Skip to main content
Top
Published in: Radiation Oncology 1/2020

Open Access 01-12-2020 | Prostate Cancer | Research

Long-term outcomes of moderately hypofractionated radiotherapy (67.5 Gy in 25 fractions) for prostate cancer confined to the pelvis: a single center retrospective analysis

Authors: Lihong Yao, Jianzhong Shou, Shulian Wang, Yongwen Song, Hui Fang, Ningning Lu, Yuan Tang, Bo Chen, Shunan Qi, Yong Yang, Hao Jing, Jing Jin, Zihao Yu, Yexiong Li, Yueping Liu

Published in: Radiation Oncology | Issue 1/2020

Login to get access

Abstract

Background

There is an increasing application of moderately hypofractionated radiotherapy for prostate cancer. We presented our outcomes and treatment-related toxicities with moderately hypofractionated (67.5 Gy in 25 fractions) radiotherapy for a group of advanced prostate cancer patients from China.

Methods

From November 2006 to December 2018, 246 consecutive patients with prostate cancer confined to the pelvis were treated with moderately hypofractionated radiotherapy (67.5 Gy in 25 fractions). 97.6% of the patients received a different duration of androgen deprivation therapy. Failure-free survival (FFS), prostate cancer-specific survival (PCSS), overall survival (OS), and cumulative grade ≥ 2 late toxicity were evaluated using the Kaplan–Meier actuarial method. Prognostic factors for FFS, PCSS, and OS were analyzed.

Results

The median follow-up time was 74 months (range: 6–150 months). For all patients, the 5- and 10-year FFS rates were 80.0% (95% CI: 74.7–85.7%) and 63.5% (95% CI 55.4–72.8%). The failure rates for the intermediate, high-risk, locally advanced, and N1 groups were 6.1%, 13.0%, 18.4%, and 35.7%, respectively (P = 0.003). Overall, 5- and 10-year PCSS rates were 95.7% (95% CI 93.0–98.5%) and 88.2% (95% CI 82.8–93.8%). Prostate cancer-specific mortality rates for the high-risk, locally advanced, and N1 groups were 4.0%, 8.2%, and 23.8%, respectively (P < 0.001). Overall, 5- and 10-year actuarial OS rates were 92.4% (95% CI 88.8–96.1%) and 72.7% (95% CI 64.8–81.5%). High level prostate-specific antigen and positive N stage were significantly associated with worse FFS (P < 0.05). Advanced T stage and positive N stage emerged as worse predictors of PCSS (P < 0.05). Advanced age, T stage, and positive N stage were the only factors that were significantly associated with worse OS (P < 0.05). The 5-year cumulative incidence rate of grade ≥ 2 late GU and GI toxicity was 17.8% (95% CI 12.5–22.7%) and 23.4% (95% CI 17.7–28.7%), respectively.

