Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Computed Tomography | Technical note

Three-dimensional kinematic change of hindfoot during full weightbearing in standing: an analysis using upright computed tomography and 3D-3D surface registration

Authors: Kazuya Kaneda, Kengo Harato, Satoshi Oki, Tomohiko Ota, Yoshitake Yamada, Minoru Yamada, Morio Matsumoto, Masaya Nakamura, Takeo Nagura, Masahiro Jinzaki

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

Weightbearing of the hindfoot affects positional changes of the ankle joint and subtalar joint (ankle-joint complex [AJC]). However, it is difficult to assess the kinematic changes in the hindfoot in a natural full weightbearing condition using conventional CT or cone beam computed tomography (CT) due to limitations of acquiring foot images under a physiological weightbearing condition using those imaging modalities. Analysis of AJC kinematics using fluoroscopy and 2D-3D registration technique requires data on the number of steps and amount of time to build and match the bones. This study aimed to analyze the effect of full weightbearing on hindfoot motion when standing using upright CT and 3D-3D surface registration.

Methods

Forty-eight AJCs of 24 asymptomatic volunteers (13 women, 11 men) were examined under no weightbearing, 50% weightbearing, and single leg full weightbearing conditions while standing. The CT images were acquired from the distal femur to the whole foot using a 320-row upright CT scanner. The condition of each weightbearing stance was measured using a pressure mat. Bone-to-bone rotations of the talus relative to the tibia and calcaneus relative to the talus were evaluated using the surface registration technique. Image quality of the CT and intra- and interobserver reliabilities of the rotation angle were also evaluated.

Results

All CT images were excellent or good quality and the intra- and interobserver correlation coefficients for the angle were 0.996 and 0.995, respectively. The motion of the ankle joint and subtalar joint under 50% and 100% weightbearing were as follows (in degrees); the talus plantarflexed (5.1 ± 4.5 and 6.8 ± 4.8), inverted (1.3 ± 1.4 and 2.0 ± 1.6), and internally rotated (2.4 ± 4.2 and 4.3 ± 4.6) relative to the tibia, and the calcaneus dorsiflexed (2.8 ± 1.4 and 3.8 ± 1.7), everted (5.3 ± 2.6 and 8.0 ± 3.6), and externally rotated (3.0 ± 2.0 and 4.1 ± 2.4) relative to the talus, respectively.

