Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2015

Open Access 01-12-2015 | Research article

Shoe heel abrasion and its possible biomechanical cause: a transversal study with infantry recruits

Authors: Daniel Baumfeld, Fernando C. Raduan, Benjamim Macedo, Thiago Alexandre Alves Silva, Tiago Baumfeld, Danilo Fabrino Favato, Marco Antonio Percope de Andrade, Caio Nery

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2015

Login to get access

Abstract

Background

Excessive shoe heel abrasion is of concern to patients and shoe manufacturers, but little scientific information is available about this feature and its possible causes. The purpose of this study was to relate this phenomenon with biomechanical factors that could predispose to shoe heel abrasion.

Methods

Ninety-seven recruits (median age 25) were enrolled in this study. Shoe abrasion was assessed manually with a metric plastic tape on the posterior part of the heel that comes in contact with the ground. The number of sprains, foot alignment, and calf muscle shortening (Silfverskiold test) was also assessed in order to relate it with shoe heel abrasion. After using our exclusion criteria, 86 recruits and 172 were considered for this study.

Results

The most common abrasion site was the lateral portion of the heel surface (50 %). Forty-four percent of the participants had neutral hind-foot alignment and 39 % had valgus alignment. Twenty-six (30 %) patients have had previous ankle or foot sprains. Neutral foot was related with less calf muscle shortening. On the other hand, valgus hind-foot alignment was more associated with Achilles shortening (p < 0.05). Patients with neutral alignment were associated with more uniform shoe heel abrasion and varus feet were associated with more central and lateral abrasion (p < 0.05). The pattern of shoe heel abrasion was not statistically related with calf muscle shortening nor with number of sprains.

