Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Hallux Valgus | Research article

Need for concomitant Akin osteotomy in patients undergoing Chevron osteotomy can be determined preoperatively: a retrospective comparative study of 859 cases

Authors: Gerhard Kaufmann, Maximilian Hofmann, Matthias Braito, Hanno Ulmer, Alexander Brunner, Dietmar Dammerer

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

The Chevron osteotomy is a frequently used surgical method for hallux valgus correction. This method is often combined with an Akin osteotomy. To date, clear guidelines for the implementation of an additional Akin osteotomy are missing. The purpose of this study was to elucidate the impact of concomitant phalangeal correction on the outcome after hallux valgus surgery and to define indication criteria for an additional Akin osteotomy.

Methods

Patients (859 feet) undergoing distal Chevron osteotomy at our department were retrospectively grouped into group C (Chevron, 785 feet) and group AC (Chevron plus Akin, 74 ft). Radiological assessment including the intermetatarsal angle (IMA), the hallux valgus angle (HVA), the distal metatarsal articular angle (DMAA), and the proximal to distal phalangeal articular angle (PDPAA) was performed preoperatively, postoperatively, after 6 weeks, and after 3 months. Longer-term follow-up with a mean of 36.4 months was available for 248 cases (29%).

Results

A significant improvement of all parameters could be found to all points of survey (p < 0.001). Loss of correction was detected for HVA (p < 0.001) and IMA (p < 0.007) with higher levels in group C. Preoperative PDPAA exceeding 8° correlated significantly with loss of HVA correction in group C (p < 0.001).

Conclusion

The combined Chevron and Akin osteotomy allowed for better correction of the hallux valgus deformity with better maintenance of the achieved correction. Recommendation for concomitant Akin osteotomy may be determined by a preoperative PDPAA exceeding 8°.

Trial registration

Retrospectively registered. UN5080.

