Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2018

Open Access 01-12-2018 | Systematic review

Effects of bisphosphonates in preventing periprosthetic bone loss following total hip arthroplasty: a systematic review and meta-analysis

Authors: Jialing Shi, Guang Liang, Rongzhi Huang, Liang Liao, Danlu Qin

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2018

Login to get access

Abstract

Background

Periprosthetic bone loss following total hip arthroplasty (THA) was a well-known phenomenon. This systematic review was to assess the effectiveness of bisphosphonates (BPs) for decreasing periprosthetic bone resorption.

Methods

The MEDLINE, EMBASE, and Cochrane Library databases were searched up to March 2018. Randomized controlled trials compared the effects between administrating BPs and placebo or no medication were eligible; the target participants were patients who underwent THA. Mean differences (MD) and 95% confidence interval (95% CI) were calculated by using the random-effects models. Statistical analyses were performed by RevMan 5.3 software.

Results

Fourteen trials involving 620 patients underwent THA were retrieved. BPs significantly prevented the loss of periprosthetic bone mineral density at 1 year (MD, 0.06 [95% CI, 0.03 to 0.08], p < 0.001), between 2 and 4 years (MD, 0.04 [95% CI, 0.01 to 0.07], p = 0.02), and more than 5 years after THA (MD, 0.08 [95% CI, 0.06 to 0.11], p < 0.001). Both serum bone alkaline phosphatase (MD, − 7.28 [95% CI, − 9.81 to − 4.75], p < 0.001) and urinary N-telopeptide of type I collagen (MD, − 24.37 [95% CI, − 36.37 to − 12.37], p < 0.001) in BP group were significantly lower. Subgroup analyses showed that the third-generation BPs were more effective in decreasing periprosthetic bone loss than the first and second generation within 1 year after THA (p = 0.001).

Conclusion

BPs were beneficial to decreasing periprosthetic bone loss. The third-generation BPs showed significantly efficacy for patients in short-term observation.
Literature
1.
go back to reference Harris WH, Sledge CB. Total hip and total knee replacement. N Engl J Med. 1990;323(11):7.CrossRef Harris WH, Sledge CB. Total hip and total knee replacement. N Engl J Med. 1990;323(11):7.CrossRef
2.
go back to reference Engh CA, Culpepper WJ, Engh CA, Virginia A. Long-term results of use of the anatomic medullary locking prosthesis in total hip arthroplasty. J Bone Joint Surg. 1997;79(2):8.CrossRef Engh CA, Culpepper WJ, Engh CA, Virginia A. Long-term results of use of the anatomic medullary locking prosthesis in total hip arthroplasty. J Bone Joint Surg. 1997;79(2):8.CrossRef
3.
go back to reference Xenos JS, Callaghan JJ, Heekin RD, Hopkinson WJ, Savory CG, Moore MS. The porous-coated anatomic total hip prosthesis, inserted without cement. A prospective study with a minimum of ten years of follow-up. J Bone Joint Surg. 1999;81(1):9.CrossRef Xenos JS, Callaghan JJ, Heekin RD, Hopkinson WJ, Savory CG, Moore MS. The porous-coated anatomic total hip prosthesis, inserted without cement. A prospective study with a minimum of ten years of follow-up. J Bone Joint Surg. 1999;81(1):9.CrossRef
5.
go back to reference Venesmaa PK, Kpoger HPJ, Miettinen HJA, Jurvelin JS, Suomalainen OT, Alhava EM. Monitoring of periprosthetic BMD after uncemented total hip arthroplasty with dual-energy X-ray absorptiometry—a 3-year follow-up study. J Bone Miner Res. 2001;16(6):6.CrossRef Venesmaa PK, Kpoger HPJ, Miettinen HJA, Jurvelin JS, Suomalainen OT, Alhava EM. Monitoring of periprosthetic BMD after uncemented total hip arthroplasty with dual-energy X-ray absorptiometry—a 3-year follow-up study. J Bone Miner Res. 2001;16(6):6.CrossRef
8.
go back to reference Havelin LI, Engesæter LB, Espehaug B, Furnes O, Lie SA, Vollset SE. The Norwegian arthroplasty register 11 years and 73,000 arthroplasties. Acta Orthop Scand. 2000;71(4):17.CrossRef Havelin LI, Engesæter LB, Espehaug B, Furnes O, Lie SA, Vollset SE. The Norwegian arthroplasty register 11 years and 73,000 arthroplasties. Acta Orthop Scand. 2000;71(4):17.CrossRef
10.
go back to reference Morris CD, Einhorn TA. Current concepts review—bisphosphonates in orthopaedic surgery. J Bone Joint Surg. 2005;87-A:10. Morris CD, Einhorn TA. Current concepts review—bisphosphonates in orthopaedic surgery. J Bone Joint Surg. 2005;87-A:10.
11.
go back to reference Woolf AD, Åkesson K. Preventing fractures in elderly people. Br Med J. 2003;327:7. Woolf AD, Åkesson K. Preventing fractures in elderly people. Br Med J. 2003;327:7.
16.
go back to reference Bhandari M, Bajammal S, Guyatt GH, Griffith L, Busse JW, Schunemann H, et al. Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A meta-analysis. J Bone Joint Surg. 2005;87-A:10. Bhandari M, Bajammal S, Guyatt GH, Griffith L, Busse JW, Schunemann H, et al. Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A meta-analysis. J Bone Joint Surg. 2005;87-A:10.
18.
go back to reference Tapaninen TS, Venesmaa PK, Jurvelin JS, Miettinen HJA, Kröger HPJ. Alendronate reduces periprosthetic bone loss after uncemented primary total hip arthroplasty—a 5-year follow-up of 16 patients. Scand J Surg. 2010;99:6.CrossRef Tapaninen TS, Venesmaa PK, Jurvelin JS, Miettinen HJA, Kröger HPJ. Alendronate reduces periprosthetic bone loss after uncemented primary total hip arthroplasty—a 5-year follow-up of 16 patients. Scand J Surg. 2010;99:6.CrossRef
25.
26.
go back to reference Kinov P, Tivchev P, Doukova P, Leithner A. Effect of risedronate on bone metabolism after total hip arthroplasty a prospective randomised study. Acta Orthop Belg. 2006;72(1):7. Kinov P, Tivchev P, Doukova P, Leithner A. Effect of risedronate on bone metabolism after total hip arthroplasty a prospective randomised study. Acta Orthop Belg. 2006;72(1):7.
31.
go back to reference Nehme A, Maalouf G, Tricoire JL, Giordano G, Chiron P, Puget J. Effect of alendronate on periprosthetic bone loss after cemented primary total hip arthroplasty: a prospective randomized study. Rev Chir Orthop Reparatrice Appar Mot. 2003;6:593–8. Nehme A, Maalouf G, Tricoire JL, Giordano G, Chiron P, Puget J. Effect of alendronate on periprosthetic bone loss after cemented primary total hip arthroplasty: a prospective randomized study. Rev Chir Orthop Reparatrice Appar Mot. 2003;6:593–8.
34.
go back to reference Marshall D, OlofJohnell, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J. 1996;312:6.CrossRef Marshall D, OlofJohnell, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J. 1996;312:6.CrossRef
35.
go back to reference Riis BJ, Hansen MA, Jensen AM, Overgaard K, Christiansen C. Low bone mass and fast rate of bone loss at menopause equal risk factors for future fracture: a 15-year follow-up study. Bone. 1996;19:4.CrossRef Riis BJ, Hansen MA, Jensen AM, Overgaard K, Christiansen C. Low bone mass and fast rate of bone loss at menopause equal risk factors for future fracture: a 15-year follow-up study. Bone. 1996;19:4.CrossRef
37.
go back to reference Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19:27.CrossRef Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19:27.CrossRef
38.
go back to reference MR M. Bisphosphonates. Endocrinol Metab Clin North Am. 2003;32:19. MR M. Bisphosphonates. Endocrinol Metab Clin North Am. 2003;32:19.
39.
