Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2016

Open Access 01-12-2016 | Research article

Scintigraphic evaluation of the osteoblastic activity of rabbit tibial defects after HYAFF11 membrane application

Authors: Musa Uğur Mermerkaya, Mahmut Nedim Doral, Fatih Karaaslan, Gazi Huri, Seyhan Karacavuş, Burak Kaymaz, Erkan Alkan

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2016

Login to get access

Abstract

Background

An unfavorable condition for bone healing is the presence of bone defects. Under such conditions, a material can play a role to cover fractured or defective bone. Technological advances now allow for the use of such material. Hyalonect® (Fidia Advanced Biopolymers SLR, Italy), a novel membrane comprising knitted fibers of esterified hyaluronan (HYAFF11) can be used to cover fractured or grafted bone and can also serve as a scaffold to keep osteoprogenitor cells in place. The aim of this study was to compare osteoblastic activity by the use of scintigraphic methods in defective rabbit tibias during early-phase bone healing with or without a hyaluronan-based mesh.

Methods

Two groups (A and B) of New Zealand albino rabbits were used; each group included 10 animals. Operations on all rabbits were performed under general anesthesia. We also resected 10-mm bone segments from each animal’s tibial diaphysis. After resection, tibias with defects were fixed using Kirschner wires. In group A, no hyaluronan-based mesh was used. In group B, tibial segmental defects were enclosed with a hyaluronan-based mesh. The rabbits were followed up for 4 weeks postoperatively, after which bone scintigraphic studies were performed on each animal to detect and compare osteoblastic activity.

Results

The mean count in the fracture side of the hyaluronan-based mesh group was significantly higher compared to that of the group A (p = 0.019). However, there was no significant difference between group B and control rabbits with respect to the mean count on the intact bone side (p = 0.437). The bone defect (fracture)/intact bone mean count ratio was significantly higher in group B compared to group A (p = 0.008).