Conclusions

The effect of weightbearing was clearly identified using an upright CT and the 3D-3D registration technique. Three-dimensional kinematics under static full weightbearing were opposite between the ankle and subtalar joints on their respective axes.
Literature
1.
go back to reference Goto A, Moritomo H, Itohara T, Watanabe T, Sugamoto K. Three-dimensional in vivo kinematics of the subtalar joint during dorsi-plantarflexion and inversion-eversion. Foot Ankle Int. 2009;30(5):432–8.PubMed Goto A, Moritomo H, Itohara T, Watanabe T, Sugamoto K. Three-dimensional in vivo kinematics of the subtalar joint during dorsi-plantarflexion and inversion-eversion. Foot Ankle Int. 2009;30(5):432–8.PubMed
2.
go back to reference Yamaguchi S, Sasho T, Kato H, Kuroyanagi Y, Banks SA. Ankle and subtalar kinematics during dorsiflexion-plantarflexion activities. Foot Ankle Int. 2009;30(4):361–6.PubMedCrossRef Yamaguchi S, Sasho T, Kato H, Kuroyanagi Y, Banks SA. Ankle and subtalar kinematics during dorsiflexion-plantarflexion activities. Foot Ankle Int. 2009;30(4):361–6.PubMedCrossRef
3.
go back to reference Ito K, Hosoda K, Shimizu M, Ikemoto S, Kume S, Nagura T, et al. Direct assessment of 3D foot bone kinematics using biplanar X-ray fluoroscopy and an automatic model registration method. J Foot Ankle Res. 2015;8:21.PubMedPubMedCentralCrossRef Ito K, Hosoda K, Shimizu M, Ikemoto S, Kume S, Nagura T, et al. Direct assessment of 3D foot bone kinematics using biplanar X-ray fluoroscopy and an automatic model registration method. J Foot Ankle Res. 2015;8:21.PubMedPubMedCentralCrossRef
4.
go back to reference Ito K, Hosoda K, Shimizu M, Ikemoto S, Nagura T, Seki H, et al. Three-dimensional innate mobility of the human foot bones under axial loading using biplane X-ray fluoroscopy. R Soc Open Sci. 2017;4(10):171086.PubMedPubMedCentralCrossRef Ito K, Hosoda K, Shimizu M, Ikemoto S, Nagura T, Seki H, et al. Three-dimensional innate mobility of the human foot bones under axial loading using biplane X-ray fluoroscopy. R Soc Open Sci. 2017;4(10):171086.PubMedPubMedCentralCrossRef
5.
go back to reference Kobayashi T, Saka M, Suzuki E, Yamazaki N, Suzukawa M, Akaike A, et al. In vivo kinematics of the talocrural and subtalar joints during weightbearing ankle rotation in chronic ankle instability. Foot Ankle Spec. 2014;7(1):13–9.PubMedCrossRef Kobayashi T, Saka M, Suzuki E, Yamazaki N, Suzukawa M, Akaike A, et al. In vivo kinematics of the talocrural and subtalar joints during weightbearing ankle rotation in chronic ankle instability. Foot Ankle Spec. 2014;7(1):13–9.PubMedCrossRef
6.
go back to reference Roach KE, Foreman KB, Barg A, Saltzman CL, Anderson AE. Application of high-speed dual fluoroscopy to study in vivo tibiotalar and subtalar kinematics in patients with chronic ankle instability and asymptomatic control subjects during dynamic activities. Foot Ankle Int. 2017;38(11):1236–48.PubMedPubMedCentralCrossRef Roach KE, Foreman KB, Barg A, Saltzman CL, Anderson AE. Application of high-speed dual fluoroscopy to study in vivo tibiotalar and subtalar kinematics in patients with chronic ankle instability and asymptomatic control subjects during dynamic activities. Foot Ankle Int. 2017;38(11):1236–48.PubMedPubMedCentralCrossRef
7.
go back to reference Ananthakrisnan D, Ching R, Tencer A, Hansen ST Jr, Sangeorzan BJ. Subluxation of the talocalcaneal joint in adults who have symptomatic flatfoot. J Bone Joint Surg Am. 1999;81(8):1147–54.PubMedCrossRef Ananthakrisnan D, Ching R, Tencer A, Hansen ST Jr, Sangeorzan BJ. Subluxation of the talocalcaneal joint in adults who have symptomatic flatfoot. J Bone Joint Surg Am. 1999;81(8):1147–54.PubMedCrossRef
