Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01-12-2019 | Research article

The impact of plate length, fibula integrity and plate placement on tibial shaft fixation stability: a finite element study

Authors: Yasen Cao, Yong Zhang, Lixin Huang, Xiaowei Huang

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2019

Login to get access

Abstract

Background

Tibial shaft fractures account for approximately 15% of long bone fractures. Locked plates with minimally invasive plate osteosynthesis techniques are used widely by surgeons. The purpose of this study is to investigate the impact of factors meaning the plate length, fibula integrity, and placement of the plate on the stability of tibial shaft fracture fixation.

Methods

A finite element model of the tibial shaft fracture was built. An axial force of 2500 N was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress and displacement of the fractured ends were used as the output measures.

Results

In models with plates on the lateral side of the tibia, displacement in models fixed with a 12-hole plate showed the smallest value. In models with plates on the medial side of the tibia, displacement in models fixed with 14-hole plate showed the smallest value. The peak stress of plates implanted on the medial side of the tibia was higher than that of plates on the lateral side. The peak stress and the displacement of models involved with the fibula were lower than that of models without fibula, regardless of the length or location of plates.

Conclusions

For models with plates on the medial side of the tibia, the 14-hole plate is the best choice in terms of stability. While for models with plates on the lateral side of the tibia, the 12-hole plate demonstrated the optimal biomechanical stability. The integrity of the fibula improves the anti-vertical compression stability of the construct. The peak stress of plates implanted on the medial side of the tibia was higher than that of plates on the lateral side, which indicated that the construct with medially implanted plate has a higher risk of implant failure.
Literature
1.
go back to reference Economedes DM, Abzug JM, Paryavi E, Herman MJ. Outcomes using titanium elastic nails for open and closed pediatric tibia fractures. Orthopedics. 2014;37(7):e619–24.CrossRef Economedes DM, Abzug JM, Paryavi E, Herman MJ. Outcomes using titanium elastic nails for open and closed pediatric tibia fractures. Orthopedics. 2014;37(7):e619–24.CrossRef
2.
go back to reference Coles CP, Gross M. Closed tibial shaft fractures: management and treatment complications. A review of the prospective literature. Can J Surg. 2000;43(4):256–62.PubMedPubMedCentral Coles CP, Gross M. Closed tibial shaft fractures: management and treatment complications. A review of the prospective literature. Can J Surg. 2000;43(4):256–62.PubMedPubMedCentral
3.
go back to reference Bhandari M, Zlowodzki M, Tornetta P 3rd, Schmidt A, Templeman DC. Intramedullary nailing following external fixation in femoral and tibial shaft fractures. J Orthop Trauma. 2005;19(2):140–4.CrossRef Bhandari M, Zlowodzki M, Tornetta P 3rd, Schmidt A, Templeman DC. Intramedullary nailing following external fixation in femoral and tibial shaft fractures. J Orthop Trauma. 2005;19(2):140–4.CrossRef
4.
go back to reference Huang P, Tang PF, Yao Q, Liang YT, Tao S, Zhang Q, et al. A comparisive study between intramedullary interlocking nail and plate-screw fixation in the treatment of tibial shaft fractures. Zhongguo Gu Shang. 2008;21(4):261–3.PubMed Huang P, Tang PF, Yao Q, Liang YT, Tao S, Zhang Q, et al. A comparisive study between intramedullary interlocking nail and plate-screw fixation in the treatment of tibial shaft fractures. Zhongguo Gu Shang. 2008;21(4):261–3.PubMed
5.
