Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2018

Open Access 01-12-2018 | Research article

Training with Hybrid Assistive Limb for walking function after total knee arthroplasty

Authors: Kenichi Yoshikawa, Hirotaka Mutsuzaki, Ayumu Sano, Kazunori Koseki, Takashi Fukaya, Masafumi Mizukami, Masashi Yamazaki

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2018

Login to get access

Abstract

Background

The Hybrid Assistive Limb (HAL, CYBERDYNE) is a wearable robot that provides assistance to patients while walking, standing, and performing leg movements based on the intended movement of the wearer. We aimed to assess the effect of HAL training on the walking ability, range of motion (ROM), and muscle strength of patients after total knee arthroplasty (TKA) for osteoarthritis and rheumatoid arthritis, and to compare the functional status after HAL training to the conventional training methods after surgery.

Methods

Nine patients (10 knees) underwent HAL training (mean age 74.1 ± 5.7 years; height 150.4 ± 6.5 cm; weight 61.2 ± 8.9 kg), whereas 10 patients (11 knees) underwent conventional rehabilitation (mean age 78.4 ± 8.0 years; height 150.5 ± 10.0 cm; weight 59.1 ± 9.8 kg). Patients underwent HAL training during 10 to 12 (average 14.4 min a session) sessions over a 4-week period, 1 week after TKA. There was no significant difference in the total physical therapy time including HAL training between the HAL and control groups. Gait speed, step length, ROM, and muscle strength were evaluated.

Results

The nine patients completed the HAL training sessions without adverse events. The walking speed and step length in the self-selected walking speed condition, and the walking speed in the maximum walking speed condition were greater in the HAL group than in the control group at 4 and 8 weeks (P < 0.05). The step length in the maximum walking speed condition was greater in the HAL group than in the control group at 2, 4, and 8 weeks (P < 0.05). The extension lag and knee pain were lower in the HAL group than in the control group at 2 weeks (P < 0.05). The muscle strength of knee extension in the HAL group was greater than that in the control group at 8 weeks (P < 0.05).

Conclusion

HAL training after TKA can improve the walking ability, ROM, and muscle strength compared to conventional physical therapy for up to 8 weeks after TKA. Since the recovery of walking ability was earlier in the HAL group than in the control group and adverse events were not observed in this pilot study, HAL training after TKA can be considered a safe and effective rehabilitation intervention.

