Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Gout | Systematic review

Gout is not associated with the risk of fracture: a meta-analysis

Authors: Fanxiao Liu, Jinlei Dong, Dongsheng Zhou, Qinglin Kang, Fei Xiong

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

Numerous quantitatively based studies measuring the association between gout and the risk of fractures remain inconclusive. In order to determine whether gout could increase the risk of fractures, a meta-analysis was performed systematically.

Methods

Electronic databases, MEDLINE/PubMed, Embase, and Cochrane Library were systematically searched to identify studies evaluating the association of gout and the risk of fractures. No restrictions on language, publication date, or journal of publication were imposed. Meta-analysis was performed to pool the outcome estimates of interest such as fracture incidence, fracture risk, and fracture risk in different sites and at different time points in the follow-up period.

Results

Screening determined that seven studies involving a total of 684,964 participants (151,002 in the gout group and 533,962 in the control group) were deemed viable for inclusion in the meta-analysis. The results of the analysis showed that gout would not significantly have a relatively higher risk of any fracture (RR = 1.11, 95% CI 0.98–1.26). Subgroup analysis showed consistent results for sexuality (female: RR = 1.13, 95% CI 0.93–1.37; male: RR = 0.99, 95% CI 0.91–1.07) and several occurring sites (humerus, wrist, vertebra, hip, upper limbs, and lower limbs). Additionally, the results demonstrated that urate-lowering drugs prescribed early during disease had neither adverse nor beneficial effect on the long-term risk of fractures (RR = 0.89, 95% CI 0.76–1.05).

Conclusions

This meta-analysis confirmed that gout was not associated with an increased risk of fractures. Urate-lowering drugs prescribed early during the course of disease had neither adverse nor beneficial effect on the long-term risk of fractures.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sultan AA, Whittle R, Muller S, et al. Risk of fragility fracture among patients with gout and the effect of urate-lowering therapy. CMAJ. 2018;190(19):E581–7.CrossRef Sultan AA, Whittle R, Muller S, et al. Risk of fragility fracture among patients with gout and the effect of urate-lowering therapy. CMAJ. 2018;190(19):E581–7.CrossRef
2.
go back to reference Hainer BL, Matheson E, Wilkes RT. Diagnosis, treatment, and prevention of gout. Am Fam Physician. 2014;90(12):831–6.PubMed Hainer BL, Matheson E, Wilkes RT. Diagnosis, treatment, and prevention of gout. Am Fam Physician. 2014;90(12):831–6.PubMed
3.
go back to reference Chen JH, Yeh WT, Chuang SY, Wu YY, Pan WH. Gender-specific risk factors for incident gout: a prospective cohort study. Clin Rheumatol. 2012;31(2):239–45.CrossRef Chen JH, Yeh WT, Chuang SY, Wu YY, Pan WH. Gender-specific risk factors for incident gout: a prospective cohort study. Clin Rheumatol. 2012;31(2):239–45.CrossRef
4.
go back to reference Arromdee E, Michet CJ, Crowson CS, O’Fallon WM, Gabriel SE. Epidemiology of gout: is the incidence rising? J Rheumatol. 2002;29(11):2403–6.PubMed Arromdee E, Michet CJ, Crowson CS, O’Fallon WM, Gabriel SE. Epidemiology of gout: is the incidence rising? J Rheumatol. 2002;29(11):2403–6.PubMed
5.
go back to reference Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63(10):3136–41.CrossRef Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63(10):3136–41.CrossRef
6.
go back to reference Rai SK, Burns LC, De Vera MA, Haji A, Giustini D, Choi HK. The economic burden of gout: a systematic review. Semin Arthritis Rheum. 2015;45(1):75–80.CrossRef Rai SK, Burns LC, De Vera MA, Haji A, Giustini D, Choi HK. The economic burden of gout: a systematic review. Semin Arthritis Rheum. 2015;45(1):75–80.CrossRef
7.
go back to reference Kim SC, Liu J, Solomon DH. Risk of incident atrial fibrillation in gout: a cohort study. Ann Rheum Dis. 2016;75(8):1473–8.CrossRef Kim SC, Liu J, Solomon DH. Risk of incident atrial fibrillation in gout: a cohort study. Ann Rheum Dis. 2016;75(8):1473–8.CrossRef
8.
go back to reference Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116(8):894–900.CrossRef Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116(8):894–900.CrossRef
9.
go back to reference Chen JH, Chuang SY, Chen HJ, Yeh WT, Pan WH. Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study. Arthritis Rheum. 2009;61(2):225–32.CrossRef Chen JH, Chuang SY, Chen HJ, Yeh WT, Pan WH. Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study. Arthritis Rheum. 2009;61(2):225–32.CrossRef
10.
go back to reference Kodama S, Saito K, Yachi Y, et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care. 2009;32(9):1737–42.CrossRef Kodama S, Saito K, Yachi Y, et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care. 2009;32(9):1737–42.CrossRef
11.
go back to reference Ward HJ. Uric acid as an independent risk factor in the treatment of hypertension. Lancet. 1998;352(9129):670–1.CrossRef Ward HJ. Uric acid as an independent risk factor in the treatment of hypertension. Lancet. 1998;352(9129):670–1.CrossRef
12.
go back to reference Holme I, Aastveit AH, Hammar N, Jungner I, Walldius G. Uric acid and risk of myocardial infarction, stroke and congestive heart failure in 417, 734 men and women in the Apolipoprotein MOrtality RISk study (AMORIS). J Intern Med. 2009;266(6):558–70.CrossRef Holme I, Aastveit AH, Hammar N, Jungner I, Walldius G. Uric acid and risk of myocardial infarction, stroke and congestive heart failure in 417, 734 men and women in the Apolipoprotein MOrtality RISk study (AMORIS). J Intern Med. 2009;266(6):558–70.CrossRef
13.
go back to reference van Staa TP, Geusens P, Bijlsma JW, Leufkens HG, Cooper C. Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54(10):3104-3112.CrossRef van Staa TP, Geusens P, Bijlsma JW, Leufkens HG, Cooper C. Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54(10):3104-3112.CrossRef
14.
go back to reference Vosse D, Landewe R, van der Heijde D, van der Linden S, van Staa TP, Geusens P. Ankylosing spondylitis and the risk of fracture: results from a large primary care-based nested case-control study. Ann Rheum Dis. 2009;68(12):1839–42.CrossRef Vosse D, Landewe R, van der Heijde D, van der Linden S, van Staa TP, Geusens P. Ankylosing spondylitis and the risk of fracture: results from a large primary care-based nested case-control study. Ann Rheum Dis. 2009;68(12):1839–42.CrossRef
15.
go back to reference Pluta RM, Shmerling RH, Burke AE, Livingston EH. JAMA patient page. Gout. JAMA. 2012;308(20):2161.CrossRef Pluta RM, Shmerling RH, Burke AE, Livingston EH. JAMA patient page. Gout. JAMA. 2012;308(20):2161.CrossRef
17.
go back to reference Paik JM, Kim SC, Feskanich D, Choi HK, Solomon DH, Curhan GC. Gout and risk of fracture in women: a prospective cohort study. Arthritis Rheumatol. 2017;69(2):422–8.CrossRef Paik JM, Kim SC, Feskanich D, Choi HK, Solomon DH, Curhan GC. Gout and risk of fracture in women: a prospective cohort study. Arthritis Rheumatol. 2017;69(2):422–8.CrossRef