go back to reference He GC, Wang HS, Wang QF, Chen ZH, Cai XH. Effect of minimally invasive percutaneous plates versus interlocking intramedullary nailing in tibial shaft treatment for fractures in adults: a meta-analysis. Clinics (Sao Paulo, Brazil). 2014;69(4):234–40.CrossRef He GC, Wang HS, Wang QF, Chen ZH, Cai XH. Effect of minimally invasive percutaneous plates versus interlocking intramedullary nailing in tibial shaft treatment for fractures in adults: a meta-analysis. Clinics (Sao Paulo, Brazil). 2014;69(4):234–40.CrossRef
6.
go back to reference Muller TS, Sommer C. [Reduction techniques for minimally invasive plate osteosynthesis]. Der Unfallchirurg. 2019;122(2):103-9. Muller TS, Sommer C. [Reduction techniques for minimally invasive plate osteosynthesis]. Der Unfallchirurg. 2019;122(2):103-9.
7.
go back to reference Huang X, Zhi Z, Yu B, Chen F. Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: a comparative finite element study. J Orthop Surg Res. 2015;10:182.CrossRef Huang X, Zhi Z, Yu B, Chen F. Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: a comparative finite element study. J Orthop Surg Res. 2015;10:182.CrossRef
8.
go back to reference Raja Izaham RM, Abdul Kadir MR, Abdul Rashid AH, Hossain MG, Kamarul T. Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury. 2012;43(6):898–902.CrossRef Raja Izaham RM, Abdul Kadir MR, Abdul Rashid AH, Hossain MG, Kamarul T. Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury. 2012;43(6):898–902.CrossRef
9.
go back to reference Keyak JH, Rossi SA. Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. J Biomech. 2000;33(2):209–14.CrossRef Keyak JH, Rossi SA. Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. J Biomech. 2000;33(2):209–14.CrossRef
10.
go back to reference Teo EC, Ng HW. First cervical vertebra (atlas) fracture mechanism studies using finite element method. J Biomech. 2001;34(1):13–21.CrossRef Teo EC, Ng HW. First cervical vertebra (atlas) fracture mechanism studies using finite element method. J Biomech. 2001;34(1):13–21.CrossRef
11.
go back to reference Fan Y, Xiu K, Duan H, Zhang M. Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing. Clinical biomechanics (Bristol, Avon). 2008;23(Suppl 1):S7–s16.CrossRef Fan Y, Xiu K, Duan H, Zhang M. Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing. Clinical biomechanics (Bristol, Avon). 2008;23(Suppl 1):S7–s16.CrossRef
12.
go back to reference Cordey J, Borgeaud M, Perren SM. Force transfer between the plate and the bone: relative importance of the bending stiffness of the screws friction between plate and bone. Injury. 2000;31(Suppl 3):C21–8.CrossRef Cordey J, Borgeaud M, Perren SM. Force transfer between the plate and the bone: relative importance of the bending stiffness of the screws friction between plate and bone. Injury. 2000;31(Suppl 3):C21–8.CrossRef
13.
go back to reference Kazimoglu C, Akdogan Y, Sener M, Kurtulmus A, Karapinar H, Uzun B. Which is the best fixation method for lateral cortex disruption in the medial open wedge high tibial osteotomy? A biomechanical study. Knee. 2008;15(4):305–8.CrossRef Kazimoglu C, Akdogan Y, Sener M, Kurtulmus A, Karapinar H, Uzun B. Which is the best fixation method for lateral cortex disruption in the medial open wedge high tibial osteotomy? A biomechanical study. Knee. 2008;15(4):305–8.CrossRef
14.
go back to reference Stoffel K, Dieter U, Stachowiak G, Gachter A, Kuster MS. Biomechanical testing of the LCP--how can stability in locked internal fixators be controlled? Injury. 2003;34(Suppl 2):B11–9.CrossRef Stoffel K, Dieter U, Stachowiak G, Gachter A, Kuster MS. Biomechanical testing of the LCP--how can stability in locked internal fixators be controlled? Injury. 2003;34(Suppl 2):B11–9.CrossRef
15.