8.
go back to reference Apostle KL, Coleman NW, Sangeorzan BJ. Subtalar joint axis in patients with symptomatic peritalar subluxation compared to normal controls. Foot Ankle Int. 2014;35(11):1153–8.PubMedCrossRef Apostle KL, Coleman NW, Sangeorzan BJ. Subtalar joint axis in patients with symptomatic peritalar subluxation compared to normal controls. Foot Ankle Int. 2014;35(11):1153–8.PubMedCrossRef
9.
go back to reference Ferri M, Scharfenberger AV, Goplen G, Daniels TR, Pearce D. Weightbearing CT scan of severe flexible pes planus deformities. Foot Ankle Int. 2008;29(2):199–204.PubMedCrossRef Ferri M, Scharfenberger AV, Goplen G, Daniels TR, Pearce D. Weightbearing CT scan of severe flexible pes planus deformities. Foot Ankle Int. 2008;29(2):199–204.PubMedCrossRef
10.
go back to reference Kido M, Ikoma K, Imai K, Maki M, Takatori R, Tokunaga D, et al. Load response of the tarsal bones in patients with flatfoot deformity: in vivo 3D study. Foot Ankle Int. 2011;32(11):1017–22.PubMedCrossRef Kido M, Ikoma K, Imai K, Maki M, Takatori R, Tokunaga D, et al. Load response of the tarsal bones in patients with flatfoot deformity: in vivo 3D study. Foot Ankle Int. 2011;32(11):1017–22.PubMedCrossRef
11.
go back to reference Kido M, Ikoma K, Imai K, Tokunaga D, Inoue N, Kubo T. Load response of the medial longitudinal arch in patients with flatfoot deformity: in vivo 3D study. Clin Biomech (Bristol, Avon). 2013;28(5):568–73.CrossRef Kido M, Ikoma K, Imai K, Tokunaga D, Inoue N, Kubo T. Load response of the medial longitudinal arch in patients with flatfoot deformity: in vivo 3D study. Clin Biomech (Bristol, Avon). 2013;28(5):568–73.CrossRef
12.
go back to reference Ledoux WR, Rohr ES, Ching RP, Sangeorzan BJ. Effect of foot shape on the three-dimensional position of foot bones. J Orthop Res. 2006;24(12):2176–86.PubMedCrossRef Ledoux WR, Rohr ES, Ching RP, Sangeorzan BJ. Effect of foot shape on the three-dimensional position of foot bones. J Orthop Res. 2006;24(12):2176–86.PubMedCrossRef
13.
go back to reference Van Bergeyk AB, Younger A, Carson B. CT analysis of hindfoot alignment in chronic lateral ankle instability. Foot Ankle Int. 2002;23(1):37–42.PubMedCrossRef Van Bergeyk AB, Younger A, Carson B. CT analysis of hindfoot alignment in chronic lateral ankle instability. Foot Ankle Int. 2002;23(1):37–42.PubMedCrossRef
14.
go back to reference Yoshioka N, Ikoma K, Kido M, Imai K, Maki M, Arai Y, et al. Weight-bearing three-dimensional computed tomography analysis of the forefoot in patients with flatfoot deformity. J Orthop Sci. 2016;21(2):154–8.PubMedCrossRef Yoshioka N, Ikoma K, Kido M, Imai K, Maki M, Arai Y, et al. Weight-bearing three-dimensional computed tomography analysis of the forefoot in patients with flatfoot deformity. J Orthop Sci. 2016;21(2):154–8.PubMedCrossRef
15.
go back to reference Zhang Y, Xu J, Wang X, Huang J, Zhang C, Chen L, et al. An in vivo study of hindfoot 3D kinetics in stage II posterior tibial tendon dysfunction (PTTD) flatfoot based on weight-bearing CT scan. Bone Joint Res. 2013;2(12):255–63.PubMedPubMedCentralCrossRef Zhang Y, Xu J, Wang X, Huang J, Zhang C, Chen L, et al. An in vivo study of hindfoot 3D kinetics in stage II posterior tibial tendon dysfunction (PTTD) flatfoot based on weight-bearing CT scan. Bone Joint Res. 2013;2(12):255–63.PubMedPubMedCentralCrossRef
16.
go back to reference Burssens A, Peeters J, Buedts K, Victor J, Vandeputte G. Measuring hindfoot alignment in weight bearing CT: a novel clinical relevant measurement method. Foot Ankle Surg. 2016;22(4):233–8.PubMedCrossRef Burssens A, Peeters J, Buedts K, Victor J, Vandeputte G. Measuring hindfoot alignment in weight bearing CT: a novel clinical relevant measurement method. Foot Ankle Surg. 2016;22(4):233–8.PubMedCrossRef
