Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2015

Open Access 01-12-2015 | Research article

Aortic arch obstruction neonates with biventricular physiology: left-open compared to closed inter-atrial communication during primary repair – a retrospective study

Authors: André Rüffer, Caroline Bechtold, Ariawan Purbojo, Okan Toka, Martin Glöckler, Sven Dittrich, Robert Anton Cesnjevar

Published in: Journal of Cardiothoracic Surgery | Issue 1/2015

Login to get access

Abstract

Background

Leaving an inter-atrial communication (IAC) open for left atrial decompression is often recommended in neonates with aortic arch obstruction undergoing primary repair. In this study, outcomes in these patients were compared to those with intact atrial septum after repair.

Methods

Between 2000 and 2013, 53 consecutive neonates with severe aortic arch obstruction (hypoplasia: n = 45, interruption: n = 8) underwent primary repair from an anterior approach. Median age and weight were 8 days (range: 2–30) and 3.2 kg (range: 2.4-4.4), respectively. Cardiac morphology included a ventricular septal defect (VSD, large: n = 28, small: n = 7), malposition of great arteries (n = 10), and severe left ventricular outflow tract obstruction (LVOTO, n = 10). During corrective surgery IAC was closed (group-I, n = 37) or partially left-open (group-II, n = 16). Primary endpoints were hospital death, and re-intervention (surgery and/or balloon) due to aortic arch re-coarctation or recurrent LVOTO. Statistically significant variables by univariate analysis were incorporated in the corresponding multivariable regression model.

Results

Regarding morphological discrepancies more patients in group-II presented with LVOTO (p = 0.05), or the combination of arch hypoplasia, intact ventricular septum and normal ventriculo-arterial connection (p = 0.017). Hospital mortality was 8.1% in group-I and 37.5% in group-II (p = 0.016). Re-intervention was performed in 13 patients (group-I: n = 6 vs. group-II: n = 7) due to aortic arch re-coarctation (n = 12) and/or recurrent LVOTO (n = 3), and resulted in a Kaplan-Meier freedom from re-intervention of 87 ± 6% and 79 ± 8% in group-I, and 64 ± 14% and 64 ± 14% in group-II after 1 and 5 years, respectively (p = 0.016). Multivariate analysis revealed LVOTO as an independent risk factor for hospital death (p = 0.042), whereas both LVOTO and left-open IAC (p = 0.001 and 0.01) were independent risk factors for re-intervention.

