Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2015

Open Access 01-12-2015 | Research article

One-year patency control and risk analysis of eSVS®-mesh-supported coronary saphenous vein grafts

Authors: Devdas T. Inderbitzin, Jens Bremerich, Peter Matt, Martin T. R. Grapow, Friedrich S. Eckstein, Oliver Reuthebuch

Published in: Journal of Cardiothoracic Surgery | Issue 1/2015

Login to get access

Abstract

Background

The eSVS® external venous nitinol mesh (Kips Bay Medical, Minneapolis, USA) was designed to improve long-term patency of coronary saphenous vein grafts (SVG) by preventing pressure-induced wall stress and reactive neo-intimal hyperplasia. We present one-year-patency rates of meshed SVGs assessed by coronary computed tomographic angiography (cCTA).

Patients and Methods

Data from consecutive patients receiving an eSVS® meshed coronary bypass SVG from 06/2010 to 06/2011 were prospectively collected and analysed post-hoc. Patient characteristics, coronary artery disease, SVG quality, surgery (including number of anastomoses and transit time flow-measurement: TTFM), postoperative course and graft patency by cCTA were recorded. Potential risk factors for meshed graft occlusion were evaluated.

Results

22 patients received an eSVS® mesh (18 isolated CABG, 4 combined with aortic valve replacement). Three patients died prior to the one-year follow-up and were excluded. All 19 surviving patients (mean age 70.4 ± 9.5 years, 3 female) completed a cCTA of all grafts at 12 ± 0.1 months after surgery including 21 meshed SVGs (33 distal anastomoses), 7 unmeshed SVGs (13 distal anastomoses) and 22 arterial grafts (30 distal anastomoses).
Mesh application was safe with patent grafts (by intraoperative TTFM) and perioperative course uneventful in all patients. The average graft/anastomosis number per patient was 2.6 ± 0.5/3.7 ± 0.8. Patency was unrestricted in all arterial and unmeshed SVGs (cCTA). Meshed SVG patency was 85 % (n = 28/33) for distal anastomoses and 76 % (n = 16/21) among meshed SVGs. Four SVGs with single distal anastomosis to the right coronary were completely occluded. One sequential graft to the left coronary was occluded between proximal and first distal anastomosis (see Fig. 1). Patency was independent of target site, coronary run-off, SVG quality and sequential distal grafting. All patients were asymptomatic.