17.
go back to reference Cody EA, Williamson ER, Burket JC, Deland JT, Ellis SJ. Correlation of talar anatomy and subtalar joint alignment on weightbearing computed tomography with radiographic flatfoot parameters. Foot Ankle Int. 2016;37(8):874–81.PubMedCrossRef Cody EA, Williamson ER, Burket JC, Deland JT, Ellis SJ. Correlation of talar anatomy and subtalar joint alignment on weightbearing computed tomography with radiographic flatfoot parameters. Foot Ankle Int. 2016;37(8):874–81.PubMedCrossRef
18.
go back to reference Hirschmann A, Pfirrmann CW, Klammer G, Espinosa N, Buck FM. Upright cone CT of the hindfoot: comparison of the non-weight-bearing with the upright weight-bearing position. Eur Radiol. 2014;24(3):553–8.PubMedCrossRef Hirschmann A, Pfirrmann CW, Klammer G, Espinosa N, Buck FM. Upright cone CT of the hindfoot: comparison of the non-weight-bearing with the upright weight-bearing position. Eur Radiol. 2014;24(3):553–8.PubMedCrossRef
19.
go back to reference Krahenbuhl N, Tschuck M, Bolliger L, Hintermann B, Knupp M. Orientation of the subtalar joint: measurement and reliability using weightbearing CT scans. Foot Ankle Int. 2016;37(1):109–14.PubMedCrossRef Krahenbuhl N, Tschuck M, Bolliger L, Hintermann B, Knupp M. Orientation of the subtalar joint: measurement and reliability using weightbearing CT scans. Foot Ankle Int. 2016;37(1):109–14.PubMedCrossRef
20.
go back to reference Lintz F, Welck M, Bernasconi A, Thornton J, Cullen NP, Singh D, et al. 3D biometrics for hindfoot alignment using weightbearing CT. Foot Ankle Int. 2017;38(6):684–9.PubMedCrossRef Lintz F, Welck M, Bernasconi A, Thornton J, Cullen NP, Singh D, et al. 3D biometrics for hindfoot alignment using weightbearing CT. Foot Ankle Int. 2017;38(6):684–9.PubMedCrossRef
21.
go back to reference Richter M, Lintz F, Zech S, Meissner SA. Combination of PedCAT weightbearing CT with pedography assessment of the relationship between anatomy-based foot center and force/pressure-based center of gravity. Foot Ankle Int. 2018;39(3):361–8.PubMedCrossRef Richter M, Lintz F, Zech S, Meissner SA. Combination of PedCAT weightbearing CT with pedography assessment of the relationship between anatomy-based foot center and force/pressure-based center of gravity. Foot Ankle Int. 2018;39(3):361–8.PubMedCrossRef
22.
go back to reference Richter M, Seidl B, Zech S, Hahn S. PedCAT for 3D-imaging in standing position allows for more accurate bone position (angle) measurement than radiographs or CT. Foot Ankle Surg. 2014;20(3):201–7.PubMedCrossRef Richter M, Seidl B, Zech S, Hahn S. PedCAT for 3D-imaging in standing position allows for more accurate bone position (angle) measurement than radiographs or CT. Foot Ankle Surg. 2014;20(3):201–7.PubMedCrossRef
23.
go back to reference Richter M, Zech S, Hahn S, Naef I, Merschin D. Combination of pedCAT(R) for 3D imaging in standing position with pedography shows no statistical correlation of bone position with force/pressure distribution. J Foot Ankle Surg. 2016;55(2):240–6.PubMedCrossRef Richter M, Zech S, Hahn S, Naef I, Merschin D. Combination of pedCAT(R) for 3D imaging in standing position with pedography shows no statistical correlation of bone position with force/pressure distribution. J Foot Ankle Surg. 2016;55(2):240–6.PubMedCrossRef
24.
