Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2017

Open Access 01-12-2017 | Research article

Novel intramedullary device for lengthening transfemoral residual limbs

Authors: Todd A. Kuiken, Bennet A. Butler, Tom Sharkey, Andre D. Ivy, Daniel Li, Terrance D. Peabody

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2017

Login to get access

Abstract

Background

Lower limb loss is a highly disabling medical condition that can severely impact a person’s quality of life. Recovery becomes especially challenging if an amputee has a short residual limb, which can complicate proper prosthetic fitting, causing discomfort, difficulties in suspension, and reduced mobility. Current limb lengthening techniques such as the Ilizarov apparatus and external fixators are cumbersome, uncomfortable, and have high complication rates. In this study, we investigated the effectiveness of a novel limb-lengthening device that uses intramedullary bone lengthening and requires only one percutaneous rod at the end of the limb during the distraction phase. Only the intramedullary nail remains after the distraction phase, and no external components are required during the consolidation phase. We hypothesize that this system would create a much easier experience for the patient.

Methods

The system was first tested in a mock surgical implantation using plastic femur bones. The device was then tested in a series of cadaveric experiments using pelvis-to-knee specimens by a group of surgeons. Surgeons evaluated the surgical insertion technique, soft tissue considerations, hardware fixation strategies, and the effectiveness of the distraction mechanism. Revisions and improvements to the device and surgical procedure were made based on the results from the cadaveric experiments.

Results

A questionnaire was given to two visiting surgeons following the final iteration of the device. The surgeons reported that the system effectively lengthened the limb, was sturdy, and could be installed efficiently. However, there remains a risk of infection and soft tissue imbalances, similar to that introduced by an external fixator device. Suggestions on how to improve the design of the device and mitigate infection through postoperative management and surgical standard of care will be considered for future clinical trials.