Trial registration

UMIN, UMIN000017623. Registered 19 May 2015
Literature
1.
2.
go back to reference Gøthesen Ø, Espehaug B, Havelin L, Petursson G, Lygre S, Ellison P, et al. Survival rates and causes of revision in cemented primary total knee replacement: a report from the Norwegian arthroplasty register 1994–2009. Bone Joint J. 2013;95:636–42.CrossRefPubMed Gøthesen Ø, Espehaug B, Havelin L, Petursson G, Lygre S, Ellison P, et al. Survival rates and causes of revision in cemented primary total knee replacement: a report from the Norwegian arthroplasty register 1994–2009. Bone Joint J. 2013;95:636–42.CrossRefPubMed
3.
go back to reference Ethgen O, Bruyere O, Richy F, Dardennes C, Reginster J-Y. Health-related quality of life in total hip and total knee arthroplasty: a qualitative and systematic review of the literature. JBJS. 2004;86:963–74.CrossRef Ethgen O, Bruyere O, Richy F, Dardennes C, Reginster J-Y. Health-related quality of life in total hip and total knee arthroplasty: a qualitative and systematic review of the literature. JBJS. 2004;86:963–74.CrossRef
4.
go back to reference Mizner RL, Petterson SC, Snyder-Mackler L. Quadriceps strength and the time course of functional recovery after total knee arthroplasty. J Orthop Sports Phys Ther. 2005;35:424–36.CrossRefPubMed Mizner RL, Petterson SC, Snyder-Mackler L. Quadriceps strength and the time course of functional recovery after total knee arthroplasty. J Orthop Sports Phys Ther. 2005;35:424–36.CrossRefPubMed
5.
go back to reference Turcot K, Sagawa Y Jr, Fritschy D, Hoffmeyer P, Suva D, Armand S. How gait and clinical outcomes contribute to patients’ satisfaction three months following a total knee arthroplasty. J Arthroplast. 2013;28:1297–300.CrossRef Turcot K, Sagawa Y Jr, Fritschy D, Hoffmeyer P, Suva D, Armand S. How gait and clinical outcomes contribute to patients’ satisfaction three months following a total knee arthroplasty. J Arthroplast. 2013;28:1297–300.CrossRef
6.
go back to reference Pua YH, Seah FJ, Clark RA, Lian-Li Poon C, Tan JW, Chong HC. Factors associated with gait speed recovery after total knee arthroplasty: a longitudinal study. Semin Arthritis Rheum. 2017;46:544–51.CrossRefPubMed Pua YH, Seah FJ, Clark RA, Lian-Li Poon C, Tan JW, Chong HC. Factors associated with gait speed recovery after total knee arthroplasty: a longitudinal study. Semin Arthritis Rheum. 2017;46:544–51.CrossRefPubMed
7.
go back to reference Yoshida Y, Mizner RL, Ramsey DK, Snyder-Mackler L. Examining outcomes from total knee arthroplasty and the relationship between quadriceps strength and knee function over time. Clin Biomech. 2008;23:320–8.CrossRef Yoshida Y, Mizner RL, Ramsey DK, Snyder-Mackler L. Examining outcomes from total knee arthroplasty and the relationship between quadriceps strength and knee function over time. Clin Biomech. 2008;23:320–8.CrossRef
8.
go back to reference Sakamoto R, Takemasa S, Nakagawa N. Extensor lag after the total knee arthroplasty for the knee oseteoarthritis. Bulletin of Kobe University Graduate School of Health Sciences. 2009;24:29-39. Sakamoto R, Takemasa S, Nakagawa N. Extensor lag after the total knee arthroplasty for the knee oseteoarthritis. Bulletin of Kobe University Graduate School of Health Sciences. 2009;24:29-39.
9.
go back to reference Sprague RB. Factors related to extension lag at the knee joint. J Orthop Sports Phys Ther. 1982;3:178–82.CrossRefPubMed Sprague RB. Factors related to extension lag at the knee joint. J Orthop Sports Phys Ther. 1982;3:178–82.CrossRefPubMed
10.
go back to reference Gotlin RS, Hershkowitz S, Juris PM, Gonzalez EG, Scott WN, Insall JN. Electrical stimulation effect on extensor lag and length of hospital stay after total knee arthroplasty. Arch Phys Med Rehabil. 1994;75:957–9.PubMed Gotlin RS, Hershkowitz S, Juris PM, Gonzalez EG, Scott WN, Insall JN. Electrical stimulation effect on extensor lag and length of hospital stay after total knee arthroplasty. Arch Phys Med Rehabil. 1994;75:957–9.PubMed
11.
go back to reference Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke updated evidence. Stroke. 2013;44:e127-e8.CrossRef Mehrholz J, Elsner B, Werner C, Kugler J, Pohl M. Electromechanical-assisted training for walking after stroke updated evidence. Stroke. 2013;44:e127-e8.CrossRef