Conclusions

A hyaluronan-based mesh plays a role in promoting osteoblastic activity. Hyalonect® is suitable for restoring tissue continuity whenever the periosteal membrane is structurally impaired or inadequate. Our results demonstrated that, during early-phase bone healing, osteoblastic activity was increased in bone defect sites when a hyaluronan-based mesh was also used. The most important aspect of this study concerns its scintigraphy-based design. This study is the first to use a scintigraphic method to demonstrate the effectiveness of hyaluronic acid-based material for bone healing.
Literature
1.
go back to reference Malizos KN, Papatheodorou LK. The healing potential of the periosteum molecular aspects. Injury. 2005;36:13–9.CrossRef Malizos KN, Papatheodorou LK. The healing potential of the periosteum molecular aspects. Injury. 2005;36:13–9.CrossRef
2.
go back to reference Boos AM, Arkudas A, Kneser U, Horch RE, Beier JP. Bone tissue engineering for bone defect therapy. Hand Chir Mikrochir Plast Chir. 2010;42(6):360–8.CrossRef Boos AM, Arkudas A, Kneser U, Horch RE, Beier JP. Bone tissue engineering for bone defect therapy. Hand Chir Mikrochir Plast Chir. 2010;42(6):360–8.CrossRef
3.
go back to reference Faldini C, Traina F, Perna F, Borghi R, Nanni M, Chehrassan M. Surgical treatment of aseptic forearm nonunion with plate and opposite bone graft strut. Autograft or allograft? Int Orthop. 2015;39(7):1343–9.CrossRefPubMed Faldini C, Traina F, Perna F, Borghi R, Nanni M, Chehrassan M. Surgical treatment of aseptic forearm nonunion with plate and opposite bone graft strut. Autograft or allograft? Int Orthop. 2015;39(7):1343–9.CrossRefPubMed
4.
go back to reference Bertolai R, Catelani C, Aversa A, Rossi A, Giannini D, Bani D. Bone graft and mesenchimal stem cells: clinical observations and histological analysis. Clin Cases Miner Bone Metab. 2015;12(2):183–7.PubMedPubMedCentral Bertolai R, Catelani C, Aversa A, Rossi A, Giannini D, Bani D. Bone graft and mesenchimal stem cells: clinical observations and histological analysis. Clin Cases Miner Bone Metab. 2015;12(2):183–7.PubMedPubMedCentral
5.
go back to reference Rhodes NP, Hunt JA, Longinotti C, Pavesio AJ. In vivo characterization of Hyalonect, a novel biodegradable surgical mesh. Surg Res. 2011;168(1):31–8.CrossRef Rhodes NP, Hunt JA, Longinotti C, Pavesio AJ. In vivo characterization of Hyalonect, a novel biodegradable surgical mesh. Surg Res. 2011;168(1):31–8.CrossRef
6.
go back to reference Tekin AC, Esenyel CZ, Cakar M, Esenyel M, Ozcan Y, Saygili MS. Hyalonect in the treatment of pseudarthrosis. Acta Orthop Traumatol Turc. 2013;47(6):379–86.CrossRefPubMed Tekin AC, Esenyel CZ, Cakar M, Esenyel M, Ozcan Y, Saygili MS. Hyalonect in the treatment of pseudarthrosis. Acta Orthop Traumatol Turc. 2013;47(6):379–86.CrossRefPubMed
7.
go back to reference Volpi N, Schiller J, Stern R, Soltés L. Role, metabolism, chemical modifications and applications of hyaluronan. Curr Med Chem. 2009;16(14):1718–45.CrossRefPubMed Volpi N, Schiller J, Stern R, Soltés L. Role, metabolism, chemical modifications and applications of hyaluronan. Curr Med Chem. 2009;16(14):1718–45.CrossRefPubMed
8.
9.
go back to reference Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 2010;242(1):27–33.CrossRef Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 2010;242(1):27–33.CrossRef
10.
go back to reference Burd DA, Greco RM, Regauer S, Longaker MT, Siebert JW, Garg HG. Hyaluronan and wound healing: a new perspective. Br J Plast Surg. 1991;44(8):579–84.CrossRefPubMed Burd DA, Greco RM, Regauer S, Longaker MT, Siebert JW, Garg HG. Hyaluronan and wound healing: a new perspective. Br J Plast Surg. 1991;44(8):579–84.CrossRefPubMed
11.
go back to reference Wight TN, Kinsella MG, Qwarnström EE. The role of proteoglycans in cell adhesion, migration and proliferation. Curr Opin Cell Biol. 1992;4(5):793–801.CrossRefPubMed Wight TN, Kinsella MG, Qwarnström EE. The role of proteoglycans in cell adhesion, migration and proliferation. Curr Opin Cell Biol. 1992;4(5):793–801.CrossRefPubMed
12.
go back to reference Atilgan HI, Demirel K, Kankaya Y, Oktay M, Sahiner C, Korkmaz M, et al. Scintigraphic and histopathologic evaluation of combined bone grafts. J Craniofac Surg. 2013;24(6):1902–7.CrossRefPubMed Atilgan HI, Demirel K, Kankaya Y, Oktay M, Sahiner C, Korkmaz M, et al. Scintigraphic and histopathologic evaluation of combined bone grafts. J Craniofac Surg. 2013;24(6):1902–7.CrossRefPubMed
13.
go back to reference Gürbüzer B, Pikdöken L, Tunali M, Urhan M, Küçükodaci Z, Ercan F. Scintigraphic evaluation of osteoblastic activity in extraction sockets treated with platelet-rich fibrin. J Oral Maxillofac Surg. 2010;68(5):980–9.CrossRefPubMed Gürbüzer B, Pikdöken L, Tunali M, Urhan M, Küçükodaci Z, Ercan F. Scintigraphic evaluation of osteoblastic activity in extraction sockets treated with platelet-rich fibrin. J Oral Maxillofac Surg. 2010;68(5):980–9.CrossRefPubMed
14.
go back to reference Aslan M, Simsek G, Dayi E. The effect of hyaluronic acid-supplemented bone graft in bone healing: experimental study in rabbits. J BiomaterAppl. 2006;20(3):209–20. Aslan M, Simsek G, Dayi E. The effect of hyaluronic acid-supplemented bone graft in bone healing: experimental study in rabbits. J BiomaterAppl. 2006;20(3):209–20.
15.
go back to reference Ayanoğlu S, Esenyel CZ, Adanır O, Dedeoğlu S, İmren Y, Esen T. Effects of hyaluronic acid (Hyalonect) on callus formation in rabbits. Acta Orthop Traumatol Turc. 2015;49(3):319–25.PubMed Ayanoğlu S, Esenyel CZ, Adanır O, Dedeoğlu S, İmren Y, Esen T. Effects of hyaluronic acid (Hyalonect) on callus formation in rabbits. Acta Orthop Traumatol Turc. 2015;49(3):319–25.PubMed
16.
go back to reference Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;25;23(12):41–56.CrossRef Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;25;23(12):41–56.CrossRef
17.
go back to reference Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater. 2014;10(4):1558–70.CrossRefPubMedPubMedCentral Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater. 2014;10(4):1558–70.CrossRefPubMedPubMedCentral
18.
go back to reference Lataillade JJ, Albanese P, Uzan G. Implication of hyaluronic acid in normal andpathologicalangiogenesis. Application for cellular engineering. Ann Dermatol Venereol. 2010;137:15–22.CrossRef Lataillade JJ, Albanese P, Uzan G. Implication of hyaluronic acid in normal andpathologicalangiogenesis. Application for cellular engineering. Ann Dermatol Venereol. 2010;137:15–22.CrossRef
19.
go back to reference Olczyk P, Komosińska-Vassev K, Winsz-Szczotka K, Kuźnik-Trocha K, Olczyk K. Hyaluronan: structure, metabolism, functions, and role in wound healing. Postepy Hig Med Dosw. 2008;62:651–9. Olczyk P, Komosińska-Vassev K, Winsz-Szczotka K, Kuźnik-Trocha K, Olczyk K. Hyaluronan: structure, metabolism, functions, and role in wound healing. Postepy Hig Med Dosw. 2008;62:651–9.
20.
go back to reference Reitinger S, Lepperdinger G. Hyaluronan, a ready choice to fuel regeneration: a mini-review. Gerontology. 2013;59:71–6.CrossRefPubMed Reitinger S, Lepperdinger G. Hyaluronan, a ready choice to fuel regeneration: a mini-review. Gerontology. 2013;59:71–6.CrossRefPubMed
21.
go back to reference Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone. 1995;16:9–15.CrossRefPubMed Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone. 1995;16:9–15.CrossRefPubMed
22.
go back to reference Sharma S, Patil DJ, Soni VP, Sarkate LB, Khandekar GS, Bellare JR. Bone healing performance of electrophoretically deposited apatite-wollastonite/chitosan coating on titanium implants in rabbit tibiae. J Tissue Eng Regen Med. 2009;3:501–11.CrossRefPubMed Sharma S, Patil DJ, Soni VP, Sarkate LB, Khandekar GS, Bellare JR. Bone healing performance of electrophoretically deposited apatite-wollastonite/chitosan coating on titanium implants in rabbit tibiae. J Tissue Eng Regen Med. 2009;3:501–11.CrossRefPubMed
Metadata
Title
Scintigraphic evaluation of the osteoblastic activity of rabbit tibial defects after HYAFF11 membrane application
Authors
Musa Uğur Mermerkaya
Mahmut Nedim Doral
Fatih Karaaslan
Gazi Huri
Seyhan Karacavuş
Burak Kaymaz
Erkan Alkan
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2016
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-016-0393-y

Other articles of this Issue 1/2016

Journal of Orthopaedic Surgery and Research 1/2016 Go to the issue