Level of evidence

Therapeutic, Level III, retrospective comparative series.
Literature
1.
go back to reference Potenza V, et al. Chevron osteotomy with lateral release and adductor tenotomy for hallux valgus. Foot Ankle Int. 2009;30(6):512–6.CrossRefPubMed Potenza V, et al. Chevron osteotomy with lateral release and adductor tenotomy for hallux valgus. Foot Ankle Int. 2009;30(6):512–6.CrossRefPubMed
2.
go back to reference Park CH, et al. A comparison of proximal and distal chevron osteotomy for the correction of moderate hallux valgus deformity. Bone Joint J. 2013;95-B(5):649–56.CrossRefPubMed Park CH, et al. A comparison of proximal and distal chevron osteotomy for the correction of moderate hallux valgus deformity. Bone Joint J. 2013;95-B(5):649–56.CrossRefPubMed
3.
go back to reference Lee JY, et al. Change in first metatarsal length after proximal and distal Chevron osteotomies for hallux valgus deformity. J Foot Ankle Surg. 2015;54(4):525–30.CrossRefPubMed Lee JY, et al. Change in first metatarsal length after proximal and distal Chevron osteotomies for hallux valgus deformity. J Foot Ankle Surg. 2015;54(4):525–30.CrossRefPubMed
4.
go back to reference Wagner E, et al. Cost effectiveness of different techniques in hallux valgus surgery. Foot Ankle Surg. 2016;22(4):259–64.CrossRefPubMed Wagner E, et al. Cost effectiveness of different techniques in hallux valgus surgery. Foot Ankle Surg. 2016;22(4):259–64.CrossRefPubMed
5.
go back to reference Deenik A, et al. Equivalent correction in scarf and chevron osteotomy in moderate and severe hallux valgus: a randomized controlled trial. Foot Ankle Int. 2008;29(12):1209–15.CrossRefPubMed Deenik A, et al. Equivalent correction in scarf and chevron osteotomy in moderate and severe hallux valgus: a randomized controlled trial. Foot Ankle Int. 2008;29(12):1209–15.CrossRefPubMed
6.
go back to reference Thordarson DB, et al. Outcome study of hallux valgus surgery--an AOFAS multi-center study. Foot Ankle Int. 2001;22(12):956–9.CrossRefPubMed Thordarson DB, et al. Outcome study of hallux valgus surgery--an AOFAS multi-center study. Foot Ankle Int. 2001;22(12):956–9.CrossRefPubMed
7.
go back to reference Kaufmann G, et al. Loss of correction after Chevron osteotomy for hallux valgus as a function of preoperative deformity. Foot Ankle Int. 2018:1071100718807699. Kaufmann G, et al. Loss of correction after Chevron osteotomy for hallux valgus as a function of preoperative deformity. Foot Ankle Int. 2018:1071100718807699.
8.
go back to reference Bock P, et al. The scarf osteotomy with minimally invasive lateral release for treatment of hallux valgus deformity: intermediate and long-term results. J Bone Joint Surg Am. 2015;97(15):1238–45.CrossRefPubMed Bock P, et al. The scarf osteotomy with minimally invasive lateral release for treatment of hallux valgus deformity: intermediate and long-term results. J Bone Joint Surg Am. 2015;97(15):1238–45.CrossRefPubMed
9.
go back to reference Pentikainen I, et al. Preoperative radiological factors correlated to long-term recurrence of hallux valgus following distal chevron osteotomy. Foot Ankle Int. 2014;35(12):1262–7.CrossRefPubMed Pentikainen I, et al. Preoperative radiological factors correlated to long-term recurrence of hallux valgus following distal chevron osteotomy. Foot Ankle Int. 2014;35(12):1262–7.CrossRefPubMed
10.
go back to reference Okuda R, et al. Postoperative incomplete reduction of the sesamoids as a risk factor for recurrence of hallux valgus. J Bone Joint Surg Am. 2009;91(7):1637–45.CrossRefPubMed Okuda R, et al. Postoperative incomplete reduction of the sesamoids as a risk factor for recurrence of hallux valgus. J Bone Joint Surg Am. 2009;91(7):1637–45.CrossRefPubMed
11.
go back to reference Okuda R, et al. Hallux valgus angle as a predictor of recurrence following proximal metatarsal osteotomy. J Orthop Sci. 2011;16(6):760–4.CrossRefPubMed Okuda R, et al. Hallux valgus angle as a predictor of recurrence following proximal metatarsal osteotomy. J Orthop Sci. 2011;16(6):760–4.CrossRefPubMed
12.
go back to reference Kaufmann G, et al. Percutaneous minimally invasive Akin osteotomy in hallux valgus interphalangeus: a case series. Int Orthop. 2018;42(1):117–24.CrossRefPubMed Kaufmann G, et al. Percutaneous minimally invasive Akin osteotomy in hallux valgus interphalangeus: a case series. Int Orthop. 2018;42(1):117–24.CrossRefPubMed
13.
go back to reference Strydom A, Saragas NP, Ferrao PN. A radiographic analysis of the contribution of hallux valgus interphalangeus to the total valgus deformity of the hallux. Foot Ankle Surg. 2017;23(1):27–31.CrossRefPubMed Strydom A, Saragas NP, Ferrao PN. A radiographic analysis of the contribution of hallux valgus interphalangeus to the total valgus deformity of the hallux. Foot Ankle Surg. 2017;23(1):27–31.CrossRefPubMed
14.
go back to reference Lechler P, et al. Clinical outcome after Chevron-Akin double osteotomy versus isolated Chevron procedure: a prospective matched group analysis. Arch Orthop Trauma Surg. 2012;132(1):9–13.CrossRefPubMed Lechler P, et al. Clinical outcome after Chevron-Akin double osteotomy versus isolated Chevron procedure: a prospective matched group analysis. Arch Orthop Trauma Surg. 2012;132(1):9–13.CrossRefPubMed
15.
go back to reference Shibuya N, et al. Evaluation of hallux valgus correction with versus without akin proximal phalanx osteotomy. J Foot Ankle Surg. 2016;55(5):910–4.CrossRefPubMed Shibuya N, et al. Evaluation of hallux valgus correction with versus without akin proximal phalanx osteotomy. J Foot Ankle Surg. 2016;55(5):910–4.CrossRefPubMed
16.
go back to reference Park JY, et al. Intraoperative incidence of hallux valgus interphalangeus following basilar first metatarsal osteotomy and distal soft tissue realignment. Foot Ankle Int. 2011;32(11):1058–62.CrossRefPubMed Park JY, et al. Intraoperative incidence of hallux valgus interphalangeus following basilar first metatarsal osteotomy and distal soft tissue realignment. Foot Ankle Int. 2011;32(11):1058–62.CrossRefPubMed
17.
go back to reference Dixon AE, et al. Increased incidence and severity of postoperative radiographic hallux valgus interphalangeus with surgical correction of hallux valgus. Foot Ankle Int. 2015;36(8):961–8.CrossRefPubMed Dixon AE, et al. Increased incidence and severity of postoperative radiographic hallux valgus interphalangeus with surgical correction of hallux valgus. Foot Ankle Int. 2015;36(8):961–8.CrossRefPubMed
18.
go back to reference Arnold H. The Akin procedure as closing wedge osteotomy for the correction of a hallux valgus interphalangeus deformity. Oper Orthop Traumatol. 2008;20(6):477–83.CrossRefPubMed Arnold H. The Akin procedure as closing wedge osteotomy for the correction of a hallux valgus interphalangeus deformity. Oper Orthop Traumatol. 2008;20(6):477–83.CrossRefPubMed
19.
go back to reference Tollison ME, Baxter DE. Combination chevron plus Akin osteotomy for hallux valgus: should age be a limiting factor? Foot Ankle Int. 1997;18(8):477–81.CrossRefPubMed Tollison ME, Baxter DE. Combination chevron plus Akin osteotomy for hallux valgus: should age be a limiting factor? Foot Ankle Int. 1997;18(8):477–81.CrossRefPubMed
20.
go back to reference Mitchell CL, et al. Osteotomy-bunionectomy for hallux valgus. J Bone Joint Surg Am. 1958; 40-A(1): p. 41-58; discussion 59-60.CrossRef Mitchell CL, et al. Osteotomy-bunionectomy for hallux valgus. J Bone Joint Surg Am. 1958; 40-A(1): p. 41-58; discussion 59-60.CrossRef
21.
go back to reference Hofstaetter SG, et al. Modified chevron osteotomy with lateral release and screw fixation for treatment of severe hallux deformity. Z Orthop Unfall. 2012;150(6):594–600.PubMed Hofstaetter SG, et al. Modified chevron osteotomy with lateral release and screw fixation for treatment of severe hallux deformity. Z Orthop Unfall. 2012;150(6):594–600.PubMed
22.
go back to reference van Groningen B, et al. Outcomes in chevron osteotomy for hallux valgus in a large cohort. Foot (Edinb). 2016;29:18–24.CrossRef van Groningen B, et al. Outcomes in chevron osteotomy for hallux valgus in a large cohort. Foot (Edinb). 2016;29:18–24.CrossRef
23.
go back to reference Pochatko DJ, et al. Distal chevron osteotomy with lateral release for treatment of hallux valgus deformity. Foot Ankle Int. 1994;15(9):457–61.CrossRefPubMed Pochatko DJ, et al. Distal chevron osteotomy with lateral release for treatment of hallux valgus deformity. Foot Ankle Int. 1994;15(9):457–61.CrossRefPubMed
24.
go back to reference Tanaka Y, et al. Radiographic analysis of hallux valgus in women on weightbearing and nonweightbearing. Clin Orthop Relat Res. 1997;336:186–94.CrossRef Tanaka Y, et al. Radiographic analysis of hallux valgus in women on weightbearing and nonweightbearing. Clin Orthop Relat Res. 1997;336:186–94.CrossRef
25.
go back to reference Chi TD, et al. Intra- and inter-observer reliability of the distal metatarsal articular angle in adult hallux valgus. Foot Ankle Int. 2002;23(8):722–6.CrossRefPubMed Chi TD, et al. Intra- and inter-observer reliability of the distal metatarsal articular angle in adult hallux valgus. Foot Ankle Int. 2002;23(8):722–6.CrossRefPubMed
26.
go back to reference Robinson AH, et al. Variation of the distal metatarsal articular angle with axial rotation and inclination of the first metatarsal. Foot Ankle Int. 2006;27(12):1036–40.CrossRefPubMed Robinson AH, et al. Variation of the distal metatarsal articular angle with axial rotation and inclination of the first metatarsal. Foot Ankle Int. 2006;27(12):1036–40.CrossRefPubMed
27.
go back to reference Park CH, Lee WC. Recurrence of hallux valgus can be predicted from immediate postoperative non-weight-bearing radiographs. J Bone Joint Surg Am. 2017;99(14):1190–7.CrossRefPubMed Park CH, Lee WC. Recurrence of hallux valgus can be predicted from immediate postoperative non-weight-bearing radiographs. J Bone Joint Surg Am. 2017;99(14):1190–7.CrossRefPubMed
Metadata
Title
Need for concomitant Akin osteotomy in patients undergoing Chevron osteotomy can be determined preoperatively: a retrospective comparative study of 859 cases
Authors
Gerhard Kaufmann
Maximilian Hofmann
Matthias Braito
Hanno Ulmer
Alexander Brunner
Dietmar Dammerer
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1319-2

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue