Skip to main content
Top
Published in: Radiation Oncology 1/2020

Open Access 01-12-2020 | Breast Cancer | Research

Stability and reproducibility of 6013 deep inspiration breath-holds in left-sided breast cancer

Authors: D. Reitz, F. Walter, S. Schönecker, P. Freislederer, M. Pazos, M. Niyazi, G. Landry, F. Alongi, E. Bölke, C. Matuschek, M. Reiner, C. Belka, S. Corradini

Published in: Radiation Oncology | Issue 1/2020

Login to get access

Abstract

Purpose

Patients with left-sided breast cancer frequently receive deep inspiration breath-hold (DIBH) radiotherapy to reduce the risk of cardiac side effects. The aim of the present study was to analyze intra-breath-hold stability and inter-fraction breath-hold reproducibility in clinical practice.

Material and methods

Overall, we analyzed 103 patients receiving left-sided breast cancer radiotherapy using a surface-guided DIBH technique. During each treatment session the vertical motion of the patient was continuously measured by a surface guided radiation therapy (SGRT) system and automated gating control (beam on/off) was performed using an audio-visual patient feedback system. Dose delivery was automatically triggered when the tracking point was within a predefined gating window. Intra-breath-hold stability and inter-fraction reproducibility across all fractions of the entire treatment course were analyzed per patient.

Results

In the present series, 6013 breath-holds during beam-on time were analyzed. The mean amplitude of the gating window from the baseline breathing curve (maximum expiration during free breathing) was 15.8 mm (95%-confidence interval: [8.5–30.6] mm) and had a width of 3.5 mm (95%-CI: [2–4.3] mm). As a measure of intra-breath-hold stability, the median standard deviation of the breath-hold level during DIBH was 0.3 mm (95%-CI: [0.1–0.9] mm). Similarly, the median absolute intra-breath-hold linear amplitude deviation was 0.4 mm (95%-CI: [0.01–2.1] mm). Reproducibility testing showed good inter-fractional reliability, as the maximum difference in the breathing amplitudes in all patients and all fractions were 1.3 mm on average (95%-CI: [0.5–2.6] mm).