Conclusions

A left-open IAC increases risk of re-intervention at the left heart aorta complex. Sustained left-to-right shunting on atrial level seems to induce preload reduction of the often restrictive left ventricle leading to decreased aortic blood flow.
Literature
1.
go back to reference Tchervenkov CI, Tahta SA, Jutras LC, Beland MJ. Biventricular repair in neonates with hypoplastic left heart complex. Ann Thorac Surg. 1998;66:1350–7.CrossRefPubMed Tchervenkov CI, Tahta SA, Jutras LC, Beland MJ. Biventricular repair in neonates with hypoplastic left heart complex. Ann Thorac Surg. 1998;66:1350–7.CrossRefPubMed
2.
go back to reference Alsoufi B, Cai S, Coles JG, Williams WG, Van Arsdell GS, Caldarone CA. Outcomes of different surgical strategies in the treatment of neonates with aortic coarctation and associated ventricular septal defects. Ann Thorac Surg. 2007;84:1331–6. discussion 1336–1337.CrossRefPubMed Alsoufi B, Cai S, Coles JG, Williams WG, Van Arsdell GS, Caldarone CA. Outcomes of different surgical strategies in the treatment of neonates with aortic coarctation and associated ventricular septal defects. Ann Thorac Surg. 2007;84:1331–6. discussion 1336–1337.CrossRefPubMed
3.
go back to reference Walters 3rd HL, Ionan CE, Thomas RL, Delius RE. Single-stage versus 2-stage repair of coarctation of the aorta with ventricular septal defect. J Thorac Cardiovasc Surg. 2008;135:754–61.CrossRefPubMed Walters 3rd HL, Ionan CE, Thomas RL, Delius RE. Single-stage versus 2-stage repair of coarctation of the aorta with ventricular septal defect. J Thorac Cardiovasc Surg. 2008;135:754–61.CrossRefPubMed
4.
go back to reference Chen PC, Cubberley AT, Reyes K, Zurakowski D, Baird CW, Pigula FA, et al. Predictors of reintervention after repair of interrupted aortic arch with ventricular septal defect. Ann Thorac Surg. 2013;96:621–8.CrossRefPubMed Chen PC, Cubberley AT, Reyes K, Zurakowski D, Baird CW, Pigula FA, et al. Predictors of reintervention after repair of interrupted aortic arch with ventricular septal defect. Ann Thorac Surg. 2013;96:621–8.CrossRefPubMed
5.
go back to reference Jegatheeswaran A, McCrindle BW, Blackstone EH, Jacobs ML, Lofland GK, Austin 3rd EH, et al. Persistent risk of subsequent procedures and mortality in patients after interrupted aortic arch repair: a congenital heart Surgeons’ society study. J Thorac Cardiovasc Surg. 2010;140:1059–75.CrossRefPubMed Jegatheeswaran A, McCrindle BW, Blackstone EH, Jacobs ML, Lofland GK, Austin 3rd EH, et al. Persistent risk of subsequent procedures and mortality in patients after interrupted aortic arch repair: a congenital heart Surgeons’ society study. J Thorac Cardiovasc Surg. 2010;140:1059–75.CrossRefPubMed
6.
go back to reference Morales DL, Scully PT, Braud BE, Booth JH, Graves DE, Heinle JS, et al. Interrupted aortic arch repair: aortic arch advancement without a patch minimizes arch reinterventions. Ann Thorac Surg. 2006;82:1577–83. discussion 1583–1574.CrossRefPubMed Morales DL, Scully PT, Braud BE, Booth JH, Graves DE, Heinle JS, et al. Interrupted aortic arch repair: aortic arch advancement without a patch minimizes arch reinterventions. Ann Thorac Surg. 2006;82:1577–83. discussion 1583–1574.CrossRefPubMed
7.
go back to reference Tlaskal T, Vojtovic P, Reich O, Hucin B, Gebauer R, Kucera V. Improved results after the primary repair of interrupted aortic arch: impact of a new management protocol with isolated cerebral perfusion. Eur J Cardiothorac Surg. 2010;38:52–8.CrossRefPubMed Tlaskal T, Vojtovic P, Reich O, Hucin B, Gebauer R, Kucera V. Improved results after the primary repair of interrupted aortic arch: impact of a new management protocol with isolated cerebral perfusion. Eur J Cardiothorac Surg. 2010;38:52–8.CrossRefPubMed
8.
