Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 1/2016

Open Access 01-12-2016 | Research

Whole exome sequencing diagnosis of inborn errors of metabolism and other disorders in United Arab Emirates

Authors: Aisha Al-Shamsi, Jozef L. Hertecant, Abdul-Kader Souid, Fatma A. Al-Jasmi

Published in: Orphanet Journal of Rare Diseases | Issue 1/2016

Login to get access

Abstract

Background

This study reports on the use of whole exome sequencing (WES) to diagnose children with inborn errors of metabolism and other disorders in United Arab Emirates.

Methods

From January 2012 to December 2014, 85 patients (46 % females) were seen in the metabolic center at Tawam Hospital (Abu Dhabi) and WES testing was requested because definitive diagnoses were not reached by conventional methods.

Results

Eighty (93 %) patients were <18 years old and 44 (52 %) were <5 years. Sixty-eight (80 %) patients had neurologic abnormalities. WES facilitated rapid diagnosis in 50 % of the patients, especially those with mitochondrial disorders. Yet, in most cases extensive investigation was required after the results were available. Most patients with confirmed molecular diagnoses had autosomal recessive disorders and were homozygous for the rare alleles. Most patients with autosomal dominant disorders and all patients with X-linked disorders had de novo mutations. WES results were negative (no pathogenic variants related to patient phenotype were identified) in six patients and incorrect in two patients. One patient had a reported “deleterious” hemizygous mutation in SLC35A2, c.617_620del (p.Q206fs), suggesting ‘congenital disorder of glycosylation, TYPE IIm’, but glycosylation studies were normal and healthy brothers had the same mutation. Another patient had “pathogenic” mutation in MCCC2, c.1015G > A (p.V339M), but urine organic acids was normal. WES confirmed inborn errors of metabolism (five mitochondrial diseases, three lysosomal storage diseases, and six other disorders) in 14 patients and genetic disorders (14 neurological diseases and three non-neurological diseases) in 17 patients. Variants of unknown significance were identified in 48 patients; 12 had “confirmed pathologic variants”and 12 had “likely pathologic variants”, based on consistent phenotypes, biochemical/ segregation studies, or reported pathogenicity. In 24 patients, the variants were inconsistent with phenotypes or biochemical/ familial studies.