12.
go back to reference Cheung EYY, Ng TKW, Yu KKK, Kwan RLC, Cheing GLY. Robot-assisted training for people with spinal cord injury: a meta-analysis. Arch Phys Med Rehabil. 2017;98:2320–31.CrossRefPubMed Cheung EYY, Ng TKW, Yu KKK, Kwan RLC, Cheing GLY. Robot-assisted training for people with spinal cord injury: a meta-analysis. Arch Phys Med Rehabil. 2017;98:2320–31.CrossRefPubMed
13.
go back to reference Carvalho I, Pinto SM, das Virgens Chagas D, dos Santos JLP, de Sousa Oliveira T, Batista LA. Robotic gait training for individuals with cerebral palsy: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2017;98:2332–44.CrossRefPubMed Carvalho I, Pinto SM, das Virgens Chagas D, dos Santos JLP, de Sousa Oliveira T, Batista LA. Robotic gait training for individuals with cerebral palsy: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2017;98:2332–44.CrossRefPubMed
14.
go back to reference Henderson KG, Wallis JA, Snowdon DA. Active physiotherapy interventions following total knee arthroplasty in the hospital and inpatient rehabilitation settings: a systematic review and meta-analysis. Physiotherapy. 2018;104:25–35.CrossRefPubMed Henderson KG, Wallis JA, Snowdon DA. Active physiotherapy interventions following total knee arthroplasty in the hospital and inpatient rehabilitation settings: a systematic review and meta-analysis. Physiotherapy. 2018;104:25–35.CrossRefPubMed
15.
go back to reference Kawamoto H, Kamibayashi K, Nakata Y, Yamawaki K, Ariyasu R, Sankai Y, et al. Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurol. 2013;13:141.CrossRefPubMedPubMedCentral Kawamoto H, Kamibayashi K, Nakata Y, Yamawaki K, Ariyasu R, Sankai Y, et al. Pilot study of locomotion improvement using hybrid assistive limb in chronic stroke patients. BMC Neurol. 2013;13:141.CrossRefPubMedPubMedCentral
16.
go back to reference Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi K, et al., editors. Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:462-6. Kawamoto H, Taal S, Niniss H, Hayashi T, Kamibayashi K, Eguchi K, et al., editors. Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:462-6.
17.
go back to reference Suzuki K, Mito G, Kawamoto H, Hasegawa Y, Sankai Y. Intention-based walking support for paraplegia patients with robot suit HAL. Adv Robot. 2007;21:1441–69. Suzuki K, Mito G, Kawamoto H, Hasegawa Y, Sankai Y. Intention-based walking support for paraplegia patients with robot suit HAL. Adv Robot. 2007;21:1441–69.
18.
go back to reference Nilsson A, Vreede KS, Haglund V, Kawamoto H, Sankai Y, Borg J. Gait training early after stroke with a new exoskeleton--the hybrid assistive limb: a study of safety and feasibility. J Neuroeng Rehabil. 2014;11:92.CrossRefPubMedPubMedCentral Nilsson A, Vreede KS, Haglund V, Kawamoto H, Sankai Y, Borg J. Gait training early after stroke with a new exoskeleton--the hybrid assistive limb: a study of safety and feasibility. J Neuroeng Rehabil. 2014;11:92.CrossRefPubMedPubMedCentral
19.
go back to reference Watanabe H, Tanaka N, Inuta T, Saitou H, Yanagi H. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Arch Phys Med Rehabil. 2014;95:2006–12.CrossRefPubMed Watanabe H, Tanaka N, Inuta T, Saitou H, Yanagi H. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Arch Phys Med Rehabil. 2014;95:2006–12.CrossRefPubMed
20.
go back to reference Sczesny-Kaiser M, Höffken O, Aach M, Cruciger O, Grasmücke D, Meindl R, et al. HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil. 2015;12:1.CrossRef Sczesny-Kaiser M, Höffken O, Aach M, Cruciger O, Grasmücke D, Meindl R, et al. HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil. 2015;12:1.CrossRef
21.
go back to reference Matsuda M, Mataki Y, Mutsuzaki H, Yoshikawa K, Takahashi K, Enomoto K, et al. Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb (HAL) for cerebral palsy. J Phys Ther Sci. 2018;30:207–12.CrossRefPubMedPubMedCentral Matsuda M, Mataki Y, Mutsuzaki H, Yoshikawa K, Takahashi K, Enomoto K, et al. Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb (HAL) for cerebral palsy. J Phys Ther Sci. 2018;30:207–12.CrossRefPubMedPubMedCentral