Conclusions

Moderately hypofractionated radiotherapy (67.5 Gy in 25 fractions) for this predominantly high-risk, locally advanced, or N1 in Chinese patients demonstrates encouraging long-term outcomes and acceptable toxicity. This fractionation schedule deserves further evaluation in similar populations.
Literature
1.
go back to reference Liu X, Yu C, Bi Y, Zhang ZJ. Trends and age-period-cohort effect on incidence and mortality of prostate cancer from 1990 to 2017 in China. Public Health. 2019;172:70–80.CrossRef Liu X, Yu C, Bi Y, Zhang ZJ. Trends and age-period-cohort effect on incidence and mortality of prostate cancer from 1990 to 2017 in China. Public Health. 2019;172:70–80.CrossRef
2.
go back to reference Martin RM, Donovan JL, Turner EL, Metcalfe C, Young GJ, Walsh EI, et al. Effect of a Low-Intensity PSA-based screening intervention on prostate cancer mortality: the CAP randomized clinical trial. JAMA. 2018;319:883–95.CrossRef Martin RM, Donovan JL, Turner EL, Metcalfe C, Young GJ, Walsh EI, et al. Effect of a Low-Intensity PSA-based screening intervention on prostate cancer mortality: the CAP randomized clinical trial. JAMA. 2018;319:883–95.CrossRef
3.
go back to reference Tikkinen KAO, Dahm P, Lytvyn L, Heen AF, Vernooij RWM, Siemieniuk RAC, et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a clinical practice guideline. BMJ (Clin Res Ed). 2018;362:k3581–k3581.CrossRef Tikkinen KAO, Dahm P, Lytvyn L, Heen AF, Vernooij RWM, Siemieniuk RAC, et al. Prostate cancer screening with prostate-specific antigen (PSA) test: a clinical practice guideline. BMJ (Clin Res Ed). 2018;362:k3581–k3581.CrossRef
4.
go back to reference Sujenthiran A, Nossiter J, Charman SC, Parry M, Dasgupta P, van der Meulen J, et al. National population-based study comparing treatment-related toxicity in men who received intensity modulated versus 3-dimensional conformal radical radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2017;99:1253–60.CrossRef Sujenthiran A, Nossiter J, Charman SC, Parry M, Dasgupta P, van der Meulen J, et al. National population-based study comparing treatment-related toxicity in men who received intensity modulated versus 3-dimensional conformal radical radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2017;99:1253–60.CrossRef
5.
go back to reference Abu-Gheida I, Reddy CA, Kotecha R, Weller MA, Shah C, Kupelian PA, et al. Ten-year outcomes of moderately hypofractionated (70 Gy in 28 fractions) intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2019;104:325–33.CrossRef Abu-Gheida I, Reddy CA, Kotecha R, Weller MA, Shah C, Kupelian PA, et al. Ten-year outcomes of moderately hypofractionated (70 Gy in 28 fractions) intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2019;104:325–33.CrossRef
6.
go back to reference Grewal AS, Schonewolf C, Min EJ, Chao HH, Both S, Lam S, et al. Four-year outcomes from a prospective phase II clinical trial of moderately hypofractionated proton therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2019;105:713–22.CrossRef Grewal AS, Schonewolf C, Min EJ, Chao HH, Both S, Lam S, et al. Four-year outcomes from a prospective phase II clinical trial of moderately hypofractionated proton therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2019;105:713–22.CrossRef
7.
go back to reference Brenner DJ, Martinez AA, Edmundson GK, Mitchell C, Thames HD, Armour EP. Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys. 2002;52:6–13.CrossRef Brenner DJ, Martinez AA, Edmundson GK, Mitchell C, Thames HD, Armour EP. Direct evidence that prostate tumors show high sensitivity to fractionation (low alpha/beta ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys. 2002;52:6–13.CrossRef
8.
go back to reference Cabrera AR, Lee WR. Hypofractionation for clinically localized prostate cancer. Semin Radiat Oncol. 2013;23:191–7.CrossRef Cabrera AR, Lee WR. Hypofractionation for clinically localized prostate cancer. Semin Radiat Oncol. 2013;23:191–7.CrossRef
9.
go back to reference Alongi F, Fogliata A, Navarria P, Tozzi A, Mancosu P, Lobefalo F, et al. Moderate hypofractionation and simultaneous integrated boost with volumetric modulated arc therapy (RapidArc) for prostate cancer. Report of feasibility and acute toxicity. Strahlenther Onkol. 2012;188:990–6.CrossRef Alongi F, Fogliata A, Navarria P, Tozzi A, Mancosu P, Lobefalo F, et al. Moderate hypofractionation and simultaneous integrated boost with volumetric modulated arc therapy (RapidArc) for prostate cancer. Report of feasibility and acute toxicity. Strahlenther Onkol. 2012;188:990–6.CrossRef
10.