Conclusions

Although WES provided molecular diagnoses, the results required careful interpretations and many patients required additional investigations. This tool is useful when conventional diagnostic methods fail. Staff competence in obtaining consent/ permission, interpreting the findings, and providing the proper counseling are essential before incorporating this technology into routine clinical practices.
Literature
1.
go back to reference Al Shamsi A, Hertecant JL, Al Hamad S, Souid A-K, Al-Jasmi FA. Mutation spectrum and prevalence of inborn errors of metabolism in United Arab Emirates. Sultan Qaboos Univ Med J. 2014;14:e42–9.CrossRefPubMedPubMedCentral Al Shamsi A, Hertecant JL, Al Hamad S, Souid A-K, Al-Jasmi FA. Mutation spectrum and prevalence of inborn errors of metabolism in United Arab Emirates. Sultan Qaboos Univ Med J. 2014;14:e42–9.CrossRefPubMedPubMedCentral
2.
go back to reference Woods CG, Cox J, Springell K, Hampshire DJ, et al. Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. Am J Hum Genet. 2006;78:889–96.CrossRefPubMedPubMedCentral Woods CG, Cox J, Springell K, Hampshire DJ, et al. Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. Am J Hum Genet. 2006;78:889–96.CrossRefPubMedPubMedCentral
3.
go back to reference Al-Gazali L, Ali BR. Mutations of a country: a mutation review of single gene disorders in the United Arab Emirates (UAE). Hum Mutat. 2010;31:505–20.CrossRefPubMed Al-Gazali L, Ali BR. Mutations of a country: a mutation review of single gene disorders in the United Arab Emirates (UAE). Hum Mutat. 2010;31:505–20.CrossRefPubMed
4.
go back to reference Shashi V, McConkie-Rosell A, Rosell B, et al. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med. 2014;16(2):176–82.CrossRefPubMed Shashi V, McConkie-Rosell A, Rosell B, et al. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med. 2014;16(2):176–82.CrossRefPubMed
5.
go back to reference Wortmann SB, Koolen DA, Smeitink JA, van den Heuvel L, Rodenburg RJ. Whole exome sequencing of suspected mitochondrial patients in clinical practice. J Inherit Metab Dis. 2015;38:437–43.CrossRefPubMedPubMedCentral Wortmann SB, Koolen DA, Smeitink JA, van den Heuvel L, Rodenburg RJ. Whole exome sequencing of suspected mitochondrial patients in clinical practice. J Inherit Metab Dis. 2015;38:437–43.CrossRefPubMedPubMedCentral
6.
go back to reference Yaping Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med. 2013;369:1502–11.CrossRef Yaping Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med. 2013;369:1502–11.CrossRef
7.
go back to reference Fahiminiya S, Almuriekhi M, Nawaz Z, et al. Whole exome sequencing unravels disease-causing genes in consanguineous families in Qatar. Clin Genet. 2014;86:134–41.CrossRefPubMed Fahiminiya S, Almuriekhi M, Nawaz Z, et al. Whole exome sequencing unravels disease-causing genes in consanguineous families in Qatar. Clin Genet. 2014;86:134–41.CrossRefPubMed
10.
go back to reference Lazaridis KN, Schahl KA, Cousin MA, Babovic-Vuksanovic D, Riegert-Johnson DL, et al. Individualized Medicine Clinic Members. Outcome of Whole ExomeSequencing for Diagnostic Odyssey Cases of an Individualized Medicine Clinic: The Mayo Clinic Experience. Mayo Clin Proc. 2016;91(3):297–307.CrossRefPubMed Lazaridis KN, Schahl KA, Cousin MA, Babovic-Vuksanovic D, Riegert-Johnson DL, et al. Individualized Medicine Clinic Members. Outcome of Whole ExomeSequencing for Diagnostic Odyssey Cases of an Individualized Medicine Clinic: The Mayo Clinic Experience. Mayo Clin Proc. 2016;91(3):297–307.CrossRefPubMed
11.
go back to reference Soden SE, Saunders CJ, Willig LK, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis ofneurodevelopmental disorders. SciTransl Med. 2014;6:265ra168. Soden SE, Saunders CJ, Willig LK, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis ofneurodevelopmental disorders. SciTransl Med. 2014;6:265ra168.
12.
go back to reference Green RC, Berg JS, Grody WW, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74.CrossRefPubMedPubMedCentral Green RC, Berg JS, Grody WW, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74.CrossRefPubMedPubMedCentral
13.
go back to reference Boycott K, Hartley T, Adam S, et al. The clinical application of genome-wide sequencing for monogenic diseases in Canada: position statement of the Canadian College of Medical Geneticists. J Med Genet. 2015;52:431–7.CrossRefPubMedPubMedCentral Boycott K, Hartley T, Adam S, et al. The clinical application of genome-wide sequencing for monogenic diseases in Canada: position statement of the Canadian College of Medical Geneticists. J Med Genet. 2015;52:431–7.CrossRefPubMedPubMedCentral
14.
go back to reference Van El CG, Cornel MC, Borry P, et al. Whole-genome sequencing in health care. Recommendations of the European society of human genetics. Eur J Hum Genet. 2013;21:S1–5.PubMedPubMedCentral Van El CG, Cornel MC, Borry P, et al. Whole-genome sequencing in health care. Recommendations of the European society of human genetics. Eur J Hum Genet. 2013;21:S1–5.PubMedPubMedCentral
15.
go back to reference Rodriguez-Flores JL, Fakhro K, Hackett NR, et al. Exome sequencing identifies potential risk variants for Mendelian disorders at high prevalence in Qatar. Hum Mutat. 2014;35:105–16.CrossRefPubMed Rodriguez-Flores JL, Fakhro K, Hackett NR, et al. Exome sequencing identifies potential risk variants for Mendelian disorders at high prevalence in Qatar. Hum Mutat. 2014;35:105–16.CrossRefPubMed
Metadata
Title
Whole exome sequencing diagnosis of inborn errors of metabolism and other disorders in United Arab Emirates
Authors
Aisha Al-Shamsi
Jozef L. Hertecant
Abdul-Kader Souid
Fatma A. Al-Jasmi
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue 1/2016
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-016-0474-3

Other articles of this Issue 1/2016

Orphanet Journal of Rare Diseases 1/2016 Go to the issue