Laurence JS, Schwarz PM, Lafer EM, Hedge A-M, et al. Degradation of MEPE, DMP1, and Release of SIBLING ASARM-Peptides (Minhibins): ASARM-Peptide(s) Are Directly Responsible for Defective Mineralization in HYP. Endocrinology. 2008;149:1757–72.PubMedCrossRef Martin A, David V, Laurence JS, Schwarz PM, Lafer EM, Hedge A-M, et al. Degradation of MEPE, DMP1, and Release of SIBLING ASARM-Peptides (Minhibins): ASARM-Peptide(s) Are Directly Responsible for Defective Mineralization in HYP. Endocrinology. 2008;149:1757–72.PubMedCrossRef
110.
go back to reference Staines KA, MacRae VE, Farquharson C. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol. 2012;214:241–55.PubMedCrossRef Staines KA, MacRae VE, Farquharson C. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol. 2012;214:241–55.PubMedCrossRef
111.
go back to reference Neves RL, Chiarantin GM, Nascimento FD, Pesquero JB, Nader HB, Tersariol IL, et al. Expression and inactivation of osteopontin-degrading PHEX enzyme in squamous cell carcinoma. Int J Biochem Cell Biol. 2016;77(Pt A):155–64.PubMedCrossRef Neves RL, Chiarantin GM, Nascimento FD, Pesquero JB, Nader HB, Tersariol IL, et al. Expression and inactivation of osteopontin-degrading PHEX enzyme in squamous cell carcinoma. Int J Biochem Cell Biol. 2016;77(Pt A):155–64.PubMedCrossRef
112.
go back to reference Salmon B, Bardet C, Khaddam M, Naji J, Coyac BR, Baroukh B, et al. MEPE-derived ASARM peptide inhibits odontogenic differentiation of dental pulp stem cells and impairs mineralization in tooth models of X-linked hypophosphatemia. PLoS One. 2013;8:e56749.PubMedPubMedCentralCrossRef Salmon B, Bardet C, Khaddam M, Naji J, Coyac BR, Baroukh B, et al. MEPE-derived ASARM peptide inhibits odontogenic differentiation of dental pulp stem cells and impairs mineralization in tooth models of X-linked hypophosphatemia. PLoS One. 2013;8:e56749.PubMedPubMedCentralCrossRef
113.
go back to reference Caballero D, Li Y, Ponsetto J, Zhu C, Bergwitz C. Impaired urinary osteopontin excretion in Npt2a-/- mice. Am J Physiol Ren Physiol. 2017;312:F77–f83.CrossRef Caballero D, Li Y, Ponsetto J, Zhu C, Bergwitz C. Impaired urinary osteopontin excretion in Npt2a-/- mice. Am J Physiol Ren Physiol. 2017;312:F77–f83.CrossRef
114.
go back to reference Yuan Q, Jiang Y, Zhao X, Sato T, Densmore M, Schüler C, et al. Increased osteopontin contributes to inhibition of bone mineralization in FGF23-deficient mice. J Bone Miner Res Off J Am Soc Bone Miner Res. 2014;29:693–704.CrossRef Yuan Q, Jiang Y, Zhao X, Sato T, Densmore M, Schüler C, et al. Increased osteopontin contributes to inhibition of bone mineralization in FGF23-deficient mice. J Bone Miner Res Off J Am Soc Bone Miner Res. 2014;29:693–704.CrossRef
115.
go back to reference Narisawa S, Frohlander N, Millan JL. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn. 1997;208:432–46.PubMedCrossRef Narisawa S, Frohlander N, Millan JL. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn. 1997;208:432–46.PubMedCrossRef
116.
go back to reference Mumm S, Jones J, Finnegan P, Whyte MP. Hypophosphatasia: molecular diagnosis of Rathbun’s original case. J Bone Min Res. 2001;16:1724–7.CrossRef Mumm S, Jones J, Finnegan P, Whyte MP. Hypophosphatasia: molecular diagnosis of Rathbun’s original case. J Bone Min Res. 2001;16:1724–7.CrossRef
117.
go back to reference Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 2005;19:1093–104.PubMedPubMedCentralCrossRef Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 2005;19:1093–104.PubMedPubMedCentralCrossRef
118.
go back to reference Russell RG, Bisaz S, Donath A, Morgan DB, Fleisch H. Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta, and other disorders of bone. J Clin Invest. 1971;50:961–9.PubMedPubMedCentralCrossRef Russell RG, Bisaz S, Donath A, Morgan DB, Fleisch H. Inorganic pyrophosphate in plasma in normal persons and in patients with hypophosphatasia, osteogenesis imperfecta, and other disorders of bone. J Clin Invest. 1971;50:961–9.PubMedPubMedCentralCrossRef
119.
go back to reference Kawai M, Kinoshita S, Kimoto A, Hasegawa Y, Miyagawa K, Yamazaki M, et al. FGF23 suppresses chondrocyte proliferation in the presence of soluble alpha-Klotho both in vitro and in vivo. J Biol Chem. 2013;288:2414–27.PubMedCrossRef Kawai M, Kinoshita S, Kimoto A, Hasegawa Y, Miyagawa K, Yamazaki M, et al. FGF23 suppresses chondrocyte proliferation in the presence of soluble alpha-Klotho both in vitro and in vivo. J Biol Chem. 2013;288:2414–27.PubMedCrossRef
120.
go back to reference Kinoshita S, Kawai M. The FGF23/KLOTHO Regulatory Network and Its Roles in Human Disorders. Vitam Horm. 2016;101:151–74.PubMedCrossRef Kinoshita S, Kawai M. The FGF23/KLOTHO Regulatory Network and Its Roles in Human Disorders. Vitam Horm. 2016;101:151–74.PubMedCrossRef
121.
go back to reference Su CC, Kao CT, Hung CJ, Chen YJ, Huang TH, Shie MY. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of beta-tricalcium phosphate for bone cement by calcium silicate. Mater Sci Eng C Mater Biol Appl. 2014;37:156–63.PubMedCrossRef Su CC, Kao CT, Hung CJ, Chen YJ, Huang TH, Shie MY. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of beta-tricalcium phosphate for bone cement by calcium silicate. Mater Sci Eng C Mater Biol Appl. 2014;37:156–63.PubMedCrossRef
123.
go back to reference Liu J, Kwon TG, Nam HK, Hatch NE. Craniosynostosis-Associated Fgfr2(C342Y) Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation. BioMed Res Int. 2013;2013:292506.PubMedPubMedCentral Liu J, Kwon TG, Nam HK, Hatch NE. Craniosynostosis-Associated Fgfr2(C342Y) Mutant Bone Marrow Stromal Cells Exhibit Cell Autonomous Abnormalities in Osteoblast Differentiation and Bone Formation. BioMed Res Int. 2013;2013:292506.PubMedPubMedCentral
124.
go back to reference Hatch NE, Li Y, Franceschi RT. FGF2 stimulation of the pyrophosphate-generating enzyme, PC-1, in pre-osteoblast cells is mediated by RUNX2. J Bone Min Res. 2009;24:652–62.CrossRef Hatch NE, Li Y, Franceschi RT. FGF2 stimulation of the pyrophosphate-generating enzyme, PC-1, in pre-osteoblast cells is mediated by RUNX2. J Bone Min Res. 2009;24:652–62.CrossRef
125.
go back to reference Wang E, Nam HK, Liu J, Hatch NE. The Effects of Tissue-Nonspecific Alkaline Phosphatase Gene Therapy on Craniosynostosis and Craniofacial Morphology in the FGFR2(C342Y/+) Mouse Model of Crouzon Craniosynostosis. Orthod Craniofac Res. 2015;18(0 1):196–206.PubMedPubMedCentralCrossRef Wang E, Nam HK, Liu J, Hatch NE. The Effects of Tissue-Nonspecific Alkaline Phosphatase Gene Therapy on Craniosynostosis and Craniofacial Morphology in the FGFR2(C342Y/+) Mouse Model of Crouzon Craniosynostosis. Orthod Craniofac Res. 2015;18(0 1):196–206.PubMedPubMedCentralCrossRef
126.
go back to reference Ichikawa S, Austin AM, Gray AK, Econs MJ. A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells. J Bone Miner Res. 2012;27:453–60.PubMedCrossRef Ichikawa S, Austin AM, Gray AK, Econs MJ. A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells. J Bone Miner Res. 2012;27:453–60.PubMedCrossRef
127.