Conclusions

The described intramedullary residual limb-lengthening device has evolved from a prototype to a mature model tested in six cadaveric experiments to date. Further mechanical and functional testing is needed to finalize the device before testing in patients.
Literature
1.
go back to reference Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89:422–9.CrossRefPubMed Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89:422–9.CrossRefPubMed
2.
go back to reference Tintle SM, Forsberg JA, Keeling JJ, Shawen SB, Potter BK. Lower extremity combat-related amputations. J Surg Orthop Adv. 2010;19:35–43.PubMed Tintle SM, Forsberg JA, Keeling JJ, Shawen SB, Potter BK. Lower extremity combat-related amputations. J Surg Orthop Adv. 2010;19:35–43.PubMed
4.
go back to reference Erikson U, James U. Roentgenological study of certain stump-socket relationships in above-knee amputees with special regard to tissue proportions, socket fit and attachment stability. Ups J Med Sci. 1973;78:203–14.CrossRefPubMed Erikson U, James U. Roentgenological study of certain stump-socket relationships in above-knee amputees with special regard to tissue proportions, socket fit and attachment stability. Ups J Med Sci. 1973;78:203–14.CrossRefPubMed
5.
go back to reference Schwarze M, Hurschler C, Seehaus F, Correa T, Welke B. Influence of transfemoral amputation length on resulting loads at the osseointegrated prosthesis fixation during walking and falling. Clin Biomech. 2014;29:272–6.CrossRef Schwarze M, Hurschler C, Seehaus F, Correa T, Welke B. Influence of transfemoral amputation length on resulting loads at the osseointegrated prosthesis fixation during walking and falling. Clin Biomech. 2014;29:272–6.CrossRef
6.
go back to reference Bernstein RM, Watts HG, Setoguchi Y. The lengthening of short upper extremity amputation stumps. J Pediatr Orthop. 2008;28:86–90.CrossRefPubMed Bernstein RM, Watts HG, Setoguchi Y. The lengthening of short upper extremity amputation stumps. J Pediatr Orthop. 2008;28:86–90.CrossRefPubMed
7.
go back to reference Orhun H, Saka G, Bilgic E, Kavakh B. Lengthening of short stumps for functional use of prostheses. Prosthet Orthot Int. 2003;27:153–7.CrossRefPubMed Orhun H, Saka G, Bilgic E, Kavakh B. Lengthening of short stumps for functional use of prostheses. Prosthet Orthot Int. 2003;27:153–7.CrossRefPubMed
8.
go back to reference Persson BM, Broome A. Lengthening a short femoral amputation stump. A case of tissue expander and endoprosthesis. Acta Orthop Scand. 1994;65:99–100.CrossRefPubMed Persson BM, Broome A. Lengthening a short femoral amputation stump. A case of tissue expander and endoprosthesis. Acta Orthop Scand. 1994;65:99–100.CrossRefPubMed
9.
go back to reference Pohjolainen T. A clinical evaluation of stumps in lower limb amputees. Prosthet Orthot Int. 1991;15:178–84.PubMed Pohjolainen T. A clinical evaluation of stumps in lower limb amputees. Prosthet Orthot Int. 1991;15:178–84.PubMed
10.
go back to reference Bowen RE, Struble SG, Setoguchi Y, Watts HG. Outcomes of lengthening short lower-extremity amputation stumps with planar fixators. J Pediatr Orthop. 2005;25:543–7.CrossRefPubMed Bowen RE, Struble SG, Setoguchi Y, Watts HG. Outcomes of lengthening short lower-extremity amputation stumps with planar fixators. J Pediatr Orthop. 2005;25:543–7.CrossRefPubMed
11.
go back to reference Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S. Transfemoral prosthesis suspension systems: a systematic review of the literature. Am J Phys Med Rehabil. 2014;93:809–23.CrossRefPubMed Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S. Transfemoral prosthesis suspension systems: a systematic review of the literature. Am J Phys Med Rehabil. 2014;93:809–23.CrossRefPubMed
12.
go back to reference Kalson NS, Gikas PD, Aston W, Miles J, Blunn G, Pollock R, et al. Custom-made endoprostheses for the femoral amputation stump: an alternative to hip disarticulation in tumour surgery. J Bone Joint Surg. 2010;92b:1134–7.CrossRef Kalson NS, Gikas PD, Aston W, Miles J, Blunn G, Pollock R, et al. Custom-made endoprostheses for the femoral amputation stump: an alternative to hip disarticulation in tumour surgery. J Bone Joint Surg. 2010;92b:1134–7.CrossRef
13.
go back to reference Apivatthakakul T, Arpornchayanon O. Minimally invasive plate osteosynthesis (MIPO) combined with distraction osteogenesis in the treatment of bone defects. A new technique of bone transport: a report of two cases. Injury. 2002;33:460–5.CrossRefPubMed Apivatthakakul T, Arpornchayanon O. Minimally invasive plate osteosynthesis (MIPO) combined with distraction osteogenesis in the treatment of bone defects. A new technique of bone transport: a report of two cases. Injury. 2002;33:460–5.CrossRefPubMed
14.
go back to reference Betz AM, Stock W, Hierner R, Baumgart R. Primary shortening with secondary limb lengthening in severe injuries of the lower leg: a six year experience. Microsurgery. 1993;14:446–53.CrossRefPubMed Betz AM, Stock W, Hierner R, Baumgart R. Primary shortening with secondary limb lengthening in severe injuries of the lower leg: a six year experience. Microsurgery. 1993;14:446–53.CrossRefPubMed
15.
go back to reference Gordon JE, Manske MC, Lewis TR, O’Donnell JC, Schoenecker PL, Keeler KA. Femoral lengthening over a pediatric femoral nail: results and complications. J Pediatr Orthop. 2013;33:730–6.CrossRefPubMed Gordon JE, Manske MC, Lewis TR, O’Donnell JC, Schoenecker PL, Keeler KA. Femoral lengthening over a pediatric femoral nail: results and complications. J Pediatr Orthop. 2013;33:730–6.CrossRefPubMed
16.
go back to reference Hankemeier S, Gosling T, Pape HC, Wiebking U, Krettek C. Limb lengthening with the intramedullary skeletal kinetic distractor (ISKD). Oper Orthop Traumatol. 2005;17:79–101.CrossRefPubMed Hankemeier S, Gosling T, Pape HC, Wiebking U, Krettek C. Limb lengthening with the intramedullary skeletal kinetic distractor (ISKD). Oper Orthop Traumatol. 2005;17:79–101.CrossRefPubMed
17.
go back to reference Kocaoglu M, Eralp L, Bilen FE, Balci HI. Fixator-assisted acute femoral deformity correction and consecutive lengthening over an intramedullary nail. J Bone Joint Surg Am. 2009;91:152–9.CrossRefPubMed Kocaoglu M, Eralp L, Bilen FE, Balci HI. Fixator-assisted acute femoral deformity correction and consecutive lengthening over an intramedullary nail. J Bone Joint Surg Am. 2009;91:152–9.CrossRefPubMed
18.
go back to reference Noonan KJ, Leyes M, Forriol F, Canadell J. Distraction osteogenesis of the lower extremity with use of monolateral external fixation—a study of two hundred and sixty-one femora and tibiae. J Bone Joint Surg Am. 1998;80a:793–806.CrossRef Noonan KJ, Leyes M, Forriol F, Canadell J. Distraction osteogenesis of the lower extremity with use of monolateral external fixation—a study of two hundred and sixty-one femora and tibiae. J Bone Joint Surg Am. 1998;80a:793–806.CrossRef
19.
go back to reference Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res. 1990;250:81–104. Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res. 1990;250:81–104.
20.
go back to reference Penn-Barwell JG. Outcomes in lower limb amputation following trauma: a systematic review and meta-analysis. Injury. 2011;42:1474–9.CrossRefPubMed Penn-Barwell JG. Outcomes in lower limb amputation following trauma: a systematic review and meta-analysis. Injury. 2011;42:1474–9.CrossRefPubMed
21.
go back to reference Rozbruch SR, Rozbruch ES, Zonshayn S, Borst EW, Fragomen AT. What is the utility of a limb lengthening and reconstruction service in an academic department of orthopaedic surgery? Clin Orthop Relat Res. 2015;473:3124–32.CrossRefPubMedPubMedCentral Rozbruch SR, Rozbruch ES, Zonshayn S, Borst EW, Fragomen AT. What is the utility of a limb lengthening and reconstruction service in an academic department of orthopaedic surgery? Clin Orthop Relat Res. 2015;473:3124–32.CrossRefPubMedPubMedCentral
22.
go back to reference Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989;238:249–81. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989;238:249–81.
24.
go back to reference Paley D, Herzenberg JE, Paremain G, Bhave A. Femoral lengthening over an intramedullary nail. A matched-case comparison with Ilizarov femoral lengthening. J Bone Joint Surg Am. 1997;79:1464–80.CrossRefPubMed Paley D, Herzenberg JE, Paremain G, Bhave A. Femoral lengthening over an intramedullary nail. A matched-case comparison with Ilizarov femoral lengthening. J Bone Joint Surg Am. 1997;79:1464–80.CrossRefPubMed
25.
go back to reference Jasiewicz B, Tesiorowski M, Kacki W, Kasprzyk M, Zarzycki D. Lengthening of congenital forearm stumps. J Pediatr Orthop B. 2006;15:198–201.CrossRefPubMed Jasiewicz B, Tesiorowski M, Kacki W, Kasprzyk M, Zarzycki D. Lengthening of congenital forearm stumps. J Pediatr Orthop B. 2006;15:198–201.CrossRefPubMed
26.
go back to reference Baumgart R. The reverse planning method for lengthening of the lower limb using a straight intramedullary nail with or without deformity correction. A new method. Oper Orthop Traumatol. 2009;21:221–33.CrossRefPubMed Baumgart R. The reverse planning method for lengthening of the lower limb using a straight intramedullary nail with or without deformity correction. A new method. Oper Orthop Traumatol. 2009;21:221–33.CrossRefPubMed