Conclusions

The overall one-year patency rate of eSVS® meshed SVGs/anastomoses was 76 %/85 %. Surgical implantation is safe independently of target site, run-off, vein quality and sequential distal anastomoses. However, graft patency of meshed veins (76 %) was inferior to non-meshed (100 %) or arterial grafts (100 %). Thus our mid-term data do not sustain the concept of improving vein graft patency by external reinforcing with the eSVS® mesh. Further long-term follow-up is warranted.
Literature
1.
go back to reference Goldman S, Zadina K, Moritz T, Ovitt T, Sethi G, Copeland JG, et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol. 2004;44:2149–56.CrossRefPubMed Goldman S, Zadina K, Moritz T, Ovitt T, Sethi G, Copeland JG, et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol. 2004;44:2149–56.CrossRefPubMed
2.
go back to reference Kim FY, Marhefka G, Ruggiero NJ, Adams S, Whellan DJ. Saphenous vein graft disease: review of pathophysiology, prevention, and treatment. Cardiology in review. 2013;21:101–9.CrossRefPubMed Kim FY, Marhefka G, Ruggiero NJ, Adams S, Whellan DJ. Saphenous vein graft disease: review of pathophysiology, prevention, and treatment. Cardiology in review. 2013;21:101–9.CrossRefPubMed
3.
go back to reference Jeong DS, Kim YH, Lee YT, Chung SU, Sung K, Kim WS, et al. Revascularization for the right coronary artery territory in off-pump coronary artery bypass surgery. Ann Thorac Surg. 2013;96:778–85. discussion 85.CrossRefPubMed Jeong DS, Kim YH, Lee YT, Chung SU, Sung K, Kim WS, et al. Revascularization for the right coronary artery territory in off-pump coronary artery bypass surgery. Ann Thorac Surg. 2013;96:778–85. discussion 85.CrossRefPubMed
4.
go back to reference Kolh P, Windecker S, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg. 2014;46:517–92.CrossRefPubMed Kolh P, Windecker S, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg. 2014;46:517–92.CrossRefPubMed
5.
go back to reference Emery RW, Solien E, Jamieson SW. Implantation of the eSVS Mesh. Innovations (Philadelphia, Pa). 2012;7:65–7.CrossRef Emery RW, Solien E, Jamieson SW. Implantation of the eSVS Mesh. Innovations (Philadelphia, Pa). 2012;7:65–7.CrossRef
6.
go back to reference Zilla P, Human P, Wolf M, Lichtenberg W, Rafiee N, Bezuidenhout D, et al. Constrictive external nitinol meshes inhibit vein graft intimal hyperplasia in nonhuman primates. The Journal of thoracic and cardiovascular surgery. 2008;136:717–25.CrossRefPubMed Zilla P, Human P, Wolf M, Lichtenberg W, Rafiee N, Bezuidenhout D, et al. Constrictive external nitinol meshes inhibit vein graft intimal hyperplasia in nonhuman primates. The Journal of thoracic and cardiovascular surgery. 2008;136:717–25.CrossRefPubMed
7.
go back to reference Genoni M, Odavic D, Loblein H, Dzemali O. Use of the eSVS Mesh: external vein support does not negatively impact early graft patency. Innovations (Philadelphia, Pa). 2013;8:211–4.CrossRef Genoni M, Odavic D, Loblein H, Dzemali O. Use of the eSVS Mesh: external vein support does not negatively impact early graft patency. Innovations (Philadelphia, Pa). 2013;8:211–4.CrossRef
8.
go back to reference Klima U, Elsebay AA, Gantri MR, Bangardt J, Miller G, Emery RW. Computerized tomographic angiography in patients having eSVS Mesh(R) supported coronary saphenous vein grafts: intermediate term results. Journal of cardiothoracic surgery. 2014;9:138.CrossRefPubMed Klima U, Elsebay AA, Gantri MR, Bangardt J, Miller G, Emery RW. Computerized tomographic angiography in patients having eSVS Mesh(R) supported coronary saphenous vein grafts: intermediate term results. Journal of cardiothoracic surgery. 2014;9:138.CrossRefPubMed
9.
go back to reference Inderbitzin DT, Matt P, Eckstein FS, Reuthebuch O. eComment: external nitinol meshing of venous coronary artery bypass grafts: is safety of application really in doubt? Interact Cardiovasc Thorac Surg. 2011;13:400.CrossRefPubMed Inderbitzin DT, Matt P, Eckstein FS, Reuthebuch O. eComment: external nitinol meshing of venous coronary artery bypass grafts: is safety of application really in doubt? Interact Cardiovasc Thorac Surg. 2011;13:400.CrossRefPubMed
10.
