Skip to main content
Top
Published in: World Journal of Emergency Surgery 1/2016

Open Access 01-12-2016 | Research article

Association between increased blood interleukin-6 levels on emergency department arrival and prolonged length of intensive care unit stay for blunt trauma

Authors: Masashi Taniguchi, Taka-aki Nakada, Koichiro Shinozaki, Yasuaki Mizushima, Tetsuya Matsuoka

Published in: World Journal of Emergency Surgery | Issue 1/2016

Login to get access

Abstract

Background

Systemic immune response to injury plays a key role in the pathophysiological mechanism of blunt trauma. We tested the hypothesis that increased blood interleukin-6 (IL-6) levels of blunt trauma patients on emergency department (ED) arrival are associated with poor clinical outcomes, and investigated the utility of rapid measurement of the blood IL-6 level.

Methods

We enrolled 208 consecutive trauma patients who were transferred from the scene of an accident to a level I trauma centre in Japan and admitted to the intensive care unit (ICU). Blood IL-6 levels on ED arrival were measured by using a rapid measurement assay. The primary outcome variable was prolonged ICU stay (length of ICU stay > 7 days). The secondary outcomes were 28-day mortality, probability of survival and Abbreviated Injury Scale (AIS) scores.

Results

Patients with prolonged ICU stay had significantly higher blood IL-6 levels on ED arrival than the patients without prolonged ICU stay (P < 0.0001). The receiver-operating characteristic curves produced an area under the curve of 0.75 (95 % confidence interval [CI], 0.66–0.84; P < 0.0001) for prolonged ICU stay. The patients who had increased blood IL-6 levels on ED arrival had increased 28-day mortality (P = 0.021) and decreased probability of survival (P < 0.0001). The AIS scores for the thorax, abdomen, extremity, and external body regions independently correlated with blood IL-6 levels (unstandardized coefficients [95 % CI] for the thorax: 23.8 [12.6–35.1]; P < 0.0001; abdomen: 42.7 [23.8–61.7]; P < 0.0001; extremity: 19.0 [5.5–32.4]; P = 0.0060; external body regions: 62.9 [13.2–112.7]; P = 0.030); the standardized coefficients for the thorax (0.27) and abdomen (0.28) were larger than those for the extremity (0.18) and external body regions (0.15).

Conclusions

Increased blood IL-6 level on ED arrival was significantly associated with prolonged length of ICU stay. Blood IL-6 level on ED arrival independently correlated with the AIS scores for the abdomen and thorax, and, to a lesser extent, those for the extremity and external body regions. The rapid measurement of blood IL-6 level on ED arrival can be utilized as a fast screening tool to improve assessment of injury severity and prediction of clinical outcomes in the initial phase of trauma care.
Literature
1.
go back to reference Lord JM, Midwinter MJ, Chen YF, Belli A, Brohi K, Kovacs EJ, et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet. 2014;384:1455–65.CrossRefPubMed Lord JM, Midwinter MJ, Chen YF, Belli A, Brohi K, Kovacs EJ, et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet. 2014;384:1455–65.CrossRefPubMed
2.
go back to reference Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.PubMedCentralCrossRefPubMed Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.PubMedCentralCrossRefPubMed
3.
go back to reference Laupland KB, Kirkpatrick AW, Kortbeek JB, Zuege DJ. Long-term mortality outcome associated with prolonged admission to the ICU. Chest. 2006;129:954–9.CrossRefPubMed Laupland KB, Kirkpatrick AW, Kortbeek JB, Zuege DJ. Long-term mortality outcome associated with prolonged admission to the ICU. Chest. 2006;129:954–9.CrossRefPubMed
4.
go back to reference Ulvik A, Kvale R, Wentzel-Larsen T, Flaatten H. Multiple organ failure after trauma affects even long-term survival and functional status. Crit Care. 2007;11:R95.PubMedCentralCrossRefPubMed Ulvik A, Kvale R, Wentzel-Larsen T, Flaatten H. Multiple organ failure after trauma affects even long-term survival and functional status. Crit Care. 2007;11:R95.PubMedCentralCrossRefPubMed
5.
go back to reference Durham RM, Moran JJ, Mazuski JE, Shapiro MJ, Baue AE, Flint LM. Multiple organ failure in trauma patients. J Trauma. 2003;55:608–16.CrossRefPubMed Durham RM, Moran JJ, Mazuski JE, Shapiro MJ, Baue AE, Flint LM. Multiple organ failure in trauma patients. J Trauma. 2003;55:608–16.CrossRefPubMed
6.
go back to reference Dewar DC, Tarrant SM, King KL, Balogh ZJ. Changes in the epidemiology and prediction of multiple-organ failure after injury. J Trauma Acute Care Surg. 2013;74:774–9.CrossRefPubMed Dewar DC, Tarrant SM, King KL, Balogh ZJ. Changes in the epidemiology and prediction of multiple-organ failure after injury. J Trauma Acute Care Surg. 2013;74:774–9.CrossRefPubMed
7.
go back to reference Ciesla DJ, Moore EE, Johnson JL, Sauaia A, Cothren CC, Moore JB, et al. Multiple organ dysfunction during resuscitation is not postinjury multiple organ failure. Arch Surg. 2004;139:590–4. discussion 4–5.CrossRefPubMed Ciesla DJ, Moore EE, Johnson JL, Sauaia A, Cothren CC, Moore JB, et al. Multiple organ dysfunction during resuscitation is not postinjury multiple organ failure. Arch Surg. 2004;139:590–4. discussion 4–5.CrossRefPubMed
8.
go back to reference Lee CC, Marill KA, Carter WA, Crupi RS. A current concept of trauma-induced multiorgan failure. Ann Emerg Med. 2001;38:170–6.CrossRefPubMed Lee CC, Marill KA, Carter WA, Crupi RS. A current concept of trauma-induced multiorgan failure. Ann Emerg Med. 2001;38:170–6.CrossRefPubMed
9.
go back to reference Gebhard F, Pfetsch H, Steinbach G, Strecker W, Kinzl L, Bruckner UB. Is interleukin 6 an early marker of injury severity following major trauma in humans? Arch Surg. 2000;135:291–5.CrossRefPubMed Gebhard F, Pfetsch H, Steinbach G, Strecker W, Kinzl L, Bruckner UB. Is interleukin 6 an early marker of injury severity following major trauma in humans? Arch Surg. 2000;135:291–5.CrossRefPubMed
10.
go back to reference Jastrow 3rd KM, Gonzalez EA, McGuire MF, Suliburk JW, Kozar RA, Iyengar S, et al. Early cytokine production risk stratifies trauma patients for multiple organ failure. J Am Coll Surg. 2009;209:320–31.CrossRefPubMed Jastrow 3rd KM, Gonzalez EA, McGuire MF, Suliburk JW, Kozar RA, Iyengar S, et al. Early cytokine production risk stratifies trauma patients for multiple organ failure. J Am Coll Surg. 2009;209:320–31.CrossRefPubMed
11.
go back to reference Cuschieri J, Bulger E, Schaeffer V, Sakr S, Nathens AB, Hennessy L, et al. Early elevation in random plasma IL-6 after severe injury is associated with development of organ failure. Shock (Augusta, Ga). 2010;34:346–51.CrossRef Cuschieri J, Bulger E, Schaeffer V, Sakr S, Nathens AB, Hennessy L, et al. Early elevation in random plasma IL-6 after severe injury is associated with development of organ failure. Shock (Augusta, Ga). 2010;34:346–51.CrossRef
12.
go back to reference Andruszkow H, Fischer J, Sasse M, Brunnemer U, Andruszkow JH, Gansslen A, et al. Interleukin-6 as inflammatory marker referring to multiple organ dysfunction syndrome in severely injured children. Scand J Trauma Resusc Emerg Med. 2014;22:16.PubMedCentralCrossRefPubMed Andruszkow H, Fischer J, Sasse M, Brunnemer U, Andruszkow JH, Gansslen A, et al. Interleukin-6 as inflammatory marker referring to multiple organ dysfunction syndrome in severely injured children. Scand J Trauma Resusc Emerg Med. 2014;22:16.PubMedCentralCrossRefPubMed
13.