18.
go back to reference Makovey J, Macara M, Chen JS, et al. Serum uric acid plays a protective role for bone loss in peri- and postmenopausal women: a longitudinal study. Bone. 2013;52(1):400–6.CrossRef Makovey J, Macara M, Chen JS, et al. Serum uric acid plays a protective role for bone loss in peri- and postmenopausal women: a longitudinal study. Bone. 2013;52(1):400–6.CrossRef
19.
go back to reference Ahn SH, Lee SH, Kim BJ, et al. Higher serum uric acid is associated with higher bone mass, lower bone turnover, and lower prevalence of vertebral fracture in healthy postmenopausal women. Osteoporos Int. 2013;24(12):2961–70.CrossRef Ahn SH, Lee SH, Kim BJ, et al. Higher serum uric acid is associated with higher bone mass, lower bone turnover, and lower prevalence of vertebral fracture in healthy postmenopausal women. Osteoporos Int. 2013;24(12):2961–70.CrossRef
20.
go back to reference Ishii S, Miyao M, Mizuno Y, Tanaka-Ishikawa M, Akishita M, Ouchi Y. Association between serum uric acid and lumbar spine bone mineral density in peri- and postmenopausal Japanese women. Osteoporos Int. 2014;25(3):1099–105.CrossRef Ishii S, Miyao M, Mizuno Y, Tanaka-Ishikawa M, Akishita M, Ouchi Y. Association between serum uric acid and lumbar spine bone mineral density in peri- and postmenopausal Japanese women. Osteoporos Int. 2014;25(3):1099–105.CrossRef
21.
go back to reference Sritara C, Ongphiphadhanakul B, Chailurkit L, Yamwong S, Ratanachaiwong W, Sritara P. Serum uric acid levels in relation to bone-related phenotypes in men and women. J Clin Densitom. 2013;16(3):336–40.CrossRef Sritara C, Ongphiphadhanakul B, Chailurkit L, Yamwong S, Ratanachaiwong W, Sritara P. Serum uric acid levels in relation to bone-related phenotypes in men and women. J Clin Densitom. 2013;16(3):336–40.CrossRef
22.
go back to reference Zhang D, Bobulescu IA, Maalouf NM, et al. Relationship between serum uric acid and bone mineral density in the general population and in rats with experimental hyperuricemia. J Bone Miner Res. 2015;30(6):992–9.CrossRef Zhang D, Bobulescu IA, Maalouf NM, et al. Relationship between serum uric acid and bone mineral density in the general population and in rats with experimental hyperuricemia. J Bone Miner Res. 2015;30(6):992–9.CrossRef
23.
go back to reference Tzeng HE, Lin CC, Wang IK, Huang PH, Tsai CH. Gout increases risk of fracture: a nationwide population-based cohort study. Medicine (Baltimore). 2016;95(34):e4669.CrossRef Tzeng HE, Lin CC, Wang IK, Huang PH, Tsai CH. Gout increases risk of fracture: a nationwide population-based cohort study. Medicine (Baltimore). 2016;95(34):e4669.CrossRef
24.
go back to reference Wang Y, Zhou R, Zhong W, Hu C, Lu S, Chai Y. Association of gout with osteoporotic fractures. Int Orthop. 2018;42(9):2041–7.CrossRef Wang Y, Zhou R, Zhong W, Hu C, Lu S, Chai Y. Association of gout with osteoporotic fractures. Int Orthop. 2018;42(9):2041–7.CrossRef
25.
go back to reference Kim SC, Paik JM, Liu J, Curhan GC, Solomon DH. Gout and the risk of non-vertebral fracture. J Bone Miner Res. 2017;32(2):230–6.CrossRef Kim SC, Paik JM, Liu J, Curhan GC, Solomon DH. Gout and the risk of non-vertebral fracture. J Bone Miner Res. 2017;32(2):230–6.CrossRef
26.
go back to reference Dennison EM, Rubin KH, Schwarz P, et al. Is allopurinol use associated with an excess risk of osteoporotic fracture? A National Prescription Registry study. Arch Osteoporos. 2015;10:36.CrossRef Dennison EM, Rubin KH, Schwarz P, et al. Is allopurinol use associated with an excess risk of osteoporotic fracture? A National Prescription Registry study. Arch Osteoporos. 2015;10:36.CrossRef
27.
go back to reference Wells G, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://wwwohrica/programs/clinical epidemiology/oxfordasp (Accesson July 2019). 20tu13. Wells G, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://wwwohrica/programs/clinical epidemiology/oxfordasp (Accesson July 2019). 20tu13.
28.
go back to reference Basu U, Goodbrand J, McMurdo MET, et al. Association between allopurinol use and hip fracture in older patients. Bone. 2016;84:189–93.CrossRef Basu U, Goodbrand J, McMurdo MET, et al. Association between allopurinol use and hip fracture in older patients. Bone. 2016;84:189–93.CrossRef
29.
go back to reference Takahashi S, Yamamoto T, Moriwaki Y, Tsutsumi Z, Yamakita J, Higashino K. Decreased serum concentrations of 1, 25(OH)2-vitamin D3 in patients with gout. Metabolism. 1998;47(3):336–8.CrossRef Takahashi S, Yamamoto T, Moriwaki Y, Tsutsumi Z, Yamakita J, Higashino K. Decreased serum concentrations of 1, 25(OH)2-vitamin D3 in patients with gout. Metabolism. 1998;47(3):336–8.CrossRef
30.
go back to reference Chen W, Roncal-Jimenez C, Lanaspa M, et al. Uric acid suppresses 1 alpha hydroxylase in vitro and in vivo. Metabolism. 2014;63(1):150–60.CrossRef Chen W, Roncal-Jimenez C, Lanaspa M, et al. Uric acid suppresses 1 alpha hydroxylase in vitro and in vivo. Metabolism. 2014;63(1):150–60.CrossRef
31.