go back to reference Achenbach S, Narula J. Coronary CT angiography: from sensitivity to specificity. JACC Cardiovascular imaging. 2011;4:1227–9.CrossRefPubMed Achenbach S, Narula J. Coronary CT angiography: from sensitivity to specificity. JACC Cardiovascular imaging. 2011;4:1227–9.CrossRefPubMed
11.
go back to reference Schueler S, Walther S, Schuetz GM, Schlattmann P, Dewey M. Methodological quality of diagnostic accuracy studies on non-invasive coronary CT angiography: influence of QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) items on sensitivity and specificity. European radiology. 2013;23:1603–22.CrossRefPubMed Schueler S, Walther S, Schuetz GM, Schlattmann P, Dewey M. Methodological quality of diagnostic accuracy studies on non-invasive coronary CT angiography: influence of QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) items on sensitivity and specificity. European radiology. 2013;23:1603–22.CrossRefPubMed
12.
go back to reference Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol. 1996;28:616–26.CrossRefPubMed Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol. 1996;28:616–26.CrossRefPubMed
13.
go back to reference Schoettler J, Jussli-Melchers J, Grothusen C, Stracke L, Schoeneich F, Stohn S, et al. Highly flexible nitinol mesh to encase aortocoronary saphenous vein grafts: first clinical experiences and angiographic results nine months postoperatively. Interact Cardiovasc Thorac Surg. 2011;13:396–400.CrossRefPubMed Schoettler J, Jussli-Melchers J, Grothusen C, Stracke L, Schoeneich F, Stohn S, et al. Highly flexible nitinol mesh to encase aortocoronary saphenous vein grafts: first clinical experiences and angiographic results nine months postoperatively. Interact Cardiovasc Thorac Surg. 2011;13:396–400.CrossRefPubMed
14.
go back to reference FitzGibbon GM, Leach AJ, Kafka HP, Keon WJ. Coronary bypass graft fate: long-term angiographic study. J Am Coll Cardiol. 1991;17:1075–80.CrossRefPubMed FitzGibbon GM, Leach AJ, Kafka HP, Keon WJ. Coronary bypass graft fate: long-term angiographic study. J Am Coll Cardiol. 1991;17:1075–80.CrossRefPubMed
15.
go back to reference Lopes RD, Hafley GE, Allen KB, Ferguson TB, Peterson ED, Harrington RA, et al. Endoscopic versus open vein-graft harvesting in coronary-artery bypass surgery. The New England journal of medicine. 2009;361:235–44.CrossRefPubMed Lopes RD, Hafley GE, Allen KB, Ferguson TB, Peterson ED, Harrington RA, et al. Endoscopic versus open vein-graft harvesting in coronary-artery bypass surgery. The New England journal of medicine. 2009;361:235–44.CrossRefPubMed
16.
17.
go back to reference Hess CN, Lopes RD, Gibson CM, Hager R, Wojdyla DM, Englum BR, et al. Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery: Insights From PREVENT IV. Circulation. 2014;130:1445–51.CrossRefPubMedPubMedCentral Hess CN, Lopes RD, Gibson CM, Hager R, Wojdyla DM, Englum BR, et al. Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery: Insights From PREVENT IV. Circulation. 2014;130:1445–51.CrossRefPubMedPubMedCentral
18.
go back to reference Une D, Deb S, Chikazawa G, Kommaraju K, Tsuneyoshi H, Karkhanis R, et al. Cut-off values for transit time flowmetry: are the revision criteria appropriate? Journal of cardiac surgery. 2013;28:3–7.CrossRefPubMed Une D, Deb S, Chikazawa G, Kommaraju K, Tsuneyoshi H, Karkhanis R, et al. Cut-off values for transit time flowmetry: are the revision criteria appropriate? Journal of cardiac surgery. 2013;28:3–7.CrossRefPubMed
19.
go back to reference Emery RW, Solien E. Intraoperative transit-time flow measurement is not altered in venous bypass grafts covered by the eSVS mesh. Innovations (Philadelphia, Pa). 2013;8:37–41.CrossRef Emery RW, Solien E. Intraoperative transit-time flow measurement is not altered in venous bypass grafts covered by the eSVS mesh. Innovations (Philadelphia, Pa). 2013;8:37–41.CrossRef
Metadata
Title
One-year patency control and risk analysis of eSVS®-mesh-supported coronary saphenous vein grafts
Authors
Devdas T. Inderbitzin
Jens Bremerich
Peter Matt
Martin T. R. Grapow
Friedrich S. Eckstein
Oliver Reuthebuch
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2015
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-015-0293-y

Other articles of this Issue 1/2015

Journal of Cardiothoracic Surgery 1/2015 Go to the issue