Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2018

Open Access 01-12-2018 | Systematic review

Adjacent segment degeneration or disease after cervical total disc replacement: a meta-analysis of randomized controlled trials

Authors: Shuai Xu, Yan Liang, Zhenqi Zhu, Yalong Qian, Haiying Liu

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2018

Login to get access

Abstract

Background

Anterior cervical discectomy and fusion (ACDF) has been widely used in cervical spondylosis, but adjacent segment degeneration/disease (ASD) was inevitable. Cervical total disc replacement (TDR) could reduce the stress of adjacent segments and retard ASD in theory, but the superiority has not been determined yet. This analysis aimed that whether TDR was superior to ACDF for decreasing adjacent segment degeneration (ASDeg) and adjacent segment disease (ASDis).

Methods

A meta-analysis was performed according to the guidelines of the Cochrane Collaboration with PubMed, EMBASE, Cochrane Library and CBM (China Biological Medicine) databases. It included randomized controlled trials (RCTs) that reported ASDeg, ASDis, and reoperation on adjacent segments after TDR and ACDF. Two investigators independently selected trials, assessed methodological quality, and evaluated the quality of this meta-analysis using the grades of recommendation, assessment, development, and evaluation (GRADE) approach.

Results

Eleven studies with 2632 patients were included in the meta-analysis. The overall rate of ASD in TDR group was lower than ACDF group (OR = 0.6; 95% CI [0.38, 0.73]; P < 0.00001). Both the incidence of ASDeg and the reoperation rate were statistically lower in the TDR group than in the ACDF group (OR = 0.58, P < 0.00001; OR = 0.52, P = 0.01, respectively). Subgroup analysis was performed according to the follow-up time and trial site; the rate of ASDeg was lower in patients underwent TDR no matter the follow-up time, and TDR tended to increase the superiority across time. The rate of ASDeg was also lower with TDR both in the USA and China (P < 0.0001, P = 0.03, respectively). But the cost-effectiveness result might be prone to neither of the two surgery approaches. According to GRADE, the overall quality of this meta-analysis was moderate.