go back to reference Tchervenkov CI, Jacobs ML, Tahta SA. Congenital heart surgery nomenclature and database project: hypoplastic left heart syndrome. Ann Thorac Surg. 2000;69:S170–9.CrossRefPubMed Tchervenkov CI, Jacobs ML, Tahta SA. Congenital heart surgery nomenclature and database project: hypoplastic left heart syndrome. Ann Thorac Surg. 2000;69:S170–9.CrossRefPubMed
9.
go back to reference Serraf A, Piot JD, Bonnet N, Lacour-Gayet F, Touchot A, Bruniaux J, et al. Biventricular repair approach in ducto-dependent neonates with hypoplastic but morphologically normal left ventricle. J Am Coll Cardiol. 1999;33:827–34.CrossRefPubMed Serraf A, Piot JD, Bonnet N, Lacour-Gayet F, Touchot A, Bruniaux J, et al. Biventricular repair approach in ducto-dependent neonates with hypoplastic but morphologically normal left ventricle. J Am Coll Cardiol. 1999;33:827–34.CrossRefPubMed
11.
go back to reference Daebritz SH, Tiete AR, Rassoulian D, Roemer U, Kozlik-Feldmann R, Sachweh JS, et al. Borderline hypoplastic left heart malformations: Norwood palliation or two-ventricle repair? Thorac Cardiovasc Surg. 2002;50:266–70.CrossRefPubMed Daebritz SH, Tiete AR, Rassoulian D, Roemer U, Kozlik-Feldmann R, Sachweh JS, et al. Borderline hypoplastic left heart malformations: Norwood palliation or two-ventricle repair? Thorac Cardiovasc Surg. 2002;50:266–70.CrossRefPubMed
12.
go back to reference Ruffer A, Klopsch C, Munch F, Gottschalk U, Mir TS, Weil J, et al. Aortic arch repair: let it beat! Thorac Cardiovasc Surg. 2012;60:189–94.CrossRefPubMed Ruffer A, Klopsch C, Munch F, Gottschalk U, Mir TS, Weil J, et al. Aortic arch repair: let it beat! Thorac Cardiovasc Surg. 2012;60:189–94.CrossRefPubMed
13.
go back to reference Giamberti A, Marino B, di Carlo D, Iorio FS, Formigari R, de Zorzi A, et al. Partial atrioventricular canal with congestive heart failure in the first year of life: surgical options. Ann Thorac Surg. 1996;62:151–4.CrossRefPubMed Giamberti A, Marino B, di Carlo D, Iorio FS, Formigari R, de Zorzi A, et al. Partial atrioventricular canal with congestive heart failure in the first year of life: surgical options. Ann Thorac Surg. 1996;62:151–4.CrossRefPubMed
14.
go back to reference Manning PB, Mayer Jr JE, Sanders SP, Coleman EA, Jonas RA, Keane JF, et al. Unique features and prognosis of primum ASD presenting in the first year of life. Circulation. 1994;90:II30–5.CrossRefPubMed Manning PB, Mayer Jr JE, Sanders SP, Coleman EA, Jonas RA, Keane JF, et al. Unique features and prognosis of primum ASD presenting in the first year of life. Circulation. 1994;90:II30–5.CrossRefPubMed
15.
go back to reference Lofland GK, McCrindle BW, Williams WG, Blackstone EH, Tchervenkov CI, Sittiwangkul R, et al. Critical aortic stenosis in the neonate: a multi-institutional study of management, outcomes, and risk factors. Congenital heart surgeons society. J Thorac Cardiovasc Surg. 2001;121:10–27.CrossRefPubMed Lofland GK, McCrindle BW, Williams WG, Blackstone EH, Tchervenkov CI, Sittiwangkul R, et al. Critical aortic stenosis in the neonate: a multi-institutional study of management, outcomes, and risk factors. Congenital heart surgeons society. J Thorac Cardiovasc Surg. 2001;121:10–27.CrossRefPubMed
16.
go back to reference Rhodes LA, Colan SD, Perry SB, Jonas RA, Sanders SP. Predictors of survival in neonates with critical aortic stenosis. Circulation. 1991;84:2325–35.CrossRefPubMed Rhodes LA, Colan SD, Perry SB, Jonas RA, Sanders SP. Predictors of survival in neonates with critical aortic stenosis. Circulation. 1991;84:2325–35.CrossRefPubMed
17.
go back to reference Rognoni A, Lupi A, Cavallino C, Veia A, Bacchini S, Rosso R, et al. Levosimendan preoperative. Curr Pharm Des. 2013;19:3974–8.CrossRefPubMed Rognoni A, Lupi A, Cavallino C, Veia A, Bacchini S, Rosso R, et al. Levosimendan preoperative. Curr Pharm Des. 2013;19:3974–8.CrossRefPubMed