go back to reference Ichikawa S, Gray AK, Bikorimana E, Econs MJ. Dosage effect of a Phex mutation in a murine model of X-linked hypophosphatemia. Calcif Tissue Int. 2013;93:155–62.PubMedPubMedCentralCrossRef Ichikawa S, Gray AK, Bikorimana E, Econs MJ. Dosage effect of a Phex mutation in a murine model of X-linked hypophosphatemia. Calcif Tissue Int. 2013;93:155–62.PubMedPubMedCentralCrossRef
128.
go back to reference Hana T, Tanaka S, Nakatomi H, Shojima M, Fukumoto S, Ikemura M, et al. Definitive surgical treatment of osteomalacia induced by skull base tumor and determination of the half-life of serum fibroblast growth factor 23. Endocr J. 2017;64(10):1033–9.PubMedCrossRef Hana T, Tanaka S, Nakatomi H, Shojima M, Fukumoto S, Ikemura M, et al. Definitive surgical treatment of osteomalacia induced by skull base tumor and determination of the half-life of serum fibroblast growth factor 23. Endocr J. 2017;64(10):1033–9.PubMedCrossRef
129.
go back to reference Yavropoulou MP, Gerothanasi N, Frydas A, Triantafyllou E, Poulios C, Hytiroglou P, et al. Tumor-induced osteomalacia due to a recurrent mesenchymal tumor overexpressing several growth factor receptors. Endocrinol Diabetes Metab Case Rep. 2015;2015:150025.PubMedPubMedCentral Yavropoulou MP, Gerothanasi N, Frydas A, Triantafyllou E, Poulios C, Hytiroglou P, et al. Tumor-induced osteomalacia due to a recurrent mesenchymal tumor overexpressing several growth factor receptors. Endocrinol Diabetes Metab Case Rep. 2015;2015:150025.PubMedPubMedCentral
130.
go back to reference Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, et al. Therapeutic Effects of Anti-FGF23 Antibodies in Hypophosphatemic Rickets/Osteomalacia. J Bone Miner Res. 2009;24:1879–88.PubMedCrossRef Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, et al. Therapeutic Effects of Anti-FGF23 Antibodies in Hypophosphatemic Rickets/Osteomalacia. J Bone Miner Res. 2009;24:1879–88.PubMedCrossRef
131.
go back to reference Aono Y, Hasegawa H, Yamazaki Y, Shimada T, Fujita T, Yamashita T, et al. Anti-FGF-23 neutralizing antibodies ameliorate muscle weakness and decreased spontaneous movement of Hyp mice. J Bone Miner Res. 2011;26:803–10.PubMedCrossRef Aono Y, Hasegawa H, Yamazaki Y, Shimada T, Fujita T, Yamashita T, et al. Anti-FGF-23 neutralizing antibodies ameliorate muscle weakness and decreased spontaneous movement of Hyp mice. J Bone Miner Res. 2011;26:803–10.PubMedCrossRef
132.
go back to reference Wohrle S, Henninger C, Bonny O, Thuery A, Beluch N, Hynes NE, et al. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. J Bone Min Res. 2013;28:899–911.CrossRef Wohrle S, Henninger C, Bonny O, Thuery A, Beluch N, Hynes NE, et al. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. J Bone Min Res. 2013;28:899–911.CrossRef
134.
go back to reference Insogna KL, Briot K, Imel EA, Kamenický P, Ruppe MD, Portale AA, et al. A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial Evaluating the Efficacy of Burosumab, an Anti-FGF23 Antibody, in Adults With X-Linked Hypophosphatemia: Week 24 Primary Analysis. J Bone Miner Res. 2018;33:1383–93.PubMedCrossRef Insogna KL, Briot K, Imel EA, Kamenický P, Ruppe MD, Portale AA, et al. A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial Evaluating the Efficacy of Burosumab, an Anti-FGF23 Antibody, in Adults With X-Linked Hypophosphatemia: Week 24 Primary Analysis. J Bone Miner Res. 2018;33:1383–93.PubMedCrossRef
135.
go back to reference Carpenter TO, Whyte MP, Imel EA, Boot AM, Högler W, Linglart A, et al. Burosumab Therapy in Children with X-Linked Hypophosphatemia. N Engl J Med. 2018;378:1987–98.PubMedCrossRef Carpenter TO, Whyte MP, Imel EA, Boot AM, Högler W, Linglart A, et al. Burosumab Therapy in Children with X-Linked Hypophosphatemia. N Engl J Med. 2018;378:1987–98.PubMedCrossRef
136.
go back to reference Harrell RM, Lyles KW, Harrelson JM, Friedman NE, Drezner MK. Healing of bone disease in X-linked hypophosphatemic rickets/osteomalacia. Induction and maintenance with phosphorus and calcitriol. J Clin Invest. 1985;75:1858–68.PubMedPubMedCentralCrossRef Harrell RM, Lyles KW, Harrelson JM, Friedman NE, Drezner MK. Healing of bone disease in X-linked hypophosphatemic rickets/osteomalacia. Induction and maintenance with phosphorus and calcitriol. J Clin Invest. 1985;75:1858–68.PubMedPubMedCentralCrossRef
137.
go back to reference Polisson RP, Martinez S, Khoury M, Harrell RM, Lyles KW, Friedman N, et al. Calcification of entheses associated with X-linked hypophosphatemic osteomalacia. N Engl J Med. 1985;313:1–6.PubMedCrossRef Polisson RP, Martinez S, Khoury M, Harrell RM, Lyles KW, Friedman N, et al. Calcification of entheses associated with X-linked hypophosphatemic osteomalacia. N Engl J Med. 1985;313:1–6.PubMedCrossRef
138.
go back to reference Skrinar A, Marshall A, Martin JS, Dvorak-Ewell M. X-Linked hypophosphatemia (XLH) impairs skeletal health outcomes and physical function in affected adults. Endocrine Reviews. 2015;36(2). Skrinar A, Marshall A, Martin JS, Dvorak-Ewell M. X-Linked hypophosphatemia (XLH) impairs skeletal health outcomes and physical function in affected adults. Endocrine Reviews. 2015;36(2).
139.
go back to reference Nehgme R, Fahey JT, Smith C, Carpenter TO. Cardiovascular abnormalities in patients with X-linked hypophosphatemia. J Clin Endocrinol Metab. 1997;82:2450–4.PubMedCrossRef Nehgme R, Fahey JT, Smith C, Carpenter TO. Cardiovascular abnormalities in patients with X-linked hypophosphatemia. J Clin Endocrinol Metab. 1997;82:2450–4.PubMedCrossRef
140.
141.
go back to reference Patzer L, van’t Hoff W, Shah V, Hallson P, Kasidas GP, Samuell C, et al. Urinary supersaturation of calcium oxalate and phosphate in patients with X-linked hypophosphatemic rickets and in healthy schoolchildren. J Pediatr. 1999;135:611–7.PubMedCrossRef Patzer L, van’t Hoff W, Shah V, Hallson P, Kasidas GP, Samuell C, et al. Urinary supersaturation of calcium oxalate and phosphate in patients with X-linked hypophosphatemic rickets and in healthy schoolchildren. J Pediatr. 1999;135:611–7.PubMedCrossRef
142.
go back to reference Alon U, Donaldson DL, Hellerstein S, Warady BA, Harris DJ. Metabolic and histologic investigation of the nature of nephrocalcinosis in children with hypophosphatemic rickets and in the Hyp mouse. J Pediatr. 1992;120:899–905.PubMedCrossRef Alon U, Donaldson DL, Hellerstein S, Warady BA, Harris DJ. Metabolic and histologic investigation of the nature of nephrocalcinosis in children with hypophosphatemic rickets and in the Hyp mouse. J Pediatr. 1992;120:899–905.PubMedCrossRef
143.
go back to reference Taylor A, Sherman NH, Norman ME. Nephrocalcinosis in X-linked hypophosphatemia: effect of treatment versus disease. Pediatr Nephrol. 1995;9:173–5.PubMedCrossRef Taylor A, Sherman NH, Norman ME. Nephrocalcinosis in X-linked hypophosphatemia: effect of treatment versus disease. Pediatr Nephrol. 1995;9:173–5.PubMedCrossRef
145.