Conclusions

TDR decreased the rates of ASDeg and reoperation compared with that of ACDF, and the superiority may become more apparent over time. We cautiously and slightly suggest adopting TDR according to the GRADE but may not believe it excessively.
Appendix
Available only for authorised users
Literature
1.
go back to reference Robinson RA, Smith GW. Anterolateral cervical disc removal and interbody fusion for cervical disc syndrome. SAS Journal. 2010;4(1):34–5.CrossRef Robinson RA, Smith GW. Anterolateral cervical disc removal and interbody fusion for cervical disc syndrome. SAS Journal. 2010;4(1):34–5.CrossRef
2.
go back to reference Baba H, Furusawa N, Imura S, et al. Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine. 1993;18(15):2167–73.CrossRef Baba H, Furusawa N, Imura S, et al. Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine. 1993;18(15):2167–73.CrossRef
3.
go back to reference Wu W, Thuomas KA, Hedlund R, et al. Degenerative changes following anterior cervical discectomy and fusion evaluated by fast spin-echo MR imaging. ACTA RADIOL. 1996;37(5):614–7.CrossRef Wu W, Thuomas KA, Hedlund R, et al. Degenerative changes following anterior cervical discectomy and fusion evaluated by fast spin-echo MR imaging. ACTA RADIOL. 1996;37(5):614–7.CrossRef
4.
go back to reference Matsunaga S, Kabayama S, Yamamoto T, et al. Strain on intervertebral discs after anterior cervical decompression and fusion. Spine (Phila Pa 1976). 1999;24(7):670–5.CrossRef Matsunaga S, Kabayama S, Yamamoto T, et al. Strain on intervertebral discs after anterior cervical decompression and fusion. Spine (Phila Pa 1976). 1999;24(7):670–5.CrossRef
5.
go back to reference Hilibrand AS, Robbins M. Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? SPINE J. 2004, 4;(6 Suppl):190S–4S. Hilibrand AS, Robbins M. Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? SPINE J. 2004, 4;(6 Suppl):190S–4S.
6.
go back to reference Lund T, Oxland TR. Adjacent level disk disease--is it really a fusion disease? Orthop Clin North Am. 2011;42(4):529–41.CrossRef Lund T, Oxland TR. Adjacent level disk disease--is it really a fusion disease? Orthop Clin North Am. 2011;42(4):529–41.CrossRef
7.
go back to reference Herkowitz HN, Kurz LT, Overholt DP. Surgical management of cervical soft disc herniation. A comparison between the anterior and posterior approach. Spine (Phila Pa 1976). 1990;15(10):1026–30.CrossRef Herkowitz HN, Kurz LT, Overholt DP. Surgical management of cervical soft disc herniation. A comparison between the anterior and posterior approach. Spine (Phila Pa 1976). 1990;15(10):1026–30.CrossRef
8.
go back to reference Song KJ, Choi BW, Jeon TS, et al. Adjacent segment degenerative disease: is it due to disease progression or a fusion-associated phenomenon? Comparison between segments adjacent to the fused and non-fused segments. Eur Spine J. 2011;20(11):1940–5.CrossRef Song KJ, Choi BW, Jeon TS, et al. Adjacent segment degenerative disease: is it due to disease progression or a fusion-associated phenomenon? Comparison between segments adjacent to the fused and non-fused segments. Eur Spine J. 2011;20(11):1940–5.CrossRef
9.
go back to reference Gore DR, Sepic SB. Anterior cervical fusion for degenerated or protruded discs. A review of one hundred forty-six patients. Spine (Phila Pa 1976). 1984;9(7):667–71.CrossRef Gore DR, Sepic SB. Anterior cervical fusion for degenerated or protruded discs. A review of one hundred forty-six patients. Spine (Phila Pa 1976). 1984;9(7):667–71.CrossRef
10.
go back to reference Puttlitz CM, Rousseau MA, Xu Z, et al. Intervertebral disc replacement maintains cervical spine kinetics. Spine. 2004;29:2809–14.CrossRef Puttlitz CM, Rousseau MA, Xu Z, et al. Intervertebral disc replacement maintains cervical spine kinetics. Spine. 2004;29:2809–14.CrossRef
11.
go back to reference Diangelo DJ, Foley KT, Morrow BR, et al. In vitro biomechanics of cervical disc arthroplasty with the ProDisc-C total disc implant. Neurosurg Focus. 2004;17(3):E7.PubMed Diangelo DJ, Foley KT, Morrow BR, et al. In vitro biomechanics of cervical disc arthroplasty with the ProDisc-C total disc implant. Neurosurg Focus. 2004;17(3):E7.PubMed
12.
go back to reference Wigfield C, Gill S, Nelson R, et al. Influence of an artificial cervical joint compared with fusion on adjacent-level motion in the treatment of degenerative cervical disc disease. J Neurosurg. 2002;96(1 Suppl):17–21.PubMed Wigfield C, Gill S, Nelson R, et al. Influence of an artificial cervical joint compared with fusion on adjacent-level motion in the treatment of degenerative cervical disc disease. J Neurosurg. 2002;96(1 Suppl):17–21.PubMed
13.