18.
go back to reference Ricci Z, Garisto C, Favia I, Vitale V, Di Chiara L, Cogo PE. Levosimendan infusion in newborns after corrective surgery for congenital heart disease: randomized controlled trial. Intensive Care Med. 2012;38:1198–204.CrossRefPubMed Ricci Z, Garisto C, Favia I, Vitale V, Di Chiara L, Cogo PE. Levosimendan infusion in newborns after corrective surgery for congenital heart disease: randomized controlled trial. Intensive Care Med. 2012;38:1198–204.CrossRefPubMed
19.
go back to reference Emani SM, McElhinney DB, Tworetzky W, Myers PO, Schroeder B, Zurakowski D, et al. Staged left ventricular recruitment after single-ventricle palliation in patients with borderline left heart hypoplasia. J Am Coll Cardiol. 2012;60:1966–74.CrossRefPubMed Emani SM, McElhinney DB, Tworetzky W, Myers PO, Schroeder B, Zurakowski D, et al. Staged left ventricular recruitment after single-ventricle palliation in patients with borderline left heart hypoplasia. J Am Coll Cardiol. 2012;60:1966–74.CrossRefPubMed
20.
go back to reference Bridges ND, Lock JE, Castaneda AR. Baffle fenestration with subsequent transcatheter closure. Modification of the fontan operation for patients at increased risk. Circulation. 1990;82:1681–9.CrossRefPubMed Bridges ND, Lock JE, Castaneda AR. Baffle fenestration with subsequent transcatheter closure. Modification of the fontan operation for patients at increased risk. Circulation. 1990;82:1681–9.CrossRefPubMed
21.
go back to reference Mignosa C, Duca V, Bianca I, Salvo D, Ferlazzo G, Abbate M. Fenestrated arterial switch operation: surgical approach to an unusual transposition of the great arteries complex. Ann Thorac Surg. 2001;71:1684–6.CrossRefPubMed Mignosa C, Duca V, Bianca I, Salvo D, Ferlazzo G, Abbate M. Fenestrated arterial switch operation: surgical approach to an unusual transposition of the great arteries complex. Ann Thorac Surg. 2001;71:1684–6.CrossRefPubMed
22.
go back to reference Schwartz ML, Gauvreau K, Geva T. Predictors of outcome of biventricular repair in infants with multiple left heart obstructive lesions. Circulation. 2001;104:682–7.CrossRefPubMed Schwartz ML, Gauvreau K, Geva T. Predictors of outcome of biventricular repair in infants with multiple left heart obstructive lesions. Circulation. 2001;104:682–7.CrossRefPubMed
23.
go back to reference Tuo G, Khambadkone S, Tann O, Kostolny M, Derrick G, Tsang V, et al. Obstructive left heart disease in neonates with a “borderline” left ventricle: diagnostic challenges to choosing the best outcome. Pediatr Cardiol. 2013;34:1567–76.CrossRefPubMed Tuo G, Khambadkone S, Tann O, Kostolny M, Derrick G, Tsang V, et al. Obstructive left heart disease in neonates with a “borderline” left ventricle: diagnostic challenges to choosing the best outcome. Pediatr Cardiol. 2013;34:1567–76.CrossRefPubMed
24.
go back to reference Seirafi PA, Warner KG, Geggel RL, Payne DD, Cleveland RJ. Repair of coarctation of the aorta during infancy minimizes the risk of late hypertension. Ann Thorac Surg. 1998;66:1378–82.CrossRefPubMed Seirafi PA, Warner KG, Geggel RL, Payne DD, Cleveland RJ. Repair of coarctation of the aorta during infancy minimizes the risk of late hypertension. Ann Thorac Surg. 1998;66:1378–82.CrossRefPubMed
Metadata
Title
Aortic arch obstruction neonates with biventricular physiology: left-open compared to closed inter-atrial communication during primary repair – a retrospective study
Authors
André Rüffer
Caroline Bechtold
Ariawan Purbojo
Okan Toka
Martin Glöckler
Sven Dittrich
Robert Anton Cesnjevar
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2015
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-015-0258-1

Other articles of this Issue 1/2015

Journal of Cardiothoracic Surgery 1/2015 Go to the issue