go back to reference Fisher JE, Rodan GA, Reszka AA. In vivo effects of bisphosphonates on the osteoclast mevalonate pathway. Endocrinology. 2000;141:4.CrossRef Fisher JE, Rodan GA, Reszka AA. In vivo effects of bisphosphonates on the osteoclast mevalonate pathway. Endocrinology. 2000;141:4.CrossRef
40.
go back to reference Russell RGG, Rogers MJ, Frith JC, Luckman SP, Coxon FP, Benford HL, et al. The pharmacology of bisphosphonates and new insights into their mechanisms of action. J Bone Miner Res. 1999;14:13. Russell RGG, Rogers MJ, Frith JC, Luckman SP, Coxon FP, Benford HL, et al. The pharmacology of bisphosphonates and new insights into their mechanisms of action. J Bone Miner Res. 1999;14:13.
41.
go back to reference Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX) a randomized trial. J Am Med Assoc. 2006;296:12.CrossRef Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX) a randomized trial. J Am Med Assoc. 2006;296:12.CrossRef
42.
go back to reference Bone HG, Hosking D, Devogelaer J-P, Tucci JR, Emkey RD, Tonino RP, et al. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350(12):11.CrossRef Bone HG, Hosking D, Devogelaer J-P, Tucci JR, Emkey RD, Tonino RP, et al. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350(12):11.CrossRef
44.
go back to reference Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med. 2008;358(12):3.CrossRef Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med. 2008;358(12):3.CrossRef
45.
go back to reference Neviaser AS, Lane JM, Lenart BA, Edobor-Osula F, Lorich DG. Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma. 2008;22:5.CrossRef Neviaser AS, Lane JM, Lenart BA, Edobor-Osula F, Lorich DG. Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma. 2008;22:5.CrossRef
46.
go back to reference Park-Wyllie LY, Mamdani MM, Juurlink DN, Hawker GA, Gunraj N, Austin PC, et al. Bisphosphonate use and the risk of subtrochanteric or femoral shaft fractures in older women. JAm Med Assoc. 2011;305:7. Park-Wyllie LY, Mamdani MM, Juurlink DN, Hawker GA, Gunraj N, Austin PC, et al. Bisphosphonate use and the risk of subtrochanteric or femoral shaft fractures in older women. JAm Med Assoc. 2011;305:7.
47.
go back to reference Goldring SR, Jasty M, Roelke MS, Rourke CM, Bringhurst FR, Harris WH. Formation of a synovial-like membrane at the bone-cement interface. Its role in bone resorption and implant loosening after total hip replacement. Arthritis Rheum. 1986;29:7.CrossRef Goldring SR, Jasty M, Roelke MS, Rourke CM, Bringhurst FR, Harris WH. Formation of a synovial-like membrane at the bone-cement interface. Its role in bone resorption and implant loosening after total hip replacement. Arthritis Rheum. 1986;29:7.CrossRef
49.
go back to reference Tuan RS, Lee FY-I, Konttinen Y, Wilkinson, Smith RL. What are the local and systemic biological reactions and mediators to wear debris and what host factors determine or modulate the biological response to wear particles? J Am Acad Orthop Surg. 2008;16:10.CrossRef Tuan RS, Lee FY-I, Konttinen Y, Wilkinson, Smith RL. What are the local and systemic biological reactions and mediators to wear debris and what host factors determine or modulate the biological response to wear particles? J Am Acad Orthop Surg. 2008;16:10.CrossRef
50.
go back to reference Herberts P, Malchau H. Long-term registration has improved the quality of hip replacement a review of the Swedish THR register comparing 160,000 cases. Acta Orthop Scand. 2000;71(2):11.CrossRef Herberts P, Malchau H. Long-term registration has improved the quality of hip replacement a review of the Swedish THR register comparing 160,000 cases. Acta Orthop Scand. 2000;71(2):11.CrossRef
51.
go back to reference Shanbhag AS, Hasselman CT, Rubash HE. The John Charnley award. Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin Orthop Relat Res. 1997;344:11.CrossRef Shanbhag AS, Hasselman CT, Rubash HE. The John Charnley award. Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin Orthop Relat Res. 1997;344:11.CrossRef
53.
go back to reference Nishii, Takashi, Sugano, Nobuhiko, Miki, Hidenobu. Restoration of periprosthetic osteolysis by systemic alendronate treatment. J Bone Joint Surg Br. 2008;90:5. Nishii, Takashi, Sugano, Nobuhiko, Miki, Hidenobu. Restoration of periprosthetic osteolysis by systemic alendronate treatment. J Bone Joint Surg Br. 2008;90:5.
54.
go back to reference Huiskes R, Stolk J. Biomechanics and preclinical testing of artifical joints: the hip. In: Basic orthopaedic biomechanics and mechanobiology; 2005. p. 72. Huiskes R, Stolk J. Biomechanics and preclinical testing of artifical joints: the hip. In: Basic orthopaedic biomechanics and mechanobiology; 2005. p. 72.
55.
go back to reference Sabokbar A, Fujikawa Y, Brett J. Increased osteoclastic differentiation by PMMA particle-associated macrophages: inhibitory effect by interleukin 4 and leukemia inhibitory factor. Acta Orthop Scand. 1996;67:593–8.CrossRefPubMed Sabokbar A, Fujikawa Y, Brett J. Increased osteoclastic differentiation by PMMA particle-associated macrophages: inhibitory effect by interleukin 4 and leukemia inhibitory factor. Acta Orthop Scand. 1996;67:593–8.CrossRefPubMed
Metadata
Title
Effects of bisphosphonates in preventing periprosthetic bone loss following total hip arthroplasty: a systematic review and meta-analysis
Authors
Jialing Shi
Guang Liang
Rongzhi Huang
Liang Liao
Danlu Qin
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2018
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-018-0918-7

Other articles of this Issue 1/2018

Journal of Orthopaedic Surgery and Research 1/2018 Go to the issue