go back to reference Botelho RV, Moraes OJ, Fernandes GA, et al. A systematic review of randomized trials on the effect of cervical disc arthroplasty on reducing adjacent-level degeneration. Neurosurg Focus. 2010;28(6):E5.CrossRef Botelho RV, Moraes OJ, Fernandes GA, et al. A systematic review of randomized trials on the effect of cervical disc arthroplasty on reducing adjacent-level degeneration. Neurosurg Focus. 2010;28(6):E5.CrossRef
14.
go back to reference Yang B, Li H, Zhang T, et al. The incidence of adjacent segment degeneration after cervical disc arthroplasty (CDA): a meta analysis of randomized controlled trials. PLoS One. 2012;7(4):e35032.CrossRef Yang B, Li H, Zhang T, et al. The incidence of adjacent segment degeneration after cervical disc arthroplasty (CDA): a meta analysis of randomized controlled trials. PLoS One. 2012;7(4):e35032.CrossRef
15.
go back to reference Luo J, Gong M, Huang S, et al. Incidence of adjacent segment degeneration in cervical disc arthroplasty versus anterior cervical decompression and fusion meta-analysis of prospective studies. Arch Orthop Trauma Surg. 2015;135(2):155–60.CrossRef Luo J, Gong M, Huang S, et al. Incidence of adjacent segment degeneration in cervical disc arthroplasty versus anterior cervical decompression and fusion meta-analysis of prospective studies. Arch Orthop Trauma Surg. 2015;135(2):155–60.CrossRef
16.
go back to reference Moher D, Cook DJ. Eastwood S, et al. Improving the quality of reports of meta-analyses of randomized controlled trials: the QUOROM statement. Rev Esp Salud Publica. 2000;74(2):107–18.CrossRef Moher D, Cook DJ. Eastwood S, et al. Improving the quality of reports of meta-analyses of randomized controlled trials: the QUOROM statement. Rev Esp Salud Publica. 2000;74(2):107–18.CrossRef
17.
go back to reference Jawahar A, Cavanaugh DA, Kerr ER, et al. Total disc arthroplasty does not affect the incidence of adjacent segment degeneration in cervical spine: results of 93 patients in three prospective randomized clinical trials. Spine J. 2010;10(12):1043–8.CrossRef Jawahar A, Cavanaugh DA, Kerr ER, et al. Total disc arthroplasty does not affect the incidence of adjacent segment degeneration in cervical spine: results of 93 patients in three prospective randomized clinical trials. Spine J. 2010;10(12):1043–8.CrossRef
18.
go back to reference Goffin J, Casey A, Kehr P, et al. Preliminary clinical experience with the Bryan cervical disc prosthesis. Neurosurgery. 2002;51:840–7.CrossRef Goffin J, Casey A, Kehr P, et al. Preliminary clinical experience with the Bryan cervical disc prosthesis. Neurosurgery. 2002;51:840–7.CrossRef
19.
go back to reference Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef
20.
go back to reference Atkins D, De Briss PA, Eccles M, et al. Systems for grading the quality of evidence and the strength of recommendations II: pilot study of a new system. BMC Health Serv Res. 2005:5. Atkins D, De Briss PA, Eccles M, et al. Systems for grading the quality of evidence and the strength of recommendations II: pilot study of a new system. BMC Health Serv Res. 2005:5.
21.
go back to reference Deeks JJ, Higgins JPT, Altman DG. Analysing data and undertaking meta-analyses. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated march 2011). London: The Cochrane Collaboration. Chapter 9; 2011. Deeks JJ, Higgins JPT, Altman DG. Analysing data and undertaking meta-analyses. In: Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated march 2011). London: The Cochrane Collaboration. Chapter 9; 2011.
22.
go back to reference Sasso RC, Anderson PA, Riew KD, et al. Results of cervical arthroplasty compared with anterior discectomy and fusion: four-year clinical outcomes in a prospective, randomized controlled trial. Orthopedics. 2011;34(11):889.CrossRef Sasso RC, Anderson PA, Riew KD, et al. Results of cervical arthroplasty compared with anterior discectomy and fusion: four-year clinical outcomes in a prospective, randomized controlled trial. Orthopedics. 2011;34(11):889.CrossRef
23.
go back to reference Coric D, Nunley PD, Guyer RD, et al. Prospective, randomized, multicenter study of cervical arthroplasty: 269 patients from the Kineflex|C artificial disc investigational device exemption study with a minimum 2-year follow-up: clinical article. J Neurosurg Spine. 2011;15(4):348–58.CrossRef Coric D, Nunley PD, Guyer RD, et al. Prospective, randomized, multicenter study of cervical arthroplasty: 269 patients from the Kineflex|C artificial disc investigational device exemption study with a minimum 2-year follow-up: clinical article. J Neurosurg Spine. 2011;15(4):348–58.CrossRef
24.