go back to reference Leung F, Chow SP. A prospective, randomized trial comparing the limited contact dynamic compression plate with the point contact fixator for forearm fractures. J Bone Joint Surg Am. 2003;85-a(12):2343–8.CrossRef Leung F, Chow SP. A prospective, randomized trial comparing the limited contact dynamic compression plate with the point contact fixator for forearm fractures. J Bone Joint Surg Am. 2003;85-a(12):2343–8.CrossRef
16.
go back to reference Oh JK, Sahu D, Ahn YH, Lee SJ, Tsutsumi S, Hwang JH, et al. Effect of fracture gap on stability of compression plate fixation: a finite element study. J Orthop Res. 2010;28(4):462–7.PubMed Oh JK, Sahu D, Ahn YH, Lee SJ, Tsutsumi S, Hwang JH, et al. Effect of fracture gap on stability of compression plate fixation: a finite element study. J Orthop Res. 2010;28(4):462–7.PubMed
17.
go back to reference Miranda MA. Locking plate technology and its role in osteoporotic fractures. Injury. 2007;38(Suppl 3):S35–9.CrossRef Miranda MA. Locking plate technology and its role in osteoporotic fractures. Injury. 2007;38(Suppl 3):S35–9.CrossRef
18.
go back to reference Beltran MJ, Collinge CA, Gardner MJ. Stress modulation of fracture fixation implants. J Am Acad Orthop Surg. 2016;24(10):711–9.CrossRef Beltran MJ, Collinge CA, Gardner MJ. Stress modulation of fracture fixation implants. J Am Acad Orthop Surg. 2016;24(10):711–9.CrossRef
19.
go back to reference Ricci WM, Streubel PN, Morshed S, Collinge CA, Nork SE, Gardner MJ. Risk factors for failure of locked plate fixation of distal femur fractures: an analysis of 335 cases. J Orthop Trauma. 2014;28(2):83–9.CrossRef Ricci WM, Streubel PN, Morshed S, Collinge CA, Nork SE, Gardner MJ. Risk factors for failure of locked plate fixation of distal femur fractures: an analysis of 335 cases. J Orthop Trauma. 2014;28(2):83–9.CrossRef
20.
go back to reference Miller DL, Goswami T. A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clin Biomech (Bristol, Avon). 2007;22(10):1049–62.CrossRef Miller DL, Goswami T. A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clin Biomech (Bristol, Avon). 2007;22(10):1049–62.CrossRef
21.
go back to reference Shon OJ, Park CH. Minimally invasive plate osteosynthesis of distal tibial fractures: a comparison of medial and lateral plating. J Orthop Sci. 2012;17(5):562–6.CrossRef Shon OJ, Park CH. Minimally invasive plate osteosynthesis of distal tibial fractures: a comparison of medial and lateral plating. J Orthop Sci. 2012;17(5):562–6.CrossRef
22.
go back to reference Anuar-Ramdhan IM, Azahari IM, Med Orth M. Minimally invasive plate osteosynthesis with conventional compression plate for diaphyseal tibia fracture. Malays Orthop J. 2014;8(3):33–6.CrossRef Anuar-Ramdhan IM, Azahari IM, Med Orth M. Minimally invasive plate osteosynthesis with conventional compression plate for diaphyseal tibia fracture. Malays Orthop J. 2014;8(3):33–6.CrossRef
23.
go back to reference Goh JC, Mech AM, Lee EH, Ang EJ, Bayon P, Pho RW. Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection. Clin Orthop Relat Res. 1992;279:223–8. Goh JC, Mech AM, Lee EH, Ang EJ, Bayon P, Pho RW. Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection. Clin Orthop Relat Res. 1992;279:223–8.
24.
go back to reference Weber TG, Harrington RM, Henley MB, Tencer AF. The role of fibular fixation in combined fractures of the tibia and fibula: a biomechanical investigation. J Orthop Trauma. 1997;11(3):206–11.CrossRef Weber TG, Harrington RM, Henley MB, Tencer AF. The role of fibular fixation in combined fractures of the tibia and fibula: a biomechanical investigation. J Orthop Trauma. 1997;11(3):206–11.CrossRef
Metadata
Title
The impact of plate length, fibula integrity and plate placement on tibial shaft fixation stability: a finite element study
Authors
Yasen Cao
Yong Zhang
Lixin Huang
Xiaowei Huang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2019
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1088-y

Other articles of this Issue 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Go to the issue