go back to reference Sun GE, Suer O, Carpenter TO, Tan CD, Li-Ng M. Heart failure in hypophosphatemic rickets: complications from high-dose phosphate therapy. Endocr Pr. 2013;19:e8–11.CrossRef Sun GE, Suer O, Carpenter TO, Tan CD, Li-Ng M. Heart failure in hypophosphatemic rickets: complications from high-dose phosphate therapy. Endocr Pr. 2013;19:e8–11.CrossRef
147.
go back to reference Dinour D, Davidovits M, Ganon L, Ruminska J, Forster IC, Hernando N, et al. Loss of function of NaPiIIa causes nephrocalcinosis and possibly kidney insufficiency. Pediatr Nephrol. 2016;31:2289–97.PubMedCrossRef Dinour D, Davidovits M, Ganon L, Ruminska J, Forster IC, Hernando N, et al. Loss of function of NaPiIIa causes nephrocalcinosis and possibly kidney insufficiency. Pediatr Nephrol. 2016;31:2289–97.PubMedCrossRef
148.
go back to reference Rajagopal A, Braslavsky D, Lu JT, Kleppe S, Clement F, Cassinelli H, et al. Exome sequencing identifies a novel homozygous mutation in the phosphate transporter SLC34A1 in hypophosphatemia and nephrocalcinosis. J Clin Endocrinol Metab. 2014;99:E2451–6.PubMedPubMedCentralCrossRef Rajagopal A, Braslavsky D, Lu JT, Kleppe S, Clement F, Cassinelli H, et al. Exome sequencing identifies a novel homozygous mutation in the phosphate transporter SLC34A1 in hypophosphatemia and nephrocalcinosis. J Clin Endocrinol Metab. 2014;99:E2451–6.PubMedPubMedCentralCrossRef
149.
go back to reference Li Y, Caballero D, Ponsetto J, Chen A, Zhu C, Guo J, et al. Response of Npt2a knockout mice to dietary calcium and phosphorus. PLoS One. 2017;12:e0176232.PubMedPubMedCentralCrossRef Li Y, Caballero D, Ponsetto J, Chen A, Zhu C, Guo J, et al. Response of Npt2a knockout mice to dietary calcium and phosphorus. PLoS One. 2017;12:e0176232.PubMedPubMedCentralCrossRef
150.
go back to reference Mitchell DM, Juppner H, Burnett-Bowie SM. FGF23 Is Not Associated With Age-Related Changes in Phosphate, but Enhances Renal Calcium Reabsorption in Girls. J Clin Endocrinol Metab. 2017;102:1151–60.PubMedPubMedCentralCrossRef Mitchell DM, Juppner H, Burnett-Bowie SM. FGF23 Is Not Associated With Age-Related Changes in Phosphate, but Enhances Renal Calcium Reabsorption in Girls. J Clin Endocrinol Metab. 2017;102:1151–60.PubMedPubMedCentralCrossRef
151.
go back to reference Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 2014;33:229–46.PubMedPubMedCentral Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U, Goetz R, et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 2014;33:229–46.PubMedPubMedCentral
152.
go back to reference Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B, et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med. 2014;6:744–59.PubMedPubMedCentralCrossRef Andrukhova O, Slavic S, Smorodchenko A, Zeitz U, Shalhoub V, Lanske B, et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med. 2014;6:744–59.PubMedPubMedCentralCrossRef
153.
go back to reference Alon US, Monzavi R, Lilien M, Rasoulpour M, Geffner ME, Yadin O. Hypertension in hypophosphatemic rickets--role of secondary hyperparathyroidism. Pediatr Nephrol. 2003;18:155–8.PubMedCrossRef Alon US, Monzavi R, Lilien M, Rasoulpour M, Geffner ME, Yadin O. Hypertension in hypophosphatemic rickets--role of secondary hyperparathyroidism. Pediatr Nephrol. 2003;18:155–8.PubMedCrossRef
154.
go back to reference Vered I, Vered Z, Perez JE, Jaffe AS, Whyte MP. Normal left ventricular performance in children with X-linked hypophosphatemic rickets: a Doppler echocardiography study. J Bone Min Res. 1990;5:469–74.CrossRef Vered I, Vered Z, Perez JE, Jaffe AS, Whyte MP. Normal left ventricular performance in children with X-linked hypophosphatemic rickets: a Doppler echocardiography study. J Bone Min Res. 1990;5:469–74.CrossRef
156.
go back to reference Panwar B, Jenny NS, Howard VJ, Wadley VG, Muntner P, Kissela BM, et al. Fibroblast growth factor 23 and risk of incident stroke in community-living adults. Stroke. 2015;46:322–8.PubMedPubMedCentralCrossRef Panwar B, Jenny NS, Howard VJ, Wadley VG, Muntner P, Kissela BM, et al. Fibroblast growth factor 23 and risk of incident stroke in community-living adults. Stroke. 2015;46:322–8.PubMedPubMedCentralCrossRef
157.
go back to reference Shah NH, Dong C, Elkind MS, Sacco RL, Mendez AJ, Hudson BI, et al. Fibroblast Growth Factor 23 Is Associated With Carotid Plaque Presence and Area: The Northern Manhattan Study. Arter Thromb Vasc Biol. 2015;35:2048–53.CrossRef Shah NH, Dong C, Elkind MS, Sacco RL, Mendez AJ, Hudson BI, et al. Fibroblast Growth Factor 23 Is Associated With Carotid Plaque Presence and Area: The Northern Manhattan Study. Arter Thromb Vasc Biol. 2015;35:2048–53.CrossRef
158.
go back to reference Leifheit-Nestler M, Grosse Siemer R, Flasbart K, Richter B, Kirchhoff F, Ziegler WH, et al. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol Dial Transpl. 2016;31:1088–99.CrossRef Leifheit-Nestler M, Grosse Siemer R, Flasbart K, Richter B, Kirchhoff F, Ziegler WH, et al. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrol Dial Transpl. 2016;31:1088–99.CrossRef
159.
go back to reference Wright CB, Shah NH, Mendez AJ, DeRosa JT, Yoshita M, Elkind MS, et al. Fibroblast Growth Factor 23 Is Associated With Subclinical Cerebrovascular Damage: The Northern Manhattan Study. Stroke. 2016;47:923–8.PubMedPubMedCentralCrossRef Wright CB, Shah NH, Mendez AJ, DeRosa JT, Yoshita M, Elkind MS, et al. Fibroblast Growth Factor 23 Is Associated With Subclinical Cerebrovascular Damage: The Northern Manhattan Study. Stroke. 2016;47:923–8.PubMedPubMedCentralCrossRef
160.
go back to reference Hao H, Li X, Li Q, Lin H, Chen Z, Xie J, et al. FGF23 promotes myocardial fibrosis in mice through activation of beta-catenin. Oncotarget. 2016;7:64649–64.PubMedPubMedCentralCrossRef Hao H, Li X, Li Q, Lin H, Chen Z, Xie J, et al. FGF23 promotes myocardial fibrosis in mice through activation of beta-catenin. Oncotarget. 2016;7:64649–64.PubMedPubMedCentralCrossRef
161.
go back to reference Rotondi S, Pasquali M, Tartaglione L, Muci ML, Mandanici G, Leonangeli C, et al. Soluble α-Klotho Serum Levels in Chronic Kidney Disease. Int J Endocrinol. 2015;2015:872193.PubMedPubMedCentralCrossRef Rotondi S, Pasquali M, Tartaglione L, Muci ML, Mandanici G, Leonangeli C, et al. Soluble α-Klotho Serum Levels in Chronic Kidney Disease. Int J Endocrinol. 2015;2015:872193.PubMedPubMedCentralCrossRef
162.
163.
go back to reference Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, et al. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metab. 2015;22:1020–32.PubMedPubMedCentralCrossRef Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, et al. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metab. 2015;22:1020–32.PubMedPubMedCentralCrossRef
164.
go back to reference Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 2016;90:985–96.PubMedPubMedCentralCrossRef Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 2016;90:985–96.PubMedPubMedCentralCrossRef
165.
go back to reference Andrukhova O, Slavic S, Zeitz U, Riesen SC, Heppelmann MS, Ambrisko TD, et al. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol. 2014;28:53–64.PubMedCrossRef Andrukhova O, Slavic S, Zeitz U, Riesen SC, Heppelmann MS, Ambrisko TD, et al. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol. 2014;28:53–64.PubMedCrossRef
166.
go back to reference Cianciolo G, Galassi A, Capelli I, Schillaci R, La Manna G, Cozzolino M. Klotho-FGF23, cardiovascular disease, and vascular calcification: black or white. Curr Vasc Pharmacol. 2018;16:143-56. Cianciolo G, Galassi A, Capelli I, Schillaci R, La Manna G, Cozzolino M. Klotho-FGF23, cardiovascular disease, and vascular calcification: black or white. Curr Vasc Pharmacol. 2018;16:143-56.
167.
go back to reference Portale AA, Wolf MS, Messinger S, Perwad F, Juppner H, Warady BA, et al. Fibroblast Growth Factor 23 and Risk of CKD Progression in Children. Clin J Am Soc Nephrol. 2016;11:1989–98.PubMedPubMedCentralCrossRef Portale AA, Wolf MS, Messinger S, Perwad F, Juppner H, Warady BA, et al. Fibroblast Growth Factor 23 and Risk of CKD Progression in Children. Clin J Am Soc Nephrol. 2016;11:1989–98.PubMedPubMedCentralCrossRef
168.
go back to reference Schnedl C, Fahrleitner-Pammer A, Pietschmann P, Amrein K. FGF23 in Acute and Chronic Illness. Markers. 2015;2015:358086. Schnedl C, Fahrleitner-Pammer A, Pietschmann P, Amrein K. FGF23 in Acute and Chronic Illness. Markers. 2015;2015:358086.
169.
go back to reference Liang G, Katz LD, Insogna KL, Carpenter TO, Macica CM. Survey of the Enthesopathy of X-Linked Hypophosphatemia and Its Characterization in Hyp Mice. Calcif Tissue Int. 2009;85:235–46. Liang G, Katz LD, Insogna KL, Carpenter TO, Macica CM. Survey of the Enthesopathy of X-Linked Hypophosphatemia and Its Characterization in Hyp Mice. Calcif Tissue Int. 2009;85:235–46.
170.
go back to reference Che H, Roux C, Etcheto A, Rothenbuhler A, Kamenicky P, Linglart A, et al. Impaired quality of life in adults with X-linked hypophosphatemia and skeletal symptoms. Eur J Endocrinol. 2016;174:325–33.PubMedCrossRef Che H, Roux C, Etcheto A, Rothenbuhler A, Kamenicky P, Linglart A, et al. Impaired quality of life in adults with X-linked hypophosphatemia and skeletal symptoms. Eur J Endocrinol. 2016;174:325–33.PubMedCrossRef
171.
go back to reference Karaplis AC, Bai X, Falet JP, Macica CM. Mineralizing enthesopathy is a common feature of renal phosphate-wasting disorders attributed to FGF23 and is exacerbated by standard therapy in hyp mice. Endocrinology. 2012;153:5906–17.PubMedPubMedCentralCrossRef Karaplis AC, Bai X, Falet JP, Macica CM. Mineralizing enthesopathy is a common feature of renal phosphate-wasting disorders attributed to FGF23 and is exacerbated by standard therapy in hyp mice. Endocrinology. 2012;153:5906–17.PubMedPubMedCentralCrossRef
172.
go back to reference Saito T, Shimizu Y, Hori M, Taguchi M, Igarashi T, Fukumoto S, et al. A patient with hypophosphatemic rickets and ossification of posterior longitudinal ligament caused by a novel homozygous mutation in ENPP1 gene. Bone. 2011;49:913–6.PubMedCrossRef Saito T, Shimizu Y, Hori M, Taguchi M, Igarashi T, Fukumoto S, et al. A patient with hypophosphatemic rickets and ossification of posterior longitudinal ligament caused by a novel homozygous mutation in ENPP1 gene. Bone. 2011;49:913–6.PubMedCrossRef
173.
go back to reference Makitie O, Pereira RC, Kaitila I, Turan S, Bastepe M, Laine T, et al. Long-term clinical outcome and carrier phenotype in autosomal recessive hypophosphatemia caused by a novel DMP1 mutation. J Bone Min Res. 2010;25:2165–74.CrossRef Makitie O, Pereira RC, Kaitila I, Turan S, Bastepe M, Laine T, et al. Long-term clinical outcome and carrier phenotype in autosomal recessive hypophosphatemia caused by a novel DMP1 mutation. J Bone Min Res. 2010;25:2165–74.CrossRef
174.
go back to reference Liang G, Vanhouten J, Macica CM. An atypical degenerative osteoarthropathy in Hyp mice is characterized by a loss in the mineralized zone of articular cartilage. Calcif Tissue Int. 2011;89:151–62.PubMedCrossRef Liang G, Vanhouten J, Macica CM. An atypical degenerative osteoarthropathy in Hyp mice is characterized by a loss in the mineralized zone of articular cartilage. Calcif Tissue Int. 2011;89:151–62.PubMedCrossRef
175.
go back to reference Hardy DC, Murphy WA, Siegel BA, Reid IR, Whyte MP. X-linked hypophosphatemia in adults: prevalence of skeletal radiographic and scintigraphic features. Radiology. 1989;171:403–14.PubMedCrossRef Hardy DC, Murphy WA, Siegel BA, Reid IR, Whyte MP. X-linked hypophosphatemia in adults: prevalence of skeletal radiographic and scintigraphic features. Radiology. 1989;171:403–14.PubMedCrossRef
176.
177.
go back to reference D’Angelo M, Yan Z, Nooreyazdan M, Pacifici M, Sarment DS, Billings PC, et al. MMP-13 is induced during chondrocyte hypertrophy. J Cell Biochem. 2000;77:678–93.PubMedCrossRef D’Angelo M, Yan Z, Nooreyazdan M, Pacifici M, Sarment DS, Billings PC, et al. MMP-13 is induced during chondrocyte hypertrophy. J Cell Biochem. 2000;77:678–93.PubMedCrossRef
178.
go back to reference Ruppe MD, Zhang X, Imel EA, Weber TJ, Klausner MA, Ito T, et al. Effect of four monthly doses of a human monoclonal anti-FGF23 antibody (KRN23) on quality of life in X-linked hypophosphatemia. Bone Rep. 2016;5:158–62.PubMedPubMedCentralCrossRef Ruppe MD, Zhang X, Imel EA, Weber TJ, Klausner MA, Ito T, et al. Effect of four monthly doses of a human monoclonal anti-FGF23 antibody (KRN23) on quality of life in X-linked hypophosphatemia. Bone Rep. 2016;5:158–62.PubMedPubMedCentralCrossRef
179.
go back to reference Veilleux LN, Cheung M, Ben Amor M, Rauch F. Abnormalities in muscle density and muscle function in hypophosphatemic rickets. J Clin Endocrinol Metab. 2012;97:E1492–8.PubMedCrossRef Veilleux LN, Cheung M, Ben Amor M, Rauch F. Abnormalities in muscle density and muscle function in hypophosphatemic rickets. J Clin Endocrinol Metab. 2012;97:E1492–8.PubMedCrossRef
180.
go back to reference Veilleux LN, Cheung MS, Glorieux FH, Rauch F. The muscle-bone relationship in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2013;98:E990–5.PubMedCrossRef Veilleux LN, Cheung MS, Glorieux FH, Rauch F. The muscle-bone relationship in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2013;98:E990–5.PubMedCrossRef
181.
go back to reference Bonewald LF. The Role of the Osteocyte in Bone and Nonbone Disease. Endocrinol Metab Clin North Am. 2017;46:1–18.PubMedCrossRef Bonewald LF. The Role of the Osteocyte in Bone and Nonbone Disease. Endocrinol Metab Clin North Am. 2017;46:1–18.PubMedCrossRef
182.
go back to reference Schubert L, DeLuca HF. Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch Biochem Biophys. 2010;500:157–61.PubMedCrossRef Schubert L, DeLuca HF. Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch Biochem Biophys. 2010;500:157–61.PubMedCrossRef
183.
go back to reference Chen Y-Y, Kao T-W, Chou C-W, Wu C-J, Yang H-F, Lai C-H, et al. Exploring the Link between Serum Phosphate Levels and Low Muscle Strength, Dynapenia, and Sarcopenia. Sci Rep. 2018;8:3573.PubMedPubMedCentralCrossRef Chen Y-Y, Kao T-W, Chou C-W, Wu C-J, Yang H-F, Lai C-H, et al. Exploring the Link between Serum Phosphate Levels and Low Muscle Strength, Dynapenia, and Sarcopenia. Sci Rep. 2018;8:3573.PubMedPubMedCentralCrossRef
184.
go back to reference Minisola S, Peacock M, Fukumoto S, Cipriani C, Pepe J, Tella SH, et al. Tumour-induced osteomalacia. Nat Rev Primer. 2017;3:17044.CrossRef Minisola S, Peacock M, Fukumoto S, Cipriani C, Pepe J, Tella SH, et al. Tumour-induced osteomalacia. Nat Rev Primer. 2017;3:17044.CrossRef
185.
go back to reference Pesta DH, Tsirigotis DN, Befroy DE, Caballero D, Jurczak MJ, Rahimi Y, et al. Hypophosphatemia promotes lower rates of muscle ATP synthesis. Faseb J. 2016;30:3378–87.PubMedPubMedCentralCrossRef Pesta DH, Tsirigotis DN, Befroy DE, Caballero D, Jurczak MJ, Rahimi Y, et al. Hypophosphatemia promotes lower rates of muscle ATP synthesis. Faseb J. 2016;30:3378–87.PubMedPubMedCentralCrossRef
186.
go back to reference Larner AJ. Oral phosphate supplements reverse skeletal muscle abnormalities in a case of chronic fatigue with idiopathic renal hypophosphataemia. Neuromuscul Disord. 1994;4:155.PubMedCrossRef Larner AJ. Oral phosphate supplements reverse skeletal muscle abnormalities in a case of chronic fatigue with idiopathic renal hypophosphataemia. Neuromuscul Disord. 1994;4:155.PubMedCrossRef
187.
go back to reference Hoshino C, Satoh N, Sugawara S, Kuriyama C, Kikuchi A, Ohta M. Sporadic adult-onset hypophosphatemic osteomalacia caused by excessive action of fibroblast growth factor 23. Intern Med. 2008;47:453–7.PubMedCrossRef Hoshino C, Satoh N, Sugawara S, Kuriyama C, Kikuchi A, Ohta M. Sporadic adult-onset hypophosphatemic osteomalacia caused by excessive action of fibroblast growth factor 23. Intern Med. 2008;47:453–7.PubMedCrossRef
188.
go back to reference Claus KN, Day TK, Wolf C. Neuromuscular signs associated with acute hypophosphatemia in a dog. J Am Anim Hosp Assoc. 2015;51:161–6.PubMedCrossRef Claus KN, Day TK, Wolf C. Neuromuscular signs associated with acute hypophosphatemia in a dog. J Am Anim Hosp Assoc. 2015;51:161–6.PubMedCrossRef
189.
go back to reference Sato C, Iso Y, Mizukami T, Otabe K, Sasai M, Kurata M, et al. Fibroblast growth factor-23 induces cellular senescence in human mesenchymal stem cells from skeletal muscle. Biochem Biophys Res Commun. 2016;470:657–62.PubMedCrossRef Sato C, Iso Y, Mizukami T, Otabe K, Sasai M, Kurata M, et al. Fibroblast growth factor-23 induces cellular senescence in human mesenchymal stem cells from skeletal muscle. Biochem Biophys Res Commun. 2016;470:657–62.PubMedCrossRef
190.
go back to reference Li DJ, Fu H, Zhao T, Ni M, Shen FM. Exercise-stimulated FGF23 promotes exercise performance via controlling the excess reactive oxygen species production and enhancing mitochondrial function in skeletal muscle. Metabolism. 2016;65:747–56.PubMedCrossRef Li DJ, Fu H, Zhao T, Ni M, Shen FM. Exercise-stimulated FGF23 promotes exercise performance via controlling the excess reactive oxygen species production and enhancing mitochondrial function in skeletal muscle. Metabolism. 2016;65:747–56.PubMedCrossRef
191.
go back to reference Fukasawa H, Ishigaki S, Kinoshita-Katahashi N, Niwa H, Yasuda H, Kumagai H, et al. Plasma levels of fibroblast growth factor-23 are associated with muscle mass in haemodialysis patients. Nephrol Carlton. 2014;19:784–90.CrossRef Fukasawa H, Ishigaki S, Kinoshita-Katahashi N, Niwa H, Yasuda H, Kumagai H, et al. Plasma levels of fibroblast growth factor-23 are associated with muscle mass in haemodialysis patients. Nephrol Carlton. 2014;19:784–90.CrossRef
192.
go back to reference Zoller H, Schaefer B, Glodny B. Iron-induced hypophosphatemia: an emerging complication. Curr Opin Nephrol Hypertens. 2017;26:266–75.PubMedCrossRef Zoller H, Schaefer B, Glodny B. Iron-induced hypophosphatemia: an emerging complication. Curr Opin Nephrol Hypertens. 2017;26:266–75.PubMedCrossRef
193.
go back to reference Caldemeyer KS, Boaz JC, Wappner RS, Moran CC, Smith RR, Quets JP. Chiari I malformation: association with hypophosphatemic rickets and MR imaging appearance. Radiology. 1995;195:733–8.PubMedCrossRef Caldemeyer KS, Boaz JC, Wappner RS, Moran CC, Smith RR, Quets JP. Chiari I malformation: association with hypophosphatemic rickets and MR imaging appearance. Radiology. 1995;195:733–8.PubMedCrossRef
194.
195.
go back to reference Vega RA, Opalak C, Harshbarger RJ, Fearon JA, Ritter AM, Collins JJ, et al. Hypophosphatemic rickets and craniosynostosis: a multicenter case series. J Neurosurg Pediatr. 2016;17:694–700.PubMedCrossRef Vega RA, Opalak C, Harshbarger RJ, Fearon JA, Ritter AM, Collins JJ, et al. Hypophosphatemic rickets and craniosynostosis: a multicenter case series. J Neurosurg Pediatr. 2016;17:694–700.PubMedCrossRef
196.
go back to reference White KE, Cabral JM, Davis SI, Fishburn T, Evans WE, Ichikawa S, et al. Mutations that Cause Osteoglophonic Dysplasia Define Novel Roles for FGFR1 in Bone Elongation. Am J Hum Genet. 2005;76:361–7.PubMedCrossRef White KE, Cabral JM, Davis SI, Fishburn T, Evans WE, Ichikawa S, et al. Mutations that Cause Osteoglophonic Dysplasia Define Novel Roles for FGFR1 in Bone Elongation. Am J Hum Genet. 2005;76:361–7.PubMedCrossRef
197.
go back to reference Di Rocco F, Biosse Duplan M, Heuze Y, Kaci N, Komla-Ebri D, Munnich A, et al. FGFR3 mutation causes abnormal membranous ossification in achondroplasia. Hum Mol Genet. 2014;23:2914–25.PubMedCrossRef Di Rocco F, Biosse Duplan M, Heuze Y, Kaci N, Komla-Ebri D, Munnich A, et al. FGFR3 mutation causes abnormal membranous ossification in achondroplasia. Hum Mol Genet. 2014;23:2914–25.PubMedCrossRef
198.
go back to reference Cohen MM Jr, Walker GF, Phillips C. A morphometric analysis of the craniofacial configuration in achondroplasia. J Craniofac Genet Dev Biol Suppl. 1985;1:139–65.PubMed Cohen MM Jr, Walker GF, Phillips C. A morphometric analysis of the craniofacial configuration in achondroplasia. J Craniofac Genet Dev Biol Suppl. 1985;1:139–65.PubMed
199.
go back to reference Gjorup H, Kjaer I, Sonnesen L, Beck-Nielsen SS, Haubek D. Morphological characteristics of frontal sinus and nasal bone focusing on bone resorption and apposition in hypophosphatemic rickets. Orthod Craniofac Res. 2013;16:246–55.PubMed Gjorup H, Kjaer I, Sonnesen L, Beck-Nielsen SS, Haubek D. Morphological characteristics of frontal sinus and nasal bone focusing on bone resorption and apposition in hypophosphatemic rickets. Orthod Craniofac Res. 2013;16:246–55.PubMed
200.
go back to reference Iorio RJ, Murray G, Meyer RA Jr. Craniometric measurements of craniofacial malformations in mice with X-linked, dominant hypophosphatemia (vitamin D-resistant rickets). Teratology. 1980;22:291–8.PubMedCrossRef Iorio RJ, Murray G, Meyer RA Jr. Craniometric measurements of craniofacial malformations in mice with X-linked, dominant hypophosphatemia (vitamin D-resistant rickets). Teratology. 1980;22:291–8.PubMedCrossRef
201.
go back to reference Katsianou MA, Adamopoulos C, Vastardis H, Basdra EK. Signaling mechanisms implicated in cranial sutures pathophysiology: Craniosynostosis. BBA Clin. 2016;6:165–76.PubMedPubMedCentralCrossRef Katsianou MA, Adamopoulos C, Vastardis H, Basdra EK. Signaling mechanisms implicated in cranial sutures pathophysiology: Craniosynostosis. BBA Clin. 2016;6:165–76.PubMedPubMedCentralCrossRef
202.
go back to reference Morriss-Kay GM, Wilkie AO. Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat. 2005;207:637–53.PubMedPubMedCentralCrossRef Morriss-Kay GM, Wilkie AO. Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat. 2005;207:637–53.PubMedPubMedCentralCrossRef
203.
go back to reference Murthy AS. X-linked hypophosphatemic rickets and craniosynostosis. J Craniofac Surg. 2009;20:439–42.PubMedCrossRef Murthy AS. X-linked hypophosphatemic rickets and craniosynostosis. J Craniofac Surg. 2009;20:439–42.PubMedCrossRef
204.
go back to reference Carpenter TO, Imel EA, Ruppe MD, Weber TJ, Klausner MA, Wooddell MM, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014;124:1587–97.PubMedPubMedCentralCrossRef Carpenter TO, Imel EA, Ruppe MD, Weber TJ, Klausner MA, Wooddell MM, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014;124:1587–97.PubMedPubMedCentralCrossRef
206.
go back to reference Connor J, Olear EA, Insogna KL, Katz L, Baker S, Kaur R, et al. Conventional Therapy in Adults With X-Linked Hypophosphatemia: Effects on Enthesopathy and Dental Disease. J Clin Endocrinol Metab. 2015;100:3625–32.PubMedPubMedCentralCrossRef Connor J, Olear EA, Insogna KL, Katz L, Baker S, Kaur R, et al. Conventional Therapy in Adults With X-Linked Hypophosphatemia: Effects on Enthesopathy and Dental Disease. J Clin Endocrinol Metab. 2015;100:3625–32.PubMedPubMedCentralCrossRef
207.
go back to reference Baroncelli GI, Angiolini M, Ninni E, Galli V, Saggese R, Giuca MR. Prevalence and pathogenesis of dental and periodontal lesions in children with X-linked hypophosphatemic rickets. Eur J Paediatr Dent. 2006;7:61–6.PubMed Baroncelli GI, Angiolini M, Ninni E, Galli V, Saggese R, Giuca MR. Prevalence and pathogenesis of dental and periodontal lesions in children with X-linked hypophosphatemic rickets. Eur J Paediatr Dent. 2006;7:61–6.PubMed
208.
go back to reference Chaussain-Miller C, Sinding C, Septier D, Wolikow M, Goldberg M, Garabedian M. Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral Dis. 2007;13:482–9.PubMedCrossRef Chaussain-Miller C, Sinding C, Septier D, Wolikow M, Goldberg M, Garabedian M. Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral Dis. 2007;13:482–9.PubMedCrossRef
209.
go back to reference Chen L, Liu H, Sun W, Bai X, Karaplis AC, Goltzman D, et al. Fibroblast growth factor 23 overexpression impacts negatively on dentin mineralization and dentinogenesis in mice. Clin Exp Pharmacol Physiol. 2011;38:395–402.PubMedCrossRef Chen L, Liu H, Sun W, Bai X, Karaplis AC, Goltzman D, et al. Fibroblast growth factor 23 overexpression impacts negatively on dentin mineralization and dentinogenesis in mice. Clin Exp Pharmacol Physiol. 2011;38:395–402.PubMedCrossRef
210.
go back to reference Fong H, Chu EY, Tompkins KA, Foster BL, Sitara D, Lanske B, et al. Aberrant cementum phenotype associated with the hypophosphatemic hyp mouse. J Periodontol. 2009;80:1348–54.PubMedPubMedCentralCrossRef Fong H, Chu EY, Tompkins KA, Foster BL, Sitara D, Lanske B, et al. Aberrant cementum phenotype associated with the hypophosphatemic hyp mouse. J Periodontol. 2009;80:1348–54.PubMedPubMedCentralCrossRef
211.
go back to reference Abe K, Masatomi Y, Nakajima Y, Shintani S, Moriwaki Y, Sobue S, et al. The occurrence of interglobular dentin in incisors of hypophosphatemic mice fed a high-calcium and high-phosphate diet. J Dent Res. 1992;71:478–83.PubMedCrossRef Abe K, Masatomi Y, Nakajima Y, Shintani S, Moriwaki Y, Sobue S, et al. The occurrence of interglobular dentin in incisors of hypophosphatemic mice fed a high-calcium and high-phosphate diet. J Dent Res. 1992;71:478–83.PubMedCrossRef
212.
go back to reference Ogawa T, Onishi T, Hayashibara T, Sakashita S, Okawa R, Ooshima T. Dentinal defects in Hyp mice not caused by hypophosphatemia alone. Arch Oral Biol. 2006;51:58–63.PubMedCrossRef Ogawa T, Onishi T, Hayashibara T, Sakashita S, Okawa R, Ooshima T. Dentinal defects in Hyp mice not caused by hypophosphatemia alone. Arch Oral Biol. 2006;51:58–63.PubMedCrossRef
213.
go back to reference Jones A, Tzenova J, Frappier D, Crumley M, Roslin N, Kos C, et al. Hereditary hypophosphatemic rickets with hypercalciuria is not caused by mutations in the Na/Pi cotransporter NPT2 gene. J Am Soc Nephrol. 2001;12:507–14.PubMedCrossRef Jones A, Tzenova J, Frappier D, Crumley M, Roslin N, Kos C, et al. Hereditary hypophosphatemic rickets with hypercalciuria is not caused by mutations in the Na/Pi cotransporter NPT2 gene. J Am Soc Nephrol. 2001;12:507–14.PubMedCrossRef
214.
go back to reference Tenenhouse HS, Martel J, Gauthier C, Zhang MY, Portale AA. Renal expression of the sodium/phosphate cotransporter gene, Npt2, is not required for regulation of renal 1 alpha-hydroxylase by phosphate. Endocrinology. 2001;142:1124–9.PubMedCrossRef Tenenhouse HS, Martel J, Gauthier C, Zhang MY, Portale AA. Renal expression of the sodium/phosphate cotransporter gene, Npt2, is not required for regulation of renal 1 alpha-hydroxylase by phosphate. Endocrinology. 2001;142:1124–9.PubMedCrossRef
215.
go back to reference Chaussain-Miller C, Sinding C, Wolikow M, Lasfargues JJ, Godeau G, Garabedian M. Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxyvitamin D. J Pediatr. 2003;142:324–31.PubMedCrossRef Chaussain-Miller C, Sinding C, Wolikow M, Lasfargues JJ, Godeau G, Garabedian M. Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxyvitamin D. J Pediatr. 2003;142:324–31.PubMedCrossRef
216.
go back to reference Biosse Duplan M, Coyac BR, Bardet C, Zadikian C, Rothenbuhler A, Kamenicky P, et al. Phosphate and Vitamin D Prevent Periodontitis in X-Linked Hypophosphatemia. J Dent Res. 2017;96:388–95.PubMedCrossRef Biosse Duplan M, Coyac BR, Bardet C, Zadikian C, Rothenbuhler A, Kamenicky P, et al. Phosphate and Vitamin D Prevent Periodontitis in X-Linked Hypophosphatemia. J Dent Res. 2017;96:388–95.PubMedCrossRef
217.
go back to reference Cremonesi I, Nucci C, D’Alessandro G, Alkhamis N, Marchionni S, Piana G. X-linked hypophosphatemic rickets: enamel abnormalities and oral clinical findings. Scanning. 2014;36:456–61.PubMedCrossRef Cremonesi I, Nucci C, D’Alessandro G, Alkhamis N, Marchionni S, Piana G. X-linked hypophosphatemic rickets: enamel abnormalities and oral clinical findings. Scanning. 2014;36:456–61.PubMedCrossRef
218.
go back to reference Carpenter TO, Gundberg CM. Osteocalcin abnormalities in Hyp mice reflect altered genetic expression and are not due to altered clearance, affinity for mineral, or ambient phosphorus levels. Endocrinology. 1996;137:5213–9.PubMedCrossRef Carpenter TO, Gundberg CM. Osteocalcin abnormalities in Hyp mice reflect altered genetic expression and are not due to altered clearance, affinity for mineral, or ambient phosphorus levels. Endocrinology. 1996;137:5213–9.PubMedCrossRef
219.
go back to reference Onishi T, Ogawa T, Hayashibara T, Hoshino T, Okawa R, Ooshima T. Hyper-expression of osteocalcin mRNA in odontoblasts of Hyp mice. J Dent Res. 2005;84:84–8.PubMedCrossRef Onishi T, Ogawa T, Hayashibara T, Hoshino T, Okawa R, Ooshima T. Hyper-expression of osteocalcin mRNA in odontoblasts of Hyp mice. J Dent Res. 2005;84:84–8.PubMedCrossRef
220.
go back to reference Bronckers AL, Price PA, Schrijvers A, Bervoets TJ, Karsenty G. Studies of osteocalcin function in dentin formation in rodent teeth. Eur J Oral Sci. 1998;106:795–807.PubMedCrossRef Bronckers AL, Price PA, Schrijvers A, Bervoets TJ, Karsenty G. Studies of osteocalcin function in dentin formation in rodent teeth. Eur J Oral Sci. 1998;106:795–807.PubMedCrossRef
222.
go back to reference Nociti FH Jr, Berry JE, Foster BL, Gurley KA, Kingsley DM, Takata T, et al. Cementum: a phosphate-sensitive tissue. J Dent Res. 2002;81:817–21.PubMedCrossRef Nociti FH Jr, Berry JE, Foster BL, Gurley KA, Kingsley DM, Takata T, et al. Cementum: a phosphate-sensitive tissue. J Dent Res. 2002;81:817–21.PubMedCrossRef
223.
go back to reference Beertsen W, VandenBos T, Everts V. Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: inhibition of acellular cementum formation. J Dent Res. 1999;78:1221–9.PubMedCrossRef Beertsen W, VandenBos T, Everts V. Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: inhibition of acellular cementum formation. J Dent Res. 1999;78:1221–9.PubMedCrossRef
224.
go back to reference Nociti FH Jr, Foster BL, Tran AB, Dunn D, Presland RB, Wang L, et al. Vitamin D represses dentin matrix protein 1 in cementoblasts and osteocytes. J Dent Res. 2014;93:148–54.PubMedCrossRef Nociti FH Jr, Foster BL, Tran AB, Dunn D, Presland RB, Wang L, et al. Vitamin D represses dentin matrix protein 1 in cementoblasts and osteocytes. J Dent Res. 2014;93:148–54.PubMedCrossRef
225.
go back to reference Chu EY, Fong H, Blethen FA, Tompkins KA, Foster BL, Yeh KD, et al. Ablation of systemic phosphate-regulating gene fibroblast growth factor 23 (Fgf23) compromises the dentoalveolar complex. Anat Rec Hoboken. 2010;293:1214–26.PubMedPubMedCentralCrossRef Chu EY, Fong H, Blethen FA, Tompkins KA, Foster BL, Yeh KD, et al. Ablation of systemic phosphate-regulating gene fibroblast growth factor 23 (Fgf23) compromises the dentoalveolar complex. Anat Rec Hoboken. 2010;293:1214–26.PubMedPubMedCentralCrossRef
226.
go back to reference Davies M, Kane R, Valentine J. Impaired hearing in X-linked hypophosphataemic (vitamin-D-resistant) osteomalacia. Ann Intern Med. 1984;100:230–2.PubMedCrossRef Davies M, Kane R, Valentine J. Impaired hearing in X-linked hypophosphataemic (vitamin-D-resistant) osteomalacia. Ann Intern Med. 1984;100:230–2.PubMedCrossRef
227.
go back to reference Fishman G, Miller-Hansen D, Jacobsen C, Singhal VK, Alon US. Hearing impairment in familial X-linked hypophosphatemic rickets. Eur J Pediatr. 2004;163:622–3.PubMed Fishman G, Miller-Hansen D, Jacobsen C, Singhal VK, Alon US. Hearing impairment in familial X-linked hypophosphatemic rickets. Eur J Pediatr. 2004;163:622–3.PubMed
228.
go back to reference Pantel G, Probst R, Podvinec M, Gurtler N. Hearing loss and fluctuating hearing levels in X-linked hypophosphataemic osteomalacia. J Laryngol Otol. 2009;123:136–40.PubMedCrossRef Pantel G, Probst R, Podvinec M, Gurtler N. Hearing loss and fluctuating hearing levels in X-linked hypophosphataemic osteomalacia. J Laryngol Otol. 2009;123:136–40.PubMedCrossRef
229.
go back to reference Cherian KE, Kapoor N, Mathews SS, Paul TV. Endocrine Glands and Hearing: Auditory Manifestations of Various Endocrine and Metabolic Conditions. Indian J Endocrinol Metab. 2017;21:464–9.PubMedPubMedCentralCrossRef Cherian KE, Kapoor N, Mathews SS, Paul TV. Endocrine Glands and Hearing: Auditory Manifestations of Various Endocrine and Metabolic Conditions. Indian J Endocrinol Metab. 2017;21:464–9.PubMedPubMedCentralCrossRef
230.
go back to reference Wick CC, Lin SJ, Yu H, Megerian CA, Zheng QY. Treatment of ear and bone disease in the Phex mouse mutant with dietary supplementation. Am J Otolaryngol. 2017;38:44–51.PubMedCrossRef Wick CC, Lin SJ, Yu H, Megerian CA, Zheng QY. Treatment of ear and bone disease in the Phex mouse mutant with dietary supplementation. Am J Otolaryngol. 2017;38:44–51.PubMedCrossRef
231.
go back to reference Meister M, Johnson A, Popelka GR, Kim GS, Whyte MP. Audiologic findings in young patients with hypophosphatemic bone disease. Ann Otol Rhinol Laryngol. 1986;95(4 Pt 1):415–20.PubMedCrossRef Meister M, Johnson A, Popelka GR, Kim GS, Whyte MP. Audiologic findings in young patients with hypophosphatemic bone disease. Ann Otol Rhinol Laryngol. 1986;95(4 Pt 1):415–20.PubMedCrossRef
232.
go back to reference Boneh A, Reade TM, Scriver CR, Rishikof E. Audiometric evidence for two forms of X-linked hypophosphatemia in humans, apparent counterparts of Hyp and Gy mutations in mouse. Am J Med Genet. 1987;27:997–1003.PubMedCrossRef Boneh A, Reade TM, Scriver CR, Rishikof E. Audiometric evidence for two forms of X-linked hypophosphatemia in humans, apparent counterparts of Hyp and Gy mutations in mouse. Am J Med Genet. 1987;27:997–1003.PubMedCrossRef
233.
go back to reference Megerian CA, Semaan MT, Aftab S, Kisley LB, Zheng QY, Pawlowski KS, et al. A mouse model with postnatal endolymphatic hydrops and hearing loss. Hear Res. 2008;237:90–105.PubMedPubMedCentralCrossRef Megerian CA, Semaan MT, Aftab S, Kisley LB, Zheng QY, Pawlowski KS, et al. A mouse model with postnatal endolymphatic hydrops and hearing loss. Hear Res. 2008;237:90–105.PubMedPubMedCentralCrossRef
234.
go back to reference Wang X, Levic S, Gratton MA, Doyle KJ, Yamoah EN, Pegg AE. Spermine synthase deficiency leads to deafness and a profound sensitivity to alpha-difluoromethylornithine. J Biol Chem. 2009;284:930–7.PubMedPubMedCentralCrossRef Wang X, Levic S, Gratton MA, Doyle KJ, Yamoah EN, Pegg AE. Spermine synthase deficiency leads to deafness and a profound sensitivity to alpha-difluoromethylornithine. J Biol Chem. 2009;284:930–7.PubMedPubMedCentralCrossRef
235.
go back to reference Wick CC, Semaan MT, Zheng QY, Megerian CA. A Genetic Murine Model of Endolymphatic Hydrops: The Phex Mouse. Curr Otorhinolaryngol Rep. 2014;2:144–51.PubMedPubMedCentralCrossRef Wick CC, Semaan MT, Zheng QY, Megerian CA. A Genetic Murine Model of Endolymphatic Hydrops: The Phex Mouse. Curr Otorhinolaryngol Rep. 2014;2:144–51.PubMedPubMedCentralCrossRef
236.
go back to reference O’Malley S, Ramsden RT, Latif A, Kane R, Davies M. Electrocochleographic changes in the hearing loss associated with X-linked hypophosphataemic osteomalacia. Acta Otolaryngol. 1985;100:13–8.PubMedCrossRef O’Malley S, Ramsden RT, Latif A, Kane R, Davies M. Electrocochleographic changes in the hearing loss associated with X-linked hypophosphataemic osteomalacia. Acta Otolaryngol. 1985;100:13–8.PubMedCrossRef
237.
go back to reference Melki SJ, Li Y, Semaan MT, Zheng QY, Megerian CA, Alagramam KN. A mouse model validates the utility of electrocochleography in verifying endolymphatic hydrops. J Assoc Res Otolaryngol. 2014;15:413–21.PubMedPubMedCentralCrossRef Melki SJ, Li Y, Semaan MT, Zheng QY, Megerian CA, Alagramam KN. A mouse model validates the utility of electrocochleography in verifying endolymphatic hydrops. J Assoc Res Otolaryngol. 2014;15:413–21.PubMedPubMedCentralCrossRef
238.
go back to reference Momin SR, Melki SJ, Alagramam KN, Megerian CA. Spiral ganglion loss outpaces inner hair cell loss in endolymphatic hydrops. Laryngoscope. 2010;120:159–65.PubMedCrossRef Momin SR, Melki SJ, Alagramam KN, Megerian CA. Spiral ganglion loss outpaces inner hair cell loss in endolymphatic hydrops. Laryngoscope. 2010;120:159–65.PubMedCrossRef
239.
go back to reference Semaan MT, Zheng QY, Han F, Zheng Y, Yu H, Heaphy JC, et al. Characterization of neuronal cell death in the spiral ganglia of a mouse model of endolymphatic hydrops. Otol Neurotol. 2013;34:559–69.PubMedPubMedCentralCrossRef Semaan MT, Zheng QY, Han F, Zheng Y, Yu H, Heaphy JC, et al. Characterization of neuronal cell death in the spiral ganglia of a mouse model of endolymphatic hydrops. Otol Neurotol. 2013;34:559–69.PubMedPubMedCentralCrossRef
240.
go back to reference Semaan MT, Megerian CA. Contemporary perspectives on the pathophysiology of Meniere’s disease: implications for treatment. Curr Opin Otolaryngol Head Neck Surg. 2010;18:392–8.PubMedCrossRef Semaan MT, Megerian CA. Contemporary perspectives on the pathophysiology of Meniere’s disease: implications for treatment. Curr Opin Otolaryngol Head Neck Surg. 2010;18:392–8.PubMedCrossRef
241.
go back to reference Linthicum FH Jr, Doherty J, Webster P, Makarem A. The periductal channels of the endolymphatic duct, hydrodynamic implications. Otolaryngol Head Neck Surg. 2014;150:441–7.PubMedCrossRef Linthicum FH Jr, Doherty J, Webster P, Makarem A. The periductal channels of the endolymphatic duct, hydrodynamic implications. Otolaryngol Head Neck Surg. 2014;150:441–7.PubMedCrossRef
242.
go back to reference Gurkov R, Speierer G, Wittwer L, Kalla R. Effect of Elevated Intracranial Pressure on Amplitudes and Frequency Tuning of Ocular Vestibular Evoked Myogenic Potentials Elicited by Bone-Conducted Vibration. Ear Hear. 2016;37:e409–13.PubMedCrossRef Gurkov R, Speierer G, Wittwer L, Kalla R. Effect of Elevated Intracranial Pressure on Amplitudes and Frequency Tuning of Ocular Vestibular Evoked Myogenic Potentials Elicited by Bone-Conducted Vibration. Ear Hear. 2016;37:e409–13.PubMedCrossRef
243.
go back to reference Kaya S, Tsuprun V, Hizli O, Schachern PA, Paparella MM, Cureoglu S. Cochlear changes in serous labyrinthitis associated with silent otitis media: A human temporal bone study. Am J Otolaryngol. 2016;37:83–8.PubMedCrossRef Kaya S, Tsuprun V, Hizli O, Schachern PA, Paparella MM, Cureoglu S. Cochlear changes in serous labyrinthitis associated with silent otitis media: A human temporal bone study. Am J Otolaryngol. 2016;37:83–8.PubMedCrossRef
244.
go back to reference Melki SJ, Heddon CM, Frankel JK, Levitt AH, Momin SR, Alagramam KN, et al. Pharmacological protection of hearing loss in the mouse model of endolymphatic hydrops. Laryngoscope. 2010;120:1637–45.PubMedCrossRef Melki SJ, Heddon CM, Frankel JK, Levitt AH, Momin SR, Alagramam KN, et al. Pharmacological protection of hearing loss in the mouse model of endolymphatic hydrops. Laryngoscope. 2010;120:1637–45.PubMedCrossRef
245.
go back to reference Abdullah Z, Kurts C. More trouble with FGF23: a novel role in systemic immunosuppression. Kidney Int. 2016;89:1176–7.PubMedCrossRef Abdullah Z, Kurts C. More trouble with FGF23: a novel role in systemic immunosuppression. Kidney Int. 2016;89:1176–7.PubMedCrossRef
246.
go back to reference Bacchetta J, Salusky IB, Hewison M. Beyond mineral metabolism, is there an interplay between FGF23 and vitamin D in innate immunity? Pediatr Nephrol. 2013;28:577–82.PubMedCrossRef Bacchetta J, Salusky IB, Hewison M. Beyond mineral metabolism, is there an interplay between FGF23 and vitamin D in innate immunity? Pediatr Nephrol. 2013;28:577–82.PubMedCrossRef
247.
go back to reference Chonchol M, Greene T, Zhang Y, Hoofnagle AN, Cheung AK. Low Vitamin D and High Fibroblast Growth Factor 23 Serum Levels Associate with Infectious and Cardiac Deaths in the HEMO Study. J Am Soc Nephrol. 2016;27:227–37.PubMedCrossRef Chonchol M, Greene T, Zhang Y, Hoofnagle AN, Cheung AK. Low Vitamin D and High Fibroblast Growth Factor 23 Serum Levels Associate with Infectious and Cardiac Deaths in the HEMO Study. J Am Soc Nephrol. 2016;27:227–37.PubMedCrossRef
248.
go back to reference Ferreira C, Ziegler S, Gahl W. Generalized Arterial Calcification of Infancy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA): University of Washington, Seattle; 1993. Ferreira C, Ziegler S, Gahl W. Generalized Arterial Calcification of Infancy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA): University of Washington, Seattle; 1993.
251.
go back to reference Areses-Trapote R, Lopez-Garcia JA, Ubetagoyena-Arrieta M, Eizaguirre A, Saez-Villaverde R. Hereditary hypophosphatemic rickets with hypercalciuria: case report. Nefrologia. 2012;32:529–34.PubMed Areses-Trapote R, Lopez-Garcia JA, Ubetagoyena-Arrieta M, Eizaguirre A, Saez-Villaverde R. Hereditary hypophosphatemic rickets with hypercalciuria: case report. Nefrologia. 2012;32:529–34.PubMed
Metadata
Title
FGF23 and its role in X-linked hypophosphatemia-related morbidity
Authors
Signe Sparre Beck-Nielsen
Zulf Mughal
Dieter Haffner
Ola Nilsson
Elena Levtchenko
Gema Ariceta
Carmen de Lucas Collantes
Dirk Schnabel
Ravi Jandhyala
Outi Mäkitie
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2019
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-019-1014-8

Other articles of this Issue 1/2019

Orphanet Journal of Rare Diseases 1/2019 Go to the issue