27.
go back to reference Baumgart R, Thaller P, Hinterwimmer S, Krammer M, Hierl T, Mutschler W. A fully implantable, programmable distraction nail (Fitbone): new perspectives for corrective and reconstructive limb surgery. In: Leung KS, Taglang G, Schnettler R, editors. Practice of Intramedullary Locked Nails. Berlin Heidelberg: Springer; 2006. p. 189–98.CrossRef Baumgart R, Thaller P, Hinterwimmer S, Krammer M, Hierl T, Mutschler W. A fully implantable, programmable distraction nail (Fitbone): new perspectives for corrective and reconstructive limb surgery. In: Leung KS, Taglang G, Schnettler R, editors. Practice of Intramedullary Locked Nails. Berlin Heidelberg: Springer; 2006. p. 189–98.CrossRef
28.
go back to reference Cole JD, Justin D, Kasparis T, DeVlught D, Knobloch C. The intramedullary skeletal kinetic distractor (ISKD): first clinical results of a new intramedullary nail for lengthening of the femur and tibia. Injury. 2001;32:129–39.CrossRef Cole JD, Justin D, Kasparis T, DeVlught D, Knobloch C. The intramedullary skeletal kinetic distractor (ISKD): first clinical results of a new intramedullary nail for lengthening of the femur and tibia. Injury. 2001;32:129–39.CrossRef
29.
go back to reference Eldridge JC, Armstrong PF, Krajbich JI. Amputation stump lengthening with the Ilizarov technique. A case report. Clin Orthop Relat Res. 1990;256:76. Eldridge JC, Armstrong PF, Krajbich JI. Amputation stump lengthening with the Ilizarov technique. A case report. Clin Orthop Relat Res. 1990;256:76.
30.
31.
go back to reference Pelissier P, Pistre V, Casoli V, Martin D, Baudet J. Reconstruction of short lower leg stumps with the osteomusculocutaneous latissimus dorsi-rib flap. Plast Reconstr Surg. 2002;109:1013–7.CrossRefPubMed Pelissier P, Pistre V, Casoli V, Martin D, Baudet J. Reconstruction of short lower leg stumps with the osteomusculocutaneous latissimus dorsi-rib flap. Plast Reconstr Surg. 2002;109:1013–7.CrossRefPubMed
32.
go back to reference Pinsolle V, Tessier R, Casoli V, Martin D, Baudet J. The pedicled vascularized scapular bone flap for proximal humerus reconstruction and short humeral stump lengthening. J Plast Reconstr Aesthet Surg. 2007;60:1019–24.CrossRefPubMed Pinsolle V, Tessier R, Casoli V, Martin D, Baudet J. The pedicled vascularized scapular bone flap for proximal humerus reconstruction and short humeral stump lengthening. J Plast Reconstr Aesthet Surg. 2007;60:1019–24.CrossRefPubMed
33.
go back to reference Werner CM, Exner GU, Dumont CE. Free vascularized osteocutaneous filet flap for covering, that permitted sensitive terminal weight-bearing by a thigh stump after transfemoral amputation. Scand J Plast Reconstr Surg Hand Surg. 2006;40:315–7.CrossRefPubMed Werner CM, Exner GU, Dumont CE. Free vascularized osteocutaneous filet flap for covering, that permitted sensitive terminal weight-bearing by a thigh stump after transfemoral amputation. Scand J Plast Reconstr Surg Hand Surg. 2006;40:315–7.CrossRefPubMed
34.
go back to reference Henrichs MP, Singh G, Gosheger G, Nottrott M, Streitbuerger A, Hardes J. Stump lengthening procedure with modular endoprostheses—the better alternative to disarticulations of the hip joint? J Arthroplasty. 2015;30:681–6.CrossRefPubMed Henrichs MP, Singh G, Gosheger G, Nottrott M, Streitbuerger A, Hardes J. Stump lengthening procedure with modular endoprostheses—the better alternative to disarticulations of the hip joint? J Arthroplasty. 2015;30:681–6.CrossRefPubMed
35.
go back to reference Paulsen JF, Warburg FE, Christensen KS, Holmgaard R. A free musculocutaneous flap and an intramedullary nail made the use of a prosthesis possible in a high traumatic femoral amputation. Ugeskr Laeger. 2016;24:178. Paulsen JF, Warburg FE, Christensen KS, Holmgaard R. A free musculocutaneous flap and an intramedullary nail made the use of a prosthesis possible in a high traumatic femoral amputation. Ugeskr Laeger. 2016;24:178.
Metadata
Title
Novel intramedullary device for lengthening transfemoral residual limbs
Authors
Todd A. Kuiken
Bennet A. Butler
Tom Sharkey
Andre D. Ivy
Daniel Li
Terrance D. Peabody
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2017
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-017-0553-8

Other articles of this Issue 1/2017

Journal of Orthopaedic Surgery and Research 1/2017 Go to the issue