go back to reference Ferrera G, Mortellaro G, Mannino M, Caminiti G, Spera A, Figlia V, et al. Moderate hypofractionation and simultaneous integrated boost by helical tomotherapy in prostate cancer: monoinstitutional report of acute tolerability assessment with different toxicity scales. Radiol Med. 2015;120:1170–6.CrossRef Ferrera G, Mortellaro G, Mannino M, Caminiti G, Spera A, Figlia V, et al. Moderate hypofractionation and simultaneous integrated boost by helical tomotherapy in prostate cancer: monoinstitutional report of acute tolerability assessment with different toxicity scales. Radiol Med. 2015;120:1170–6.CrossRef
11.
go back to reference Mazzola R, Fersino S, Fiorentino A, Ricchetti F, Giaj Levra N, Di Paola G, et al. The impact of prostate gland dimension in genitourinary toxicity after definitive prostate cancer treatment with moderate hypofractionation and volumetric modulated arc radiation therapy. Clin Transl Oncol. 2016;18:317–21.CrossRef Mazzola R, Fersino S, Fiorentino A, Ricchetti F, Giaj Levra N, Di Paola G, et al. The impact of prostate gland dimension in genitourinary toxicity after definitive prostate cancer treatment with moderate hypofractionation and volumetric modulated arc radiation therapy. Clin Transl Oncol. 2016;18:317–21.CrossRef
12.
go back to reference Cuccia F, Mazzola R, Arcangeli S, Mortellaro G, Figlia V, Caminiti G, et al. Moderate hypofractionated helical tomotherapy for localized prostate cancer: preliminary report of an observational prospective study. Tumori. 2019;105:516–23.CrossRef Cuccia F, Mazzola R, Arcangeli S, Mortellaro G, Figlia V, Caminiti G, et al. Moderate hypofractionated helical tomotherapy for localized prostate cancer: preliminary report of an observational prospective study. Tumori. 2019;105:516–23.CrossRef
13.
go back to reference Cuccia F, Mortellaro G, Trapani G, Valenti V, Ognibene L, De Gregorio G, et al. Acute and late toxicity and preliminary outcomes report of moderately hypofractionated helical tomotherapy for localized prostate cancer: a mono-institutional analysis. Radiol Med. 2020;125:220–7.CrossRef Cuccia F, Mortellaro G, Trapani G, Valenti V, Ognibene L, De Gregorio G, et al. Acute and late toxicity and preliminary outcomes report of moderately hypofractionated helical tomotherapy for localized prostate cancer: a mono-institutional analysis. Radiol Med. 2020;125:220–7.CrossRef
14.
go back to reference Dearnaley D, Syndikus I, Mossop H, Khoo V, Birtle A, Bloomfield D, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016;17:1047–60.CrossRef Dearnaley D, Syndikus I, Mossop H, Khoo V, Birtle A, Bloomfield D, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016;17:1047–60.CrossRef
15.
go back to reference Lee WR, Dignam JJ, Amin MB, Bruner DW, Low D, Swanson GP, et al. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. J Clin Oncol. 2016;34:2325–32.CrossRef Lee WR, Dignam JJ, Amin MB, Bruner DW, Low D, Swanson GP, et al. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. J Clin Oncol. 2016;34:2325–32.CrossRef
16.
go back to reference Catton CN, Lukka H, Gu CS, Martin JM, Supiot S, Chung PWM, et al. Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. J Clin Oncol. 2017;35:1884–90.CrossRef Catton CN, Lukka H, Gu CS, Martin JM, Supiot S, Chung PWM, et al. Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. J Clin Oncol. 2017;35:1884–90.CrossRef
17.
go back to reference Liu Y-P, Gray PJ, Jin J, Wang W-H, Fang H, Wang S-L, et al. Hypofractionated intensity-modulated radiation therapy for prostate cancer confined to the pelvis: analysis of efficacy and late toxicity. J Radiat Oncol. 2015;4:95–101.CrossRef Liu Y-P, Gray PJ, Jin J, Wang W-H, Fang H, Wang S-L, et al. Hypofractionated intensity-modulated radiation therapy for prostate cancer confined to the pelvis: analysis of efficacy and late toxicity. J Radiat Oncol. 2015;4:95–101.CrossRef
18.
go back to reference Roach M 3rd, Marquez C, Yuo HS, Narayan P, Coleman L, Nseyo UO, et al. Predicting the risk of lymph node involvement using the pre-treatment prostate specific antigen and Gleason score in men with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 1994;28:33–7.CrossRef Roach M 3rd, Marquez C, Yuo HS, Narayan P, Coleman L, Nseyo UO, et al. Predicting the risk of lymph node involvement using the pre-treatment prostate specific antigen and Gleason score in men with clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 1994;28:33–7.CrossRef
19.
go back to reference Fowler JF. The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol. 2005;44:265–76.CrossRef Fowler JF. The radiobiology of prostate cancer including new aspects of fractionated radiotherapy. Acta Oncol. 2005;44:265–76.CrossRef
20.
go back to reference Miralbell R, Roberts SA, Zubizarreta E, Hendry JH. Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: alpha/beta = 1.4 (0.9–2.2) Gy. Int J Radiat Oncol Biol Phys. 2012;82:17–24.CrossRef Miralbell R, Roberts SA, Zubizarreta E, Hendry JH. Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: alpha/beta = 1.4 (0.9–2.2) Gy. Int J Radiat Oncol Biol Phys. 2012;82:17–24.CrossRef