go back to reference Jinzaki M, Yamada Y, Nagura T, Nakahara T, Yokoyama Y, Narita K, et al. Development of upright CT with area detector for whole body scans: phantom study, efficacy on workflow, effect of gravity on human body, and potential clinical impact. Investig Radiol. in press Jinzaki M, Yamada Y, Nagura T, Nakahara T, Yokoyama Y, Narita K, et al. Development of upright CT with area detector for whole body scans: phantom study, efficacy on workflow, effect of gravity on human body, and potential clinical impact. Investig Radiol. in press
25.
go back to reference Ota T, Nagura T, Yamada Y, Yamada M, Yokoyama Y, Ogihara N, et al. Effect of natural full weight-bearing during standing on the rotation of the first metatarsal bone. Clin Anat. 2019;32(5):715–21.PubMedCrossRef Ota T, Nagura T, Yamada Y, Yamada M, Yokoyama Y, Ogihara N, et al. Effect of natural full weight-bearing during standing on the rotation of the first metatarsal bone. Clin Anat. 2019;32(5):715–21.PubMedCrossRef
26.
go back to reference Watanabe K, Ikeda Y, Suzuki D, Teramoto A, Kobayashi T, Suzuki T, et al. Three-dimensional analysis of tarsal bone response to axial loading in patients with hallux valgus and normal feet. Clin Biomech (Bristol, Avon). 2017;42:65–9.CrossRef Watanabe K, Ikeda Y, Suzuki D, Teramoto A, Kobayashi T, Suzuki T, et al. Three-dimensional analysis of tarsal bone response to axial loading in patients with hallux valgus and normal feet. Clin Biomech (Bristol, Avon). 2017;42:65–9.CrossRef
27.
go back to reference Sisniega A, Thawait GK, Shakoor D, Siewerdsen JH, Demehri S, Zbijewski W. Motion compensation in extremity cone-beam computedtomography. Skeletal Radiol. 2019;48(12):1999–2007.PubMedCrossRef Sisniega A, Thawait GK, Shakoor D, Siewerdsen JH, Demehri S, Zbijewski W. Motion compensation in extremity cone-beam computedtomography. Skeletal Radiol. 2019;48(12):1999–2007.PubMedCrossRef
28.
go back to reference Sato T, Koga Y, Sobue T, Omori G, Tanabe Y, Sakamoto M. Quantitative 3-dimensional analysis of preoperative and postoperative joint lines in total knee arthroplasty: a new concept for evaluation of component alignment. J Arthroplast. 2007;22(4):560–8.CrossRef Sato T, Koga Y, Sobue T, Omori G, Tanabe Y, Sakamoto M. Quantitative 3-dimensional analysis of preoperative and postoperative joint lines in total knee arthroplasty: a new concept for evaluation of component alignment. J Arthroplast. 2007;22(4):560–8.CrossRef
29.
go back to reference Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech. 2002;35(4):543–8.PubMedCrossRef Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech. 2002;35(4):543–8.PubMedCrossRef
30.
go back to reference Gutekunst DJ, Liu L, Ju T, Prior FW, Sinacore DR. Reliability of clinically relevant 3D foot bone angles from quantitative computed tomography. J Foot Ankle Res. 2013;6:38.PubMedPubMedCentralCrossRef Gutekunst DJ, Liu L, Ju T, Prior FW, Sinacore DR. Reliability of clinically relevant 3D foot bone angles from quantitative computed tomography. J Foot Ankle Res. 2013;6:38.PubMedPubMedCentralCrossRef
31.
go back to reference Ochia RS, Inoue N, Renner SM, Lorenz EP, Lim TH, Andersson GB, et al. Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine (Phila Pa 1976). 2006;31(18):2073–8.CrossRef Ochia RS, Inoue N, Renner SM, Lorenz EP, Lim TH, Andersson GB, et al. Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine (Phila Pa 1976). 2006;31(18):2073–8.CrossRef
Metadata
Title
Three-dimensional kinematic change of hindfoot during full weightbearing in standing: an analysis using upright computed tomography and 3D-3D surface registration
Authors
Kazuya Kaneda
Kengo Harato
Satoshi Oki
Tomohiko Ota
Yoshitake Yamada
Minoru Yamada
Morio Matsumoto
Masaya Nakamura
Takeo Nagura
Masahiro Jinzaki
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1443-z

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue