Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2017

Open Access 01-12-2017 | Research article

The anteroposterior axis of the tibia is approximately perpendicular to the anterior pelvic plane in the standing position in healthy Japanese subjects

Authors: Norio Imai, Dai Miyasaka, Tomoyuki Ito, Hayato Suzuki, Izumi Minato, Naoto Endo

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2017

Login to get access

Abstract

Background

We previously reported that the clinical epicondylar axis (CEA) was approximately parallel to the transverse axis of the anterior pelvic plane (APP) in the standing position in normal subjects. The purpose of this study was to investigate the rotational alignment between APP in the standing position and the anteroposterior (AP) axis of the tibia relative to pelvic coordination in normal subjects.

Methods

This study included 68 healthy Japanese, 24 males and 44 females, without lumbago and knee pain. Femoral neck anteversion (FNA), condylar twist angle, and knee rotation angle were measured in femoral coordination. The angle between the femoral neck axis and CEA transverse axis of APP was also measured, and the angle between the AP axis of the tibia and the transverse axis of APP was calculated. The mean value of knee rotation angle was 0.23° and 2.06° in male and female subjects, respectively.

Results

There was a moderate positive correlation between FNA and the femoral axis angle relative to the transverse axis of APP. The knee rotation angle relative to APP was 0.33° and 1.56° in male and female subjects, respectively, and the tibia AP axis was approximately perpendicular to the transverse axis of APP in the standing position. Regarding validation, we obtained high interclass correlation coefficients for both intraobserver and interobserver reliability.

Conclusion

We found that the knee rotation angle was almost 0° and that the tibia AP axis was approximately perpendicular to the CEA. The tibia AP axis was also approximately perpendicular to the transverse axis of the APP in standing position.
Literature
1.
go back to reference Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop. 1998;356:144–53.CrossRef Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop. 1998;356:144–53.CrossRef
2.
go back to reference Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg Br. 1991;73:709–14.PubMed Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg Br. 1991;73:709–14.PubMed
3.
go back to reference Kandemir U, Yazici M, Alpaslan AM, Surat A. Morphology of the knee in adult patients with neglected developmental dysplasia of the hip. J Bone Joint Surg Am. 2002;84:2249–57.CrossRefPubMed Kandemir U, Yazici M, Alpaslan AM, Surat A. Morphology of the knee in adult patients with neglected developmental dysplasia of the hip. J Bone Joint Surg Am. 2002;84:2249–57.CrossRefPubMed
4.
5.
go back to reference Matsuda S, Miura H, Nagamine R, Mawatari T, Tokunaga M, Nabeyama R, et al. Anatomical analysis of the femoral condyle in normal and osteoarthritic knees. J Orthop Res. 2004;22:104–9.CrossRefPubMed Matsuda S, Miura H, Nagamine R, Mawatari T, Tokunaga M, Nabeyama R, et al. Anatomical analysis of the femoral condyle in normal and osteoarthritic knees. J Orthop Res. 2004;22:104–9.CrossRefPubMed
6.
go back to reference Minoda Y, Kobayashi A, Iwaki H, Sugama R, Iwakiri K, Kadoya Y, et al. Sagittal alignment of the lower extremity while standing in Japanese male. Arch Orthop Trauma Surg. 2008;128:435–42.CrossRefPubMed Minoda Y, Kobayashi A, Iwaki H, Sugama R, Iwakiri K, Kadoya Y, et al. Sagittal alignment of the lower extremity while standing in Japanese male. Arch Orthop Trauma Surg. 2008;128:435–42.CrossRefPubMed
7.
go back to reference Moreland JR, Bassett LW, Hanker GJ. Radiographic analysis of the axial alignment of the lower extremity. J Bone Joint Surg Am. 1987;69:745–9.CrossRefPubMed Moreland JR, Bassett LW, Hanker GJ. Radiographic analysis of the axial alignment of the lower extremity. J Bone Joint Surg Am. 1987;69:745–9.CrossRefPubMed
8.
go back to reference Cooke TD, Li J, Scudamore RA. Radiographic assessment of bony contributions to knee deformity. Orthop Clin North Am. 1994;25:387–93.PubMed Cooke TD, Li J, Scudamore RA. Radiographic assessment of bony contributions to knee deformity. Orthop Clin North Am. 1994;25:387–93.PubMed
9.
go back to reference Hsu RW, Himeno S, Coventry MB, Chao EY. Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin Orthop. 1990;255:215–27. Hsu RW, Himeno S, Coventry MB, Chao EY. Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin Orthop. 1990;255:215–27.
10.
go back to reference Kawakami H, Sugano N, Yonenobu K, Yoshikawa H, Ochi T, Hattori A, et al. Effects of rotation on measurement of lower limb alignment for knee osteotomy. J Orthop Res. 2004;22:1248–53.CrossRefPubMed Kawakami H, Sugano N, Yonenobu K, Yoshikawa H, Ochi T, Hattori A, et al. Effects of rotation on measurement of lower limb alignment for knee osteotomy. J Orthop Res. 2004;22:1248–53.CrossRefPubMed
11.
go back to reference Akagi M, Mori S, Nishimura S, Asano T, Hamanishi C. Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res. 2005;436:172–6.CrossRef Akagi M, Mori S, Nishimura S, Asano T, Hamanishi C. Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res. 2005;436:172–6.CrossRef
12.
go back to reference Ariumi A, Sato T, Kobayashi K, Koga Y, Omori G, Minato I, et al. Three-dimensional lower extremity alignment in the weight-bearing standing position in healthy elderly subjects. J Orthop Sci. 2010;15:64–70.CrossRefPubMed Ariumi A, Sato T, Kobayashi K, Koga Y, Omori G, Minato I, et al. Three-dimensional lower extremity alignment in the weight-bearing standing position in healthy elderly subjects. J Orthop Sci. 2010;15:64–70.CrossRefPubMed
13.
go back to reference Watanabe S, Sato T, Omori G, Koga Y, Endo N. Change in tibiofemoral rotational alignment during total knee arthroplasty. J Orthop Sci. 2014;19:571–8.CrossRefPubMed Watanabe S, Sato T, Omori G, Koga Y, Endo N. Change in tibiofemoral rotational alignment during total knee arthroplasty. J Orthop Sci. 2014;19:571–8.CrossRefPubMed
14.
go back to reference Imai N, Ito T, Takahashi Y, Horigome Y, Suda K, Miyasaka D, et al. In vivo relationship between the clinical epicondylar axis and the anterior pelvic plane in normal subjects. J Biomed Sci Eng. 2013;6:863–8.CrossRef Imai N, Ito T, Takahashi Y, Horigome Y, Suda K, Miyasaka D, et al. In vivo relationship between the clinical epicondylar axis and the anterior pelvic plane in normal subjects. J Biomed Sci Eng. 2013;6:863–8.CrossRef
15.
go back to reference Sato T, Koga Y, Omori G. Three-dimensional lower extremity alignment assessment system: application to evaluation of component position after total knee arthroplasty. J Arthroplast. 2004;19:620–8.CrossRef Sato T, Koga Y, Omori G. Three-dimensional lower extremity alignment assessment system: application to evaluation of component position after total knee arthroplasty. J Arthroplast. 2004;19:620–8.CrossRef
16.
go back to reference Kobayashi K, Sakamoto M, Tanabe Y, Ariumi A, Sato T, Omori G, et al. Automated image registration for assessing three-dimensional alignment of entire lower extremity and implant position using bi-plane radiography. J Biomech. 2009;42:2818–22.CrossRefPubMed Kobayashi K, Sakamoto M, Tanabe Y, Ariumi A, Sato T, Omori G, et al. Automated image registration for assessing three-dimensional alignment of entire lower extremity and implant position using bi-plane radiography. J Biomech. 2009;42:2818–22.CrossRefPubMed
17.
go back to reference Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg. 1978;60:217–20.CrossRefPubMed Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg. 1978;60:217–20.CrossRefPubMed
18.
go back to reference Nakahara I, Takao M, Sakai T, Nishii T, Yoshikawa H, Sugano N. Gender differences in 3D morphology and bony impingement of human hips. J Orthop Res. 2011;29:333–9.CrossRefPubMed Nakahara I, Takao M, Sakai T, Nishii T, Yoshikawa H, Sugano N. Gender differences in 3D morphology and bony impingement of human hips. J Orthop Res. 2011;29:333–9.CrossRefPubMed
19.
go back to reference Sugano N, Noble PC, Kamaric E. A comparison of alternative methods of measuring femoral anteversion. J Comput Assist Tomogr. 1998;22:610–4.CrossRefPubMed Sugano N, Noble PC, Kamaric E. A comparison of alternative methods of measuring femoral anteversion. J Comput Assist Tomogr. 1998;22:610–4.CrossRefPubMed
20.
go back to reference Whittington B, Silder A, Heiderscheit B, Thelen DG. The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking. Gait Posture. 2008;27:628–34.CrossRefPubMed Whittington B, Silder A, Heiderscheit B, Thelen DG. The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking. Gait Posture. 2008;27:628–34.CrossRefPubMed
21.
go back to reference Chumanov ES, Wall-Scheffler C, Heiderscheit BC. Gender differences in walking and running on level and inclined surfaces. Clin Biomech. 2008;23:1260–8.CrossRef Chumanov ES, Wall-Scheffler C, Heiderscheit BC. Gender differences in walking and running on level and inclined surfaces. Clin Biomech. 2008;23:1260–8.CrossRef
22.
go back to reference Schache AG, Baker R. On the expression of joint moments during gait. Gait Posture. 2007;25:440–52.CrossRefPubMed Schache AG, Baker R. On the expression of joint moments during gait. Gait Posture. 2007;25:440–52.CrossRefPubMed
23.
go back to reference Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res. 1998;56:111–8.CrossRef Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res. 1998;56:111–8.CrossRef
24.
go back to reference Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using “interventional” MRI. J Biomech. 2005;38:269–76.CrossRefPubMed Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using “interventional” MRI. J Biomech. 2005;38:269–76.CrossRefPubMed
25.
go back to reference Kozanek M, Hosseini A, Liu F, Van de Velde SK, Gill TJ, Rubash HE, Li G. Tibiofemoral kinematics and condylar motion during the stance phase of gait. J Biomech. 2009;25:1877–84.CrossRef Kozanek M, Hosseini A, Liu F, Van de Velde SK, Gill TJ, Rubash HE, Li G. Tibiofemoral kinematics and condylar motion during the stance phase of gait. J Biomech. 2009;25:1877–84.CrossRef
26.
go back to reference Chen HN, Yang K, Dong QR, Wang Y. Assessment of tibial rotation and meniscal movement using kinematic magnetic resonance imaging. J Orthop Surg Res. 2014;9:65.CrossRefPubMedPubMedCentral Chen HN, Yang K, Dong QR, Wang Y. Assessment of tibial rotation and meniscal movement using kinematic magnetic resonance imaging. J Orthop Surg Res. 2014;9:65.CrossRefPubMedPubMedCentral
Metadata
Title
The anteroposterior axis of the tibia is approximately perpendicular to the anterior pelvic plane in the standing position in healthy Japanese subjects
Authors
Norio Imai
Dai Miyasaka
Tomoyuki Ito
Hayato Suzuki
Izumi Minato
Naoto Endo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2017
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-017-0642-8

Other articles of this Issue 1/2017

Journal of Orthopaedic Surgery and Research 1/2017 Go to the issue