21.
go back to reference Roach M 3rd, Hanks G, Thames H Jr, Schellhammer P, Shipley WU, Sokol GH, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix consensus conference. Int J Radiat Oncol Biol Phys. 2006;65:965–74.CrossRef Roach M 3rd, Hanks G, Thames H Jr, Schellhammer P, Shipley WU, Sokol GH, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix consensus conference. Int J Radiat Oncol Biol Phys. 2006;65:965–74.CrossRef
22.
go back to reference Viani GA, Stefano EJ, Afonso SL. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys. 2009;74:1405–18.CrossRef Viani GA, Stefano EJ, Afonso SL. Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys. 2009;74:1405–18.CrossRef
23.
go back to reference Morgan SC, Hoffman K, Loblaw DA, Buyyounouski MK, Patton C, Barocas D, et al. Hypofractionated radiation therapy for localized prostate cancer: an ASTRO, ASCO, and AUA evidence-based guideline. J Clin Oncol. 2018;36:3411–30.CrossRef Morgan SC, Hoffman K, Loblaw DA, Buyyounouski MK, Patton C, Barocas D, et al. Hypofractionated radiation therapy for localized prostate cancer: an ASTRO, ASCO, and AUA evidence-based guideline. J Clin Oncol. 2018;36:3411–30.CrossRef
24.
go back to reference Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008;18:240–3.CrossRef Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008;18:240–3.CrossRef
25.
go back to reference Courdi A. High doses per fraction and the linear-quadratic model. Radiother Oncol. 2010;94:121–2.CrossRef Courdi A. High doses per fraction and the linear-quadratic model. Radiother Oncol. 2010;94:121–2.CrossRef
26.
go back to reference Aluwini S, Pos F, Schimmel E, Krol S, van der Toorn PP, de Jager H, et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): late toxicity results from a randomised, non-inferiority, phase 3 trial. Lancet Oncol. 2016;17:464–74.CrossRef Aluwini S, Pos F, Schimmel E, Krol S, van der Toorn PP, de Jager H, et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): late toxicity results from a randomised, non-inferiority, phase 3 trial. Lancet Oncol. 2016;17:464–74.CrossRef
27.
go back to reference Incrocci L, Wortel RC, Alemayehu WG, Aluwini S, Schimmel E, Krol S, et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016;17:1061–9.CrossRef Incrocci L, Wortel RC, Alemayehu WG, Aluwini S, Schimmel E, Krol S, et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016;17:1061–9.CrossRef
28.
go back to reference Pollack A, Walker G, Horwitz EM, Price R, Feigenberg S, Konski AA, et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol. 2013;31:3860–8.CrossRef Pollack A, Walker G, Horwitz EM, Price R, Feigenberg S, Konski AA, et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol. 2013;31:3860–8.CrossRef
29.
go back to reference Teh BS, Lewis GD, Mai W, Pino R, Ishiyama H, Butler EB. Long-term outcome of a moderately hypofractionated, intensity-modulated radiotherapy approach using an endorectal balloon for patients with localized prostate cancer. Cancer Commun (Lond). 2018;38:11.CrossRef Teh BS, Lewis GD, Mai W, Pino R, Ishiyama H, Butler EB. Long-term outcome of a moderately hypofractionated, intensity-modulated radiotherapy approach using an endorectal balloon for patients with localized prostate cancer. Cancer Commun (Lond). 2018;38:11.CrossRef
30.
go back to reference Widmark A, Gunnlaugsson A, Beckman L, Thellenberg-Karlsson C, Hoyer M, Lagerlund M, et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet. 2019;394:385–95.CrossRef Widmark A, Gunnlaugsson A, Beckman L, Thellenberg-Karlsson C, Hoyer M, Lagerlund M, et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet. 2019;394:385–95.CrossRef
31.
go back to reference Alongi F, Fersino S, Giaj Levra N, Mazzola R, Ricchetti F, Fiorentino A, et al. Impact of 18F-Choline PET/CT in the decision-making strategy of treatment volumes in definitive prostate cancer volumetric modulated radiation therapy. Clin Nucl Med. 2015;40:e496-500.CrossRef Alongi F, Fersino S, Giaj Levra N, Mazzola R, Ricchetti F, Fiorentino A, et al. Impact of 18F-Choline PET/CT in the decision-making strategy of treatment volumes in definitive prostate cancer volumetric modulated radiation therapy. Clin Nucl Med. 2015;40:e496-500.CrossRef
Metadata
Title
Long-term outcomes of moderately hypofractionated radiotherapy (67.5 Gy in 25 fractions) for prostate cancer confined to the pelvis: a single center retrospective analysis
Authors
Lihong Yao
Jianzhong Shou
Shulian Wang
Yongwen Song
Hui Fang
Ningning Lu
Yuan Tang
Bo Chen
Shunan Qi
Yong Yang
Hao Jing
Jing Jin
Zihao Yu
Yexiong Li
Yueping Liu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2020
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-020-01679-0

Other articles of this Issue 1/2020

Radiation Oncology 1/2020 Go to the issue