go back to reference Frink M, van Griensven M, Kobbe P, Brin T, Zeckey C, Vaske B, et al. IL-6 predicts organ dysfunction and mortality in patients with multiple injuries. Scand J Trauma Resusc Emerg Med. 2009;17:49.PubMedCentralCrossRefPubMed Frink M, van Griensven M, Kobbe P, Brin T, Zeckey C, Vaske B, et al. IL-6 predicts organ dysfunction and mortality in patients with multiple injuries. Scand J Trauma Resusc Emerg Med. 2009;17:49.PubMedCentralCrossRefPubMed
14.
go back to reference Stensballe J, Christiansen M, Tonnesen E, Espersen K, Lippert FK, Rasmussen LS. The early IL-6 and IL-10 response in trauma is correlated with injury severity and mortality. Acta Anaesthesiol Scand. 2009;53:515–21.CrossRefPubMed Stensballe J, Christiansen M, Tonnesen E, Espersen K, Lippert FK, Rasmussen LS. The early IL-6 and IL-10 response in trauma is correlated with injury severity and mortality. Acta Anaesthesiol Scand. 2009;53:515–21.CrossRefPubMed
15.
go back to reference Pfafflin A, Schleicher E. Inflammation markers in point-of-care testing (POCT). Anal Bioanal Chem. 2009;393:1473–80.CrossRefPubMed Pfafflin A, Schleicher E. Inflammation markers in point-of-care testing (POCT). Anal Bioanal Chem. 2009;393:1473–80.CrossRefPubMed
16.
go back to reference Boyd CR, Tolson MA, Copes WS. Evaluating trauma care: the TRISS method. Trauma Score and the Injury Severity Score. J Trauma. 1987;27:370–8.CrossRefPubMed Boyd CR, Tolson MA, Copes WS. Evaluating trauma care: the TRISS method. Trauma Score and the Injury Severity Score. J Trauma. 1987;27:370–8.CrossRefPubMed
17.
go back to reference Lipsett PA, Swoboda SM, Dickerson J, Ylitalo M, Gordon T, Breslow M, et al. Survival and functional outcome after prolonged intensive care unit stay. Ann Surg. 2000;231:262–8.PubMedCentralCrossRefPubMed Lipsett PA, Swoboda SM, Dickerson J, Ylitalo M, Gordon T, Breslow M, et al. Survival and functional outcome after prolonged intensive care unit stay. Ann Surg. 2000;231:262–8.PubMedCentralCrossRefPubMed
18.
go back to reference Lin FC, Tsai SC, Li RY, Chen HC, Tung YW, Chou MC. Factors associated with intensive care unit admission in patients with traumatic thoracic injury. J Int Med Res. 2013;41:1310–7.CrossRefPubMed Lin FC, Tsai SC, Li RY, Chen HC, Tung YW, Chou MC. Factors associated with intensive care unit admission in patients with traumatic thoracic injury. J Int Med Res. 2013;41:1310–7.CrossRefPubMed
19.
go back to reference Baker SP, O'Neill B, Haddon Jr W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187–96.CrossRefPubMed Baker SP, O'Neill B, Haddon Jr W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187–96.CrossRefPubMed
20.
go back to reference Champion HR, Sacco WJ, Carnazzo AJ, Copes W, Fouty WJ. Trauma score. Crit Care Med. 1981;9:672–6.CrossRefPubMed Champion HR, Sacco WJ, Carnazzo AJ, Copes W, Fouty WJ. Trauma score. Crit Care Med. 1981;9:672–6.CrossRefPubMed
21.
go back to reference Newgard CD, Schmicker RH, Hedges JR, Trickett JP, Davis DP, Bulger EM, et al. Emergency medical services intervals and survival in trauma: assessment of the "golden hour" in a North American prospective cohort. Ann Emerg Med. 2010;55:235–46. e4.PubMedCentralCrossRefPubMed Newgard CD, Schmicker RH, Hedges JR, Trickett JP, Davis DP, Bulger EM, et al. Emergency medical services intervals and survival in trauma: assessment of the "golden hour" in a North American prospective cohort. Ann Emerg Med. 2010;55:235–46. e4.PubMedCentralCrossRefPubMed
22.
go back to reference Hayakata T, Shiozaki T, Tasaki O, Ikegawa H, Inoue Y, Toshiyuki F, et al. Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock (Augusta, Ga). 2004;22:102–7.CrossRef Hayakata T, Shiozaki T, Tasaki O, Ikegawa H, Inoue Y, Toshiyuki F, et al. Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock (Augusta, Ga). 2004;22:102–7.CrossRef
23.
go back to reference Maier B, Schwerdtfeger K, Mautes A, Holanda M, Muller M, Steudel WI, et al. Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury. Shock (Augusta, Ga). 2001;15:421–6.CrossRef Maier B, Schwerdtfeger K, Mautes A, Holanda M, Muller M, Steudel WI, et al. Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury. Shock (Augusta, Ga). 2001;15:421–6.CrossRef
24.
go back to reference Hergenroeder GW, Moore AN, McCoy Jr JP, Samsel L, Ward 3rd NH, Clifton GL, et al. Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury. J Neuroinflammation. 2010;7:19.PubMedCentralCrossRefPubMed Hergenroeder GW, Moore AN, McCoy Jr JP, Samsel L, Ward 3rd NH, Clifton GL, et al. Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury. J Neuroinflammation. 2010;7:19.PubMedCentralCrossRefPubMed
25.
go back to reference Strecker W, Gebhard F, Perl M, Rager J, Buttenschon K, Kinzl L, et al. Biochemical characterization of individual injury pattern and injury severity. Injury. 2003;34:879–87.CrossRefPubMed Strecker W, Gebhard F, Perl M, Rager J, Buttenschon K, Kinzl L, et al. Biochemical characterization of individual injury pattern and injury severity. Injury. 2003;34:879–87.CrossRefPubMed
Metadata
Title
Association between increased blood interleukin-6 levels on emergency department arrival and prolonged length of intensive care unit stay for blunt trauma
Authors
Masashi Taniguchi
Taka-aki Nakada
Koichiro Shinozaki
Yasuaki Mizushima
Tetsuya Matsuoka
Publication date
01-12-2016
Publisher
BioMed Central
Published in
World Journal of Emergency Surgery / Issue 1/2016
Electronic ISSN: 1749-7922
DOI
https://doi.org/10.1186/s13017-016-0063-8

Other articles of this Issue 1/2016

World Journal of Emergency Surgery 1/2016 Go to the issue