go back to reference Hui JY, Choi JW, Mount DB, Zhu Y, Zhang Y, Choi HK. The independent association between parathyroid hormone levels and hyperuricemia: a national population study. Arthritis Res Ther. 2012;14(2):R56.CrossRef Hui JY, Choi JW, Mount DB, Zhu Y, Zhang Y, Choi HK. The independent association between parathyroid hormone levels and hyperuricemia: a national population study. Arthritis Res Ther. 2012;14(2):R56.CrossRef
32.
go back to reference Lippi G, Montagnana M, Franchini M, Favaloro EJ, Targher G. The paradoxical relationship between serum uric acid and cardiovascular disease. Clin Chim Acta. 2008;392(1-2):1–7.CrossRef Lippi G, Montagnana M, Franchini M, Favaloro EJ, Targher G. The paradoxical relationship between serum uric acid and cardiovascular disease. Clin Chim Acta. 2008;392(1-2):1–7.CrossRef
33.
go back to reference Hershfield MS, Roberts LJ 2nd, Ganson NJ, et al. Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an antioxidant in vivo. Proc Natl Acad Sci U S A. 2010;107(32):14351–6.CrossRef Hershfield MS, Roberts LJ 2nd, Ganson NJ, et al. Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an antioxidant in vivo. Proc Natl Acad Sci U S A. 2010;107(32):14351–6.CrossRef
34.
go back to reference Muka T, de Jonge EA, Kiefte-de Jong JC, et al. The influence of serum uric acid on bone mineral density, hip geometry, and fracture risk: the Rotterdam study. J Clin Endocrinol Metab. 2016;101(3):1113–22.CrossRef Muka T, de Jonge EA, Kiefte-de Jong JC, et al. The influence of serum uric acid on bone mineral density, hip geometry, and fracture risk: the Rotterdam study. J Clin Endocrinol Metab. 2016;101(3):1113–22.CrossRef
35.
go back to reference Lane NE, Parimi N, Lui LY, et al. Association of serum uric acid and incident nonspine fractures in elderly men: the Osteoporotic Fractures in Men (MrOS) study. J Bone Miner Res. 2014;29(7):1701–7.CrossRef Lane NE, Parimi N, Lui LY, et al. Association of serum uric acid and incident nonspine fractures in elderly men: the Osteoporotic Fractures in Men (MrOS) study. J Bone Miner Res. 2014;29(7):1701–7.CrossRef
36.
go back to reference Mehta T, Buzkova P, Sarnak MJ, et al. Serum urate levels and the risk of hip fractures: data from the Cardiovascular Health Study. Metabolism. 2015;64(3):438–46.CrossRef Mehta T, Buzkova P, Sarnak MJ, et al. Serum urate levels and the risk of hip fractures: data from the Cardiovascular Health Study. Metabolism. 2015;64(3):438–46.CrossRef
37.
go back to reference Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41.CrossRef Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41.CrossRef
38.
go back to reference Ghaemi-Oskouie F, Shi Y. The role of uric acid as an endogenous danger signal in immunity and inflammation. Curr Rheumatol Rep. 2011;13(2):160–6.CrossRef Ghaemi-Oskouie F, Shi Y. The role of uric acid as an endogenous danger signal in immunity and inflammation. Curr Rheumatol Rep. 2011;13(2):160–6.CrossRef
39.
go back to reference Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29(4):403–40.CrossRef Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29(4):403–40.CrossRef
40.
go back to reference Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003–18.CrossRef Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003–18.CrossRef
41.
go back to reference Dinarello CA. Overview of the interleukin-1 family of ligands and receptors. Semin Immunol. 2013;25(6):389–93.CrossRef Dinarello CA. Overview of the interleukin-1 family of ligands and receptors. Semin Immunol. 2013;25(6):389–93.CrossRef
42.
go back to reference Braun T, Schett G. Pathways for bone loss in inflammatory disease. Curr Osteoporos Rep. 2012;10(2):101–8.CrossRef Braun T, Schett G. Pathways for bone loss in inflammatory disease. Curr Osteoporos Rep. 2012;10(2):101–8.CrossRef
43.
go back to reference Lee YM, Fujikado N, Manaka H, Yasuda H, Iwakura Y. IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol. 2010;22(10):805–16.CrossRef Lee YM, Fujikado N, Manaka H, Yasuda H, Iwakura Y. IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol. 2010;22(10):805–16.CrossRef
44.
go back to reference Allaeys I, Marceau F, Poubelle PE. NLRP3 promotes autophagy of urate crystals phagocytized by human osteoblasts. Arthritis Res Ther. 2013;15(6):R176.CrossRef Allaeys I, Marceau F, Poubelle PE. NLRP3 promotes autophagy of urate crystals phagocytized by human osteoblasts. Arthritis Res Ther. 2013;15(6):R176.CrossRef
45.
go back to reference Nakamura I, Jimi E. Regulation of osteoclast differentiation and function by interleukin-1. Vitam Horm. 2006;74:357–70.CrossRef Nakamura I, Jimi E. Regulation of osteoclast differentiation and function by interleukin-1. Vitam Horm. 2006;74:357–70.CrossRef
46.
go back to reference Corrado A, Neve A, Maruotti N, Cantatore FP. Bone effects of biologic drugs in rheumatoid arthritis. Clin Dev Immunol. 2013;2013:945945.CrossRef Corrado A, Neve A, Maruotti N, Cantatore FP. Bone effects of biologic drugs in rheumatoid arthritis. Clin Dev Immunol. 2013;2013:945945.CrossRef
Metadata
Title
Gout is not associated with the risk of fracture: a meta-analysis
Authors
Fanxiao Liu
Jinlei Dong
Dongsheng Zhou
Qinglin Kang
Fei Xiong
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Gout
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1317-4

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue