Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2019

Open Access 01-12-2019 | Ornithine Transcarbamylase Deficiency | Research

Urea cycle disorders in Argentine patients: clinical presentation, biochemical and genetic findings

Authors: Silene M. Silvera-Ruiz, José A. Arranz, Johannes Häberle, Celia J. Angaroni, Miriam Bezard, Norberto Guelbert, Adriana Becerra, Fernanda Peralta, Raquel Dodelson de Kremer, Laura E. Laróvere

Published in: Orphanet Journal of Rare Diseases | Issue 1/2019

Login to get access

Abstract

Background

The incidence, prevalence, and molecular epidemiology of urea cycle disorders (UCDs) in Argentina remain underexplored. The present study is the first to thoroughly assess the clinical and molecular profiles of UCD patients examined at a single reference center in Argentina.

Results

Forty-nine UCD cases were collected. About half (26/49, 53%) manifested neonatally with classical presentation and had a high mortality (25/26, 96%). Ornithine transcarbamylase deficiency (OTCD) was the most common UCD (26 patients). Argininosuccinate synthetase deficiency (ASSD) was detected in 19 cases, while argininosuccinate lyase deficiency (ASLD) was diagnosed in 4 cases. Molecular genetic analysis revealed 8 private OTC mutations and two large deletion/duplication events in the OTC gene. Most mutations in the ASS1 and ASL genes were recurrent missense changes, and four alterations were novel. The clinical outcome of our UCD cohort was poor, with an overall mortality of 57% (28/49 cases), and a 28% (6/21) disability rate among the survivors.

Conclusions

Most patients in our case series showed severe neonatal onset, with high morbidity/mortality. We detected in total 19 mutations, most of them recurrent and of high frequency worldwide. Noteworthy, we highlight the presence of a geographic cluster with high prevalence of a point mutation in the ASS1 gene. This study suggests that these disorders may be more frequent than commonly assumed, and stresses the need for increased awareness amongst health professionals and greater availability of diagnostic tools for accurate identification, early diagnosis, and timely treatment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brusilow SW, Horwich AL. Urea cycle enzymes. In: Scriver C, Beaudet A, Valle D, Sly W, editors. Metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw Hill; 2001. p. 1909–63. Brusilow SW, Horwich AL. Urea cycle enzymes. In: Scriver C, Beaudet A, Valle D, Sly W, editors. Metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw Hill; 2001. p. 1909–63.
2.
go back to reference Summar ML, Koelker S, Freedenberg D, et al. The incidence of urea cycle disorders. Mol Genet Metab. 2013;110(1–2):179–80.CrossRef Summar ML, Koelker S, Freedenberg D, et al. The incidence of urea cycle disorders. Mol Genet Metab. 2013;110(1–2):179–80.CrossRef
3.
go back to reference Häberle J, Boddaert N, Burlina A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.CrossRef Häberle J, Boddaert N, Burlina A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32.CrossRef
4.
go back to reference Saudubray JM, Nassogne MC, de Lonlay P, Touati G. Clinical approach to inherited metabolic disorders in neonates: an overview. Semin Neonatol. 2002;7:3–15.CrossRef Saudubray JM, Nassogne MC, de Lonlay P, Touati G. Clinical approach to inherited metabolic disorders in neonates: an overview. Semin Neonatol. 2002;7:3–15.CrossRef
5.
go back to reference Wijburg FA, Nassogne MC. Disorders of the urea cycle and related enzymes. In: Saudubray JM, van den Berghe G, Walter JH, editors. Inborn metabolic diseases, diagnosis and treatment. 5th ed. Berlin Heidelberg: Springer- Verlag; 2012. p. 297–309.CrossRef Wijburg FA, Nassogne MC. Disorders of the urea cycle and related enzymes. In: Saudubray JM, van den Berghe G, Walter JH, editors. Inborn metabolic diseases, diagnosis and treatment. 5th ed. Berlin Heidelberg: Springer- Verlag; 2012. p. 297–309.CrossRef
6.
go back to reference Summar ML, Dobbelaere D, Brusilow S, Lee B. Diagnosis, symptoms frequency and mortality of 260 patients with urea cycle disorders from a 21-year multicenter study of acute hyperammonaemic episodes. Acta Paediatr. 2008;97:1420–5.CrossRef Summar ML, Dobbelaere D, Brusilow S, Lee B. Diagnosis, symptoms frequency and mortality of 260 patients with urea cycle disorders from a 21-year multicenter study of acute hyperammonaemic episodes. Acta Paediatr. 2008;97:1420–5.CrossRef
7.
go back to reference Laróvere LE, Silvera Ruiz SM, Angaroni CJ, Dodelson de Kremer R. Molecular epidemiology of Citrullinemia type I in a risk region of Argentina: a first step to preconception heterozygote detection. JIMD Reports. 2012;6:27–9.CrossRef Laróvere LE, Silvera Ruiz SM, Angaroni CJ, Dodelson de Kremer R. Molecular epidemiology of Citrullinemia type I in a risk region of Argentina: a first step to preconception heterozygote detection. JIMD Reports. 2012;6:27–9.CrossRef
8.
go back to reference Bindi V, Eiroa H. Citrullinemia type I with recurrent liver failure in a child. Arch Argent Pediatr. 2017;115(1):e39–42.PubMed Bindi V, Eiroa H. Citrullinemia type I with recurrent liver failure in a child. Arch Argent Pediatr. 2017;115(1):e39–42.PubMed
9.
go back to reference Laróvere LE, Silvera Ruiz SM, Arranz Amo JA, Dodelson de Kremer R. Mutation spectrum and genotype–phenotype correlation in a cohort of argentine patients with ornithine transcarbamylase deficiency: a single center experience. JIEMS. 2018;6:1–5. Laróvere LE, Silvera Ruiz SM, Arranz Amo JA, Dodelson de Kremer R. Mutation spectrum and genotype–phenotype correlation in a cohort of argentine patients with ornithine transcarbamylase deficiency: a single center experience. JIEMS. 2018;6:1–5.
10.
go back to reference Duran M. Amino acids. In: Blau N, Duran M, Gibson M, editors. Laboratory guide to the methods in biochemical genetics. Berlín: Springer; 2008. p. 53–90.CrossRef Duran M. Amino acids. In: Blau N, Duran M, Gibson M, editors. Laboratory guide to the methods in biochemical genetics. Berlín: Springer; 2008. p. 53–90.CrossRef
11.
go back to reference Simmonds HA, Duley JA, Davies PM. Analysis of purines and pyrimidines in blood, urine, and other physiological fluids. In: Hommes FA, editor. Techniques in diagnostic human biochemical genetics: a laboratory manual. New York: Wiley-Liss; 1991. p. 397–424. Simmonds HA, Duley JA, Davies PM. Analysis of purines and pyrimidines in blood, urine, and other physiological fluids. In: Hommes FA, editor. Techniques in diagnostic human biochemical genetics: a laboratory manual. New York: Wiley-Liss; 1991. p. 397–424.
12.
go back to reference Gao HZ, Kobayashi K, Tabata A, et al. Identification of 16 novel mutations in the argininosuccinatesynthetase gene and genotype-phenotype correlation in 38 classical citrullinemia patients. Hum Mutat. 2003;22(1):24–34.CrossRef Gao HZ, Kobayashi K, Tabata A, et al. Identification of 16 novel mutations in the argininosuccinatesynthetase gene and genotype-phenotype correlation in 38 classical citrullinemia patients. Hum Mutat. 2003;22(1):24–34.CrossRef
13.
go back to reference Kobayashi K, Jackson MJ, Tick DB, O'Brien WE, Beaudet AL. Heterogeneity of mutations in Argininosuccinate Synthetase causing human Citrullinemia. J Biol Chem. 1990;265:11361.PubMed Kobayashi K, Jackson MJ, Tick DB, O'Brien WE, Beaudet AL. Heterogeneity of mutations in Argininosuccinate Synthetase causing human Citrullinemia. J Biol Chem. 1990;265:11361.PubMed
14.
go back to reference Balmer C, Pandey AV, Rufenacht V, et al. Mutations and polymorphisms in the human ArgininosuccinateLyase (ASL) gene. HumMut. 2014;35(1):27–35. Balmer C, Pandey AV, Rufenacht V, et al. Mutations and polymorphisms in the human ArgininosuccinateLyase (ASL) gene. HumMut. 2014;35(1):27–35.
15.
go back to reference Walker DC, McCloskey DA, Simard LR, McInnes RR. Identification of a mutation frequently involved in interallelic complementation at the human argininosuccinic acid lyase locus. Am J Hum Genet. 1990;47 (suppl:A169 only. Walker DC, McCloskey DA, Simard LR, McInnes RR. Identification of a mutation frequently involved in interallelic complementation at the human argininosuccinic acid lyase locus. Am J Hum Genet. 1990;47 (suppl:A169 only.
16.
go back to reference Diez-Fernandez C, Rüfenacht V, Häberle J. Mutations in the human Argininosuccinate Synthetase (ASS1) gene, impact on patients, common changes, and structural considerations. Hum Mutat. 2017;38(5):471–84.CrossRef Diez-Fernandez C, Rüfenacht V, Häberle J. Mutations in the human Argininosuccinate Synthetase (ASS1) gene, impact on patients, common changes, and structural considerations. Hum Mutat. 2017;38(5):471–84.CrossRef
17.
go back to reference Lemke CT, Howell PL. The 1.6 a crystal structure of E. coli argininosuccinate synthetase suggests a conformational change during catalysis. Structure. 2001;9:1153–64.CrossRef Lemke CT, Howell PL. The 1.6 a crystal structure of E. coli argininosuccinate synthetase suggests a conformational change during catalysis. Structure. 2001;9:1153–64.CrossRef
18.
go back to reference Berning C, Bieger I, Pauli S, et al. Investigation of Citrullinemia type I variants by in vitro expression studies. Hum Mutat. 2008;29:1222–7.CrossRef Berning C, Bieger I, Pauli S, et al. Investigation of Citrullinemia type I variants by in vitro expression studies. Hum Mutat. 2008;29:1222–7.CrossRef
19.
go back to reference Engel K, Höhne W, Häberle J. Mutations and Polimorphisms in the human argininosuccinate synthetase (ASS1) gene. Hum Mutat. 2009;30(3):300–7.CrossRef Engel K, Höhne W, Häberle J. Mutations and Polimorphisms in the human argininosuccinate synthetase (ASS1) gene. Hum Mutat. 2009;30(3):300–7.CrossRef
20.
go back to reference Kleijer WJ, Garritsen VH, van der Sterre ML, Berning C, Häberle J, Huijmans JG. Prenatal diagnosis of citrullinemia and argininosuccinic aciduria: evidence for a transmission ratio distortion in citrullinemia. Prenat Diagn. 2006;26(3):242–7.CrossRef Kleijer WJ, Garritsen VH, van der Sterre ML, Berning C, Häberle J, Huijmans JG. Prenatal diagnosis of citrullinemia and argininosuccinic aciduria: evidence for a transmission ratio distortion in citrullinemia. Prenat Diagn. 2006;26(3):242–7.CrossRef
21.
go back to reference Lewis SE, Donnelly ET, Sterling ESL, et al. Nitric oxide synthase and nitric oxide production in human sperm: evidence that endogenous nitric oxide is beneficial to sperm motility. Mol Hum Reprod. 1996;2:873–8.CrossRef Lewis SE, Donnelly ET, Sterling ESL, et al. Nitric oxide synthase and nitric oxide production in human sperm: evidence that endogenous nitric oxide is beneficial to sperm motility. Mol Hum Reprod. 1996;2:873–8.CrossRef
22.
go back to reference Posset R, Garcia-Cazorla A, Valayannopoulos V, et al. Age at disease onset and peak ammonium level rather than interventional variables predict the neurological outcome in urea cycle disorders. J Inherit Metab Dis. 2016;39(5):661–72.CrossRef Posset R, Garcia-Cazorla A, Valayannopoulos V, et al. Age at disease onset and peak ammonium level rather than interventional variables predict the neurological outcome in urea cycle disorders. J Inherit Metab Dis. 2016;39(5):661–72.CrossRef
Metadata
Title
Urea cycle disorders in Argentine patients: clinical presentation, biochemical and genetic findings
Authors
Silene M. Silvera-Ruiz
José A. Arranz
Johannes Häberle
Celia J. Angaroni
Miriam Bezard
Norberto Guelbert
Adriana Becerra
Fernanda Peralta
Raquel Dodelson de Kremer
Laura E. Laróvere
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2019
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-019-1177-3

Other articles of this Issue 1/2019

Orphanet Journal of Rare Diseases 1/2019 Go to the issue