Conclusion

This study was able to correlate shoe heel abrasion with biomechanical causes (neutral alignment–uniform abrasion/varus alignment–central and lateral abrasion). More effort has to be done to continue evaluating outsole abrasion with its possible biomechanical cause in order to predict and treat possible associated injuries.
Literature
1.
2.
go back to reference Levens A, Inman V, Blosser J. Transverse rotation of the segments of the lower extremity in locomotion. J Bone Joint Surg Am. 1948;30:859. Levens A, Inman V, Blosser J. Transverse rotation of the segments of the lower extremity in locomotion. J Bone Joint Surg Am. 1948;30:859.
3.
go back to reference Katoh Y, Chao EY, Laughman RK, Schneider E, Morrey BF. Biomechanical analysis of foot function during gait and clinical applications. Clin Orthop Relat Res. 1983;177:23–33.PubMed Katoh Y, Chao EY, Laughman RK, Schneider E, Morrey BF. Biomechanical analysis of foot function during gait and clinical applications. Clin Orthop Relat Res. 1983;177:23–33.PubMed
5.
go back to reference Pandy MG, Berme N. Quantitative assessment of gait determinants during single stance via a three-dimensional model—Part 2. Pathological gait. J Biomech. 1989;22(6–7):725–33.CrossRefPubMed Pandy MG, Berme N. Quantitative assessment of gait determinants during single stance via a three-dimensional model—Part 2. Pathological gait. J Biomech. 1989;22(6–7):725–33.CrossRefPubMed
6.
go back to reference Finestone A, Shlamkovitch N, Eldad A, Karp A, Milgrom C. A prospective study of the effect of the appropriateness of foot-shoe fit and training shoe type on the incidence of overuse injuries among infantry recruits. Mil Med. 1992;157(9):489–90.PubMed Finestone A, Shlamkovitch N, Eldad A, Karp A, Milgrom C. A prospective study of the effect of the appropriateness of foot-shoe fit and training shoe type on the incidence of overuse injuries among infantry recruits. Mil Med. 1992;157(9):489–90.PubMed
7.
go back to reference Böhm H, Hösl M. 2010 Effect of boot shaft stiffness on stability, joint energy and muscular cocontraction during walking on uneven surface. J Biomech. 2010;43(13):2467–72.CrossRefPubMed Böhm H, Hösl M. 2010 Effect of boot shaft stiffness on stability, joint energy and muscular cocontraction during walking on uneven surface. J Biomech. 2010;43(13):2467–72.CrossRefPubMed
8.
go back to reference Sole CC, Milosavljevic S, Sole G, Sullivan SJ. Exploring a model of asymmetric shoe wear on lower limb performance. Phys Ther Sport. 2010;11(2):60–5.CrossRefPubMed Sole CC, Milosavljevic S, Sole G, Sullivan SJ. Exploring a model of asymmetric shoe wear on lower limb performance. Phys Ther Sport. 2010;11(2):60–5.CrossRefPubMed
9.
go back to reference Sekizawa K, Sandrey MA, Ingersoll CD, Cordova ML. Effects of shoe sole thickness on joint position sense. Gait Posture. 2001;13(3):221–8.CrossRefPubMed Sekizawa K, Sandrey MA, Ingersoll CD, Cordova ML. Effects of shoe sole thickness on joint position sense. Gait Posture. 2001;13(3):221–8.CrossRefPubMed
10.
go back to reference Barouk P, Barouk LS. Clinical diagnosis of gastrocnemius tightness. Foot Ankle Clin. 2014;19(4):659–67.CrossRefPubMed Barouk P, Barouk LS. Clinical diagnosis of gastrocnemius tightness. Foot Ankle Clin. 2014;19(4):659–67.CrossRefPubMed
11.
go back to reference Grundy M, Tosh PA, McLeish RD, Smidt L. An investigation of the centres of pressure under the foot while walking. J Bone Joint Surg Br. 1975;57(1):98–103.PubMed Grundy M, Tosh PA, McLeish RD, Smidt L. An investigation of the centres of pressure under the foot while walking. J Bone Joint Surg Br. 1975;57(1):98–103.PubMed
12.
go back to reference Van Gheluwe B, Dananberg HJ. Changes in plantar foot pressure with in-shoe varus or valgus wedging. J Am Podiatr Med Assoc. 2004;94(1):1–11.CrossRefPubMed Van Gheluwe B, Dananberg HJ. Changes in plantar foot pressure with in-shoe varus or valgus wedging. J Am Podiatr Med Assoc. 2004;94(1):1–11.CrossRefPubMed
13.
go back to reference Milgrom C, Finestone A, Zin D, Mandel D, Novack V. Cold weather training: a risk factor for Achilles paratendinitis among recruits. Foot Ankle Int. 2003;24(5):398–401.PubMed Milgrom C, Finestone A, Zin D, Mandel D, Novack V. Cold weather training: a risk factor for Achilles paratendinitis among recruits. Foot Ankle Int. 2003;24(5):398–401.PubMed
14.
go back to reference Mei-Dan O, Kahn G, Zeev A, Rubin A, Constantini N, Even A, et al. The medial longitudinal arch as a possible risk factor for ankle sprains: a prospective study in 83 female infantry recruits. Foot Ankle Int. 2005;26(2):180–3.PubMed Mei-Dan O, Kahn G, Zeev A, Rubin A, Constantini N, Even A, et al. The medial longitudinal arch as a possible risk factor for ankle sprains: a prospective study in 83 female infantry recruits. Foot Ankle Int. 2005;26(2):180–3.PubMed
15.
go back to reference Milgrom C, Shlamkovitch N, Finestone A, Eldad A, Laor A, Danon YL, et al. Risk factors for lateral ankle sprain: a prospective study among military recruits. Foot Ankle. 1991;12(1):26–30.CrossRefPubMed Milgrom C, Shlamkovitch N, Finestone A, Eldad A, Laor A, Danon YL, et al. Risk factors for lateral ankle sprain: a prospective study among military recruits. Foot Ankle. 1991;12(1):26–30.CrossRefPubMed
Metadata
Title
Shoe heel abrasion and its possible biomechanical cause: a transversal study with infantry recruits
Authors
Daniel Baumfeld
Fernando C. Raduan
Benjamim Macedo
Thiago Alexandre Alves Silva
Tiago Baumfeld
Danilo Fabrino Favato
Marco Antonio Percope de Andrade
Caio Nery
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2015
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-015-0319-0

Other articles of this Issue 1/2015

Journal of Orthopaedic Surgery and Research 1/2015 Go to the issue