22.
go back to reference Sugimura Y, Takahashi T, Iijima Y, Nakajima H, Fujiya Y, Shimosegawa Y, et al. The efficacy of treatment using hybrid assistive limb for patients with neuromuscular disease. J Neurol Sci. 2017;381:836.CrossRef Sugimura Y, Takahashi T, Iijima Y, Nakajima H, Fujiya Y, Shimosegawa Y, et al. The efficacy of treatment using hybrid assistive limb for patients with neuromuscular disease. J Neurol Sci. 2017;381:836.CrossRef
23.
go back to reference Tanaka Y, Oka H, Nakayama S, Ueno T, Matsudaira K, Miura T, et al. Improvement of walking ability during postoperative rehabilitation with the hybrid assistive limb after total knee arthroplasty: a randomized controlled study. SAGE Open Med. 2017;5:2050312117712888.CrossRefPubMedPubMedCentral Tanaka Y, Oka H, Nakayama S, Ueno T, Matsudaira K, Miura T, et al. Improvement of walking ability during postoperative rehabilitation with the hybrid assistive limb after total knee arthroplasty: a randomized controlled study. SAGE Open Med. 2017;5:2050312117712888.CrossRefPubMedPubMedCentral
24.
go back to reference Yoshioka T, Sugaya H, Kubota S, Onishi M, Kanamori A, Sankai Y, et al. Knee-extension training with a single-joint hybrid assistive limb during the early postoperative period after total knee arthroplasty in a patient with osteoarthritis. Case Rep Orthop. 2016;2016:9610745. Yoshioka T, Sugaya H, Kubota S, Onishi M, Kanamori A, Sankai Y, et al. Knee-extension training with a single-joint hybrid assistive limb during the early postoperative period after total knee arthroplasty in a patient with osteoarthritis. Case Rep Orthop. 2016;2016:9610745.
25.
go back to reference Fukaya T, Mutsuzaki H, Yoshikawa K, Sano A, Mizukami M, Yamazaki M. The training effect of early intervention with a hybrid assistive limb after total knee arthroplasty. Case Rep Orthop. 2017;2017:1. Fukaya T, Mutsuzaki H, Yoshikawa K, Sano A, Mizukami M, Yamazaki M. The training effect of early intervention with a hybrid assistive limb after total knee arthroplasty. Case Rep Orthop. 2017;2017:1.
26.
27.
go back to reference Bohannon RW. Comfortable and maximum walking speed of adults aged 20—79 years: reference values and determinants. Age Ageing. 1997;26:15–9.CrossRefPubMed Bohannon RW. Comfortable and maximum walking speed of adults aged 20—79 years: reference values and determinants. Age Ageing. 1997;26:15–9.CrossRefPubMed
28.
go back to reference Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. Rheumatol. 1988;15:1833–40. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. Rheumatol. 1988;15:1833–40.
29.
go back to reference Hashimoto H, Hanyu T, Sledge CB, Lingard EA. Validation of a Japanese patient-derived outcome scale for assessingtotal knee arthroplasty: comparison with Western Ontario and McMaster Universities osteoarthritis index (WOMAC). J Orthop Sci. 2003;8:288–93.CrossRefPubMed Hashimoto H, Hanyu T, Sledge CB, Lingard EA. Validation of a Japanese patient-derived outcome scale for assessingtotal knee arthroplasty: comparison with Western Ontario and McMaster Universities osteoarthritis index (WOMAC). J Orthop Sci. 2003;8:288–93.CrossRefPubMed
30.
go back to reference Huck SW. Reading statistics and research sixth edition. 6th ed. Boston: Pearson; 2012. Huck SW. Reading statistics and research sixth edition. 6th ed. Boston: Pearson; 2012.
31.
go back to reference Abbasi-Bafghi H, Fallah-Yakhdani HR, Meijer OG, de Vet HC, Bruijn SM, Yang L-Y, et al. The effects of knee arthroplasty on walking speed: a meta-analysis. BMC Musculoskelet Disord. 2012;13:66.CrossRefPubMedPubMedCentral Abbasi-Bafghi H, Fallah-Yakhdani HR, Meijer OG, de Vet HC, Bruijn SM, Yang L-Y, et al. The effects of knee arthroplasty on walking speed: a meta-analysis. BMC Musculoskelet Disord. 2012;13:66.CrossRefPubMedPubMedCentral
32.
go back to reference White DK, Felson DT, Niu J, Nevitt MC, Lewis CE, Torner JC, et al. Reasons for functional decline despite reductions in knee pain: the multicenter osteoarthritis study. Phys Ther. 2011;91:1849–56.CrossRefPubMedPubMedCentral White DK, Felson DT, Niu J, Nevitt MC, Lewis CE, Torner JC, et al. Reasons for functional decline despite reductions in knee pain: the multicenter osteoarthritis study. Phys Ther. 2011;91:1849–56.CrossRefPubMedPubMedCentral
33.
go back to reference Fusi S, Campailla E, Causero A, di Prampero P. The locomotory index: a new proposal for evaluating walking impairments. Int J Sports Med. 2002;23:105–11.CrossRefPubMed Fusi S, Campailla E, Causero A, di Prampero P. The locomotory index: a new proposal for evaluating walking impairments. Int J Sports Med. 2002;23:105–11.CrossRefPubMed
34.
go back to reference Parent E, Moffet H. Comparative responsiveness of locomotor tests and questionnaires used to follow early recovery after total knee arthroplasty. Arch Phys Med Rehabil. 2002;83:70–80.CrossRefPubMed Parent E, Moffet H. Comparative responsiveness of locomotor tests and questionnaires used to follow early recovery after total knee arthroplasty. Arch Phys Med Rehabil. 2002;83:70–80.CrossRefPubMed
35.
go back to reference Kennedy JC, Alexander IJ, Hayes KC. Nerve supply of the human knee and its functional importance. Am J Sports Med. 1982;10:329–35.CrossRefPubMed Kennedy JC, Alexander IJ, Hayes KC. Nerve supply of the human knee and its functional importance. Am J Sports Med. 1982;10:329–35.CrossRefPubMed
36.
go back to reference Yoshikawa K, Mizukami M, Kawamoto H, Sano A, Koseki K, Sano K, et al. Gait training with Hybrid Assistive Limb enhances the gait functions in subacute stroke patients: a pilot study. NeuroRehabilitation. 2017;40:87–97.CrossRefPubMed Yoshikawa K, Mizukami M, Kawamoto H, Sano A, Koseki K, Sano K, et al. Gait training with Hybrid Assistive Limb enhances the gait functions in subacute stroke patients: a pilot study. NeuroRehabilitation. 2017;40:87–97.CrossRefPubMed
37.
go back to reference Pennycott A, Wyss D, Vallery H, Klamroth-Marganska V, Riener R. Towards more effective robotic gait training for stroke rehabilitation: a review. J Neuroeng Rehabil. 2012;9:65.CrossRefPubMedPubMedCentral Pennycott A, Wyss D, Vallery H, Klamroth-Marganska V, Riener R. Towards more effective robotic gait training for stroke rehabilitation: a review. J Neuroeng Rehabil. 2012;9:65.CrossRefPubMedPubMedCentral
38.
go back to reference Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain. 2003;126:866–72.CrossRefPubMed Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain. 2003;126:866–72.CrossRefPubMed
39.
go back to reference Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum. 2010;40:250–66.CrossRefPubMed Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum. 2010;40:250–66.CrossRefPubMed
40.
go back to reference Preece SJ, Jones RK, Brown CA, Cacciatore TW, Jones AK. Reductions in co-contraction following neuromuscular re-education in people with knee osteoarthritis. BMC Musculoskelet Disord. 2016;17:372.CrossRefPubMedPubMedCentral Preece SJ, Jones RK, Brown CA, Cacciatore TW, Jones AK. Reductions in co-contraction following neuromuscular re-education in people with knee osteoarthritis. BMC Musculoskelet Disord. 2016;17:372.CrossRefPubMedPubMedCentral
41.
go back to reference Perry J, Davids JR. Gait analysis: normal and pathological function. NJ: Slack; 1992. p. 815. Perry J, Davids JR. Gait analysis: normal and pathological function. NJ: Slack; 1992. p. 815.
42.
go back to reference Lee I-h, S-y P. A comparison of gait characteristics in the elderly people, people with knee pain, and people who are walker dependent people. J Phys Ther Sci. 2013;25:973–6.CrossRefPubMedPubMedCentral Lee I-h, S-y P. A comparison of gait characteristics in the elderly people, people with knee pain, and people who are walker dependent people. J Phys Ther Sci. 2013;25:973–6.CrossRefPubMedPubMedCentral
Metadata
Title
Training with Hybrid Assistive Limb for walking function after total knee arthroplasty
Authors
Kenichi Yoshikawa
Hirotaka Mutsuzaki
Ayumu Sano
Kazunori Koseki
Takashi Fukaya
Masafumi Mizukami
Masashi Yamazaki
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2018
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-018-0875-1

Other articles of this Issue 1/2018

Journal of Orthopaedic Surgery and Research 1/2018 Go to the issue