go back to reference Nunley PD, Jawahar A, Kerr ER, et al. Factors affecting the incidence of symptomatic adjacent-level disease in cervical spine after total disc arthroplasty: 2- to 4-year follow-up of 3 prospective randomized trials. Spine (Phila Pa 1976). 2012;37(6):445–51.CrossRef Nunley PD, Jawahar A, Kerr ER, et al. Factors affecting the incidence of symptomatic adjacent-level disease in cervical spine after total disc arthroplasty: 2- to 4-year follow-up of 3 prospective randomized trials. Spine (Phila Pa 1976). 2012;37(6):445–51.CrossRef
25.
go back to reference Tian W, Yan K, Han X, et al. Comparison of the mid-term follow-up results between Bryan cervical artificial disc replacement and anterior cervical decompression and fusion for cervical degenerative disc disease. Chinese Journal of Orthopedics. 2013;33:97–104. Tian W, Yan K, Han X, et al. Comparison of the mid-term follow-up results between Bryan cervical artificial disc replacement and anterior cervical decompression and fusion for cervical degenerative disc disease. Chinese Journal of Orthopedics. 2013;33:97–104.
26.
go back to reference Guan T, Hu Z, Xiu L, et al. Effect of cervical disc arthroplasty and anterior cervical decompression and fusion on adjacent segment degeneration. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014;28(9):1100–5.PubMed Guan T, Hu Z, Xiu L, et al. Effect of cervical disc arthroplasty and anterior cervical decompression and fusion on adjacent segment degeneration. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014;28(9):1100–5.PubMed
27.
go back to reference Li Z, Yu S, Zhao Y, et al. Clinical and radiologic comparison of dynamic cervical implant arthroplasty versus anterior cervical discectomy and fusion for the treatment of cervical degenerative disc disease. J Clin Neurosci. 2014;21(6):942–8.CrossRef Li Z, Yu S, Zhao Y, et al. Clinical and radiologic comparison of dynamic cervical implant arthroplasty versus anterior cervical discectomy and fusion for the treatment of cervical degenerative disc disease. J Clin Neurosci. 2014;21(6):942–8.CrossRef
28.
go back to reference Burkus JK, Traynelis VC, Haid RJ, et al. Clinical and radiographic analysis of an artificial cervical disc: 7-year follow-up from the prestige prospective randomized controlled clinical trial: clinical article. J Neurosurg Spine. 2014;21(4):516–28.CrossRef Burkus JK, Traynelis VC, Haid RJ, et al. Clinical and radiographic analysis of an artificial cervical disc: 7-year follow-up from the prestige prospective randomized controlled clinical trial: clinical article. J Neurosurg Spine. 2014;21(4):516–28.CrossRef
29.
go back to reference Zhang HX, Shao YD, Chen Y, et al. A prospective, randomised, controlled multicentre study comparing cervical disc replacement with anterior cervical decompression and fusion. Int Orthop. 2014;38(12):2533–41.CrossRef Zhang HX, Shao YD, Chen Y, et al. A prospective, randomised, controlled multicentre study comparing cervical disc replacement with anterior cervical decompression and fusion. Int Orthop. 2014;38(12):2533–41.CrossRef
30.
go back to reference Davis RJ, Nunley PD, Kim KD, et al. Two-level total disc replacement with Mobi-C cervical artificial disc versus anterior discectomy and fusion: a prospective, randomized, controlled multicenter clinical trial with 4-year follow-up results. J Neurosurg Spine. 2015;22(1):15–25.CrossRef Davis RJ, Nunley PD, Kim KD, et al. Two-level total disc replacement with Mobi-C cervical artificial disc versus anterior discectomy and fusion: a prospective, randomized, controlled multicenter clinical trial with 4-year follow-up results. J Neurosurg Spine. 2015;22(1):15–25.CrossRef
31.
go back to reference Phillips FM, Geisler FH, Gilder KM, et al. Long-term outcomes of the US FDA IDE prospective, randomized controlled clinical trial comparing PCM cervical disc arthroplasty with anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 2015;40(10):674–83.CrossRef Phillips FM, Geisler FH, Gilder KM, et al. Long-term outcomes of the US FDA IDE prospective, randomized controlled clinical trial comparing PCM cervical disc arthroplasty with anterior cervical discectomy and fusion. Spine (Phila Pa 1976). 2015;40(10):674–83.CrossRef
32.
go back to reference Zoega B, Karrholm J, Lind B. Plate fixation adds stability to two-level anterior fusion in the cervical spine: a randomized study using radiostereometry. Eur Spine J. 1998;7(4):302–7.CrossRef Zoega B, Karrholm J, Lind B. Plate fixation adds stability to two-level anterior fusion in the cervical spine: a randomized study using radiostereometry. Eur Spine J. 1998;7(4):302–7.CrossRef
33.
go back to reference Katsuura A, Hukuda S, Saruhashi Y, et al. Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels. Eur Spine J. 2001;10(4):320–4.CrossRef Katsuura A, Hukuda S, Saruhashi Y, et al. Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels. Eur Spine J. 2001;10(4):320–4.CrossRef
34.
go back to reference Auerbach JD, Anakwenze OA, Milby AH, et al. Segmental contribution toward total cervical range of motion: a comparison of cervical disc arthroplasty and fusion. Spine (Phila Pa 1976). 2011;36(25):E1593–9.CrossRef Auerbach JD, Anakwenze OA, Milby AH, et al. Segmental contribution toward total cervical range of motion: a comparison of cervical disc arthroplasty and fusion. Spine (Phila Pa 1976). 2011;36(25):E1593–9.CrossRef
35.
go back to reference Eck JC, Humphreys SC, Lim TH, et al. Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine (Phila Pa 1976). 2002;27(22):2431–4.CrossRef Eck JC, Humphreys SC, Lim TH, et al. Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine (Phila Pa 1976). 2002;27(22):2431–4.CrossRef
36.
go back to reference Takeshima T, Omokawa S, Takaoka T, et al. Sagittal alignment of cervical flexion and extension: lateral radiographic analysis. Spine Phila Pa 1976. 2002;27:E348–55.CrossRef Takeshima T, Omokawa S, Takaoka T, et al. Sagittal alignment of cervical flexion and extension: lateral radiographic analysis. Spine Phila Pa 1976. 2002;27:E348–55.CrossRef
37.
go back to reference Kelly MP, Mok JM, Frisch RF, et al. Adjacent segment motion after anterior cervical discectomy and fusion versus Prodisc-c cervical total disk arthroplasty: analysis from a randomized, controlled trial. Spine (Phila Pa 1976). 2011;36(15):1171–9.CrossRef Kelly MP, Mok JM, Frisch RF, et al. Adjacent segment motion after anterior cervical discectomy and fusion versus Prodisc-c cervical total disk arthroplasty: analysis from a randomized, controlled trial. Spine (Phila Pa 1976). 2011;36(15):1171–9.CrossRef
38.
go back to reference Hauerberg J, Kosteljanetz M, Boge-Rasmussen T, et al. Anterior cervical discectomy with or without fusion with ray titanium cage: a prospective randomized clinical study. Spine (Phila Pa 1976). 2008;33(5):458–64.CrossRef Hauerberg J, Kosteljanetz M, Boge-Rasmussen T, et al. Anterior cervical discectomy with or without fusion with ray titanium cage: a prospective randomized clinical study. Spine (Phila Pa 1976). 2008;33(5):458–64.CrossRef
39.
go back to reference Mummaneni PV, Burkus JK, Haid RW, et al. Clinical and radiographic analysis of cervical disc arthroplasty compared with allograft fusion: a randomized controlled clinical trial. J Neurosurg Spine. 2007;6(3):198–209.CrossRef Mummaneni PV, Burkus JK, Haid RW, et al. Clinical and radiographic analysis of cervical disc arthroplasty compared with allograft fusion: a randomized controlled clinical trial. J Neurosurg Spine. 2007;6(3):198–209.CrossRef
40.
go back to reference Qureshi SA, Mcanany S, Goz V, et al. Cost-effectiveness analysis: comparing single-level cervical disc replacement and single-level anterior cervical discectomy and fusion: clinical article. J Neurosurg Spine. 2013;19(5):546–54.CrossRef Qureshi SA, Mcanany S, Goz V, et al. Cost-effectiveness analysis: comparing single-level cervical disc replacement and single-level anterior cervical discectomy and fusion: clinical article. J Neurosurg Spine. 2013;19(5):546–54.CrossRef
41.
go back to reference Ament JD, Yang Z, Nunley P, et al. Cost-effectiveness of cervical total disc replacement vs fusion for the treatment of 2-level symptomatic degenerative disc disease. JAMA Surg. 2014;149(12):1231–9.CrossRef Ament JD, Yang Z, Nunley P, et al. Cost-effectiveness of cervical total disc replacement vs fusion for the treatment of 2-level symptomatic degenerative disc disease. JAMA Surg. 2014;149(12):1231–9.CrossRef
42.
go back to reference Warren D, Andres T, Hoelscher C, et al. Cost-utility analysis modeling at 2-year follow-up for cervical disc arthroplasty versus anterior cervical discectomy and fusion: a single-center contribution to the randomized controlled trial. Int J Spine Surg. 2013;7:e58–66.CrossRef Warren D, Andres T, Hoelscher C, et al. Cost-utility analysis modeling at 2-year follow-up for cervical disc arthroplasty versus anterior cervical discectomy and fusion: a single-center contribution to the randomized controlled trial. Int J Spine Surg. 2013;7:e58–66.CrossRef
Metadata
Title
Adjacent segment degeneration or disease after cervical total disc replacement: a meta-analysis of randomized controlled trials
Authors
Shuai Xu
Yan Liang
Zhenqi Zhu
Yalong Qian
Haiying Liu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2018
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-018-0940-9

Other articles of this Issue 1/2018

Journal of Orthopaedic Surgery and Research 1/2018 Go to the issue