Conclusion

The clinical integration of an optical surface scanner enables a stable and reliable DIBH treatment delivery during SGRT for left-sided breast cancer in clinical routine.
Glossary
baseline
maximum vertical expiration level during free breathing within one fraction
breath-hold level
vertical amplitude of the breathing curve from baseline during deep inspiration breath-hold
breathing amplitude
vertical deviation between breathing baseline and mean breath-hold level of one deep inspiration breath-hold
Literature
1.
go back to reference Corradini S, Alongi F, Andratschke N, et al. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol. 2019;14(1):92.CrossRef Corradini S, Alongi F, Andratschke N, et al. MR-guidance in clinical reality: current treatment challenges and future perspectives. Radiat Oncol. 2019;14(1):92.CrossRef
2.
go back to reference Pazos M, Schönecker S, Reitz D, et al. Recent developments in radiation oncology: an overview of individualised treatment strategies in breast Cancer. Breast Care (Basel). 2018;13(4):285–91.CrossRef Pazos M, Schönecker S, Reitz D, et al. Recent developments in radiation oncology: an overview of individualised treatment strategies in breast Cancer. Breast Care (Basel). 2018;13(4):285–91.CrossRef
3.
go back to reference Hayden AJ, Rains M, Tiver K. Deep inspiration breath-hold technique reduces heart dose from radiotherapy for left-sided breast cancer. J Med Imaging Radiat Oncol. 2012;56(4):464–72.CrossRef Hayden AJ, Rains M, Tiver K. Deep inspiration breath-hold technique reduces heart dose from radiotherapy for left-sided breast cancer. J Med Imaging Radiat Oncol. 2012;56(4):464–72.CrossRef
4.
go back to reference Schönecker S, Walter F, Freislederer P, et al. Treatment planning and evaluation of gated radiotherapy in left-sided breast cancer patients using the catalyst(TM)/sentinel(TM) system for deep inspiration breath-hold (DIBH). Radiat Oncol. 2016;11(1):143.CrossRef Schönecker S, Walter F, Freislederer P, et al. Treatment planning and evaluation of gated radiotherapy in left-sided breast cancer patients using the catalyst(TM)/sentinel(TM) system for deep inspiration breath-hold (DIBH). Radiat Oncol. 2016;11(1):143.CrossRef
5.
go back to reference Bergom C, Currey A, Desai N, et al. Deep inspiration breath-hold: techniques and advantages for cardiac sparing during breast Cancer irradiation. Front Oncol. 2018;8:87.CrossRef Bergom C, Currey A, Desai N, et al. Deep inspiration breath-hold: techniques and advantages for cardiac sparing during breast Cancer irradiation. Front Oncol. 2018;8:87.CrossRef
6.
go back to reference Yu P-C, Wu C-J, Tsai Y-L, et al. Dosimetric analysis of tangent-based volumetric modulated arc therapy with deep inspiration breath-hold technique for left breast cancer patients. Radiat Oncol. 2018;13(1):231.CrossRef Yu P-C, Wu C-J, Tsai Y-L, et al. Dosimetric analysis of tangent-based volumetric modulated arc therapy with deep inspiration breath-hold technique for left breast cancer patients. Radiat Oncol. 2018;13(1):231.CrossRef
7.
go back to reference Oechsner M, Düsberg M, Borm KJ, et al. Deep inspiration breath-hold for left-sided breast irradiation: analysis of dose-mass histograms and the impact of lung expansion. Radiat Oncol. 2019;14(1):109.CrossRef Oechsner M, Düsberg M, Borm KJ, et al. Deep inspiration breath-hold for left-sided breast irradiation: analysis of dose-mass histograms and the impact of lung expansion. Radiat Oncol. 2019;14(1):109.CrossRef
8.
go back to reference Sripathi LK, Ahlawat P, Simson DK, et al. Cardiac dose reduction with deep-inspiratory breath-hold technique of radiotherapy for left-sided breast Cancer. J Medic Phys. 2017;42(3):123–7.CrossRef Sripathi LK, Ahlawat P, Simson DK, et al. Cardiac dose reduction with deep-inspiratory breath-hold technique of radiotherapy for left-sided breast Cancer. J Medic Phys. 2017;42(3):123–7.CrossRef
9.
go back to reference Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.CrossRef Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.CrossRef
10.
go back to reference Wong JW, Sharpe MB, Jaffray DA, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys. 1999;44(4):911–9.CrossRef Wong JW, Sharpe MB, Jaffray DA, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys. 1999;44(4):911–9.CrossRef
11.
go back to reference Kubo HD, Len PM, Minohara S, et al. Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center. Med Phys. 2000;27(2):346–53.CrossRef Kubo HD, Len PM, Minohara S, et al. Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center. Med Phys. 2000;27(2):346–53.CrossRef
12.
go back to reference Latty D, Stuart KE, Wang W, et al. Review of deep inspiration breath-hold techniques for the treatment of breast cancer. J Med Radiat Sci. 2015;62(1):74–81.CrossRef Latty D, Stuart KE, Wang W, et al. Review of deep inspiration breath-hold techniques for the treatment of breast cancer. J Med Radiat Sci. 2015;62(1):74–81.CrossRef
13.
go back to reference Jensen CA, Abramova T, Frengen J, et al. Monitoring deep inspiration breath-hold for left-sided localized breast cancer radiotherapy with an in-house developed laser distance meter system. J Appl Clin Med Phys. 2017;18(5):117–23.CrossRef Jensen CA, Abramova T, Frengen J, et al. Monitoring deep inspiration breath-hold for left-sided localized breast cancer radiotherapy with an in-house developed laser distance meter system. J Appl Clin Med Phys. 2017;18(5):117–23.CrossRef
14.
go back to reference Pazos M, Fiorentino A, Gaasch A, et al. Dosisvariabilität verschiedener Lymphknotenstationen während der lokoregionalen Bestrahlung bei Mammakarzinom: Einfluss des Luftanhaltens in tiefer Inspiration. Strahlenther Onkol. 2019;195(1):13–20.CrossRef Pazos M, Fiorentino A, Gaasch A, et al. Dosisvariabilität verschiedener Lymphknotenstationen während der lokoregionalen Bestrahlung bei Mammakarzinom: Einfluss des Luftanhaltens in tiefer Inspiration. Strahlenther Onkol. 2019;195(1):13–20.CrossRef
15.
go back to reference Pazos M, Walter F, Reitz D, et al. Einfluss der Patientenpositionierung mittels optischem Oberflächenscanner auf die Verwendung von Verifikationsaufnahmen und die Dauer der Neueinstellung bei Brustkrebspatientinnen. Strahlenther Onkol. 2019;195(11):964–71.CrossRef Pazos M, Walter F, Reitz D, et al. Einfluss der Patientenpositionierung mittels optischem Oberflächenscanner auf die Verwendung von Verifikationsaufnahmen und die Dauer der Neueinstellung bei Brustkrebspatientinnen. Strahlenther Onkol. 2019;195(11):964–71.CrossRef
16.
go back to reference Yue NJ, Li X, Beriwal S, et al. The intrafraction motion induced dosimetric impacts in breast 3D radiation treatment: a 4DCT based study. Med Phys. 2007;34(7):2789–800.CrossRef Yue NJ, Li X, Beriwal S, et al. The intrafraction motion induced dosimetric impacts in breast 3D radiation treatment: a 4DCT based study. Med Phys. 2007;34(7):2789–800.CrossRef
17.
go back to reference George R, Keall PJ, Kini VR, et al. Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery. Med Phys. 2003;30(4):552–62.CrossRef George R, Keall PJ, Kini VR, et al. Quantifying the effect of intrafraction motion during breast IMRT planning and dose delivery. Med Phys. 2003;30(4):552–62.CrossRef
18.
go back to reference Carl G, Reitz D, Schonecker S, et al. Optical surface scanning for patient positioning in radiation therapy: a prospective analysis of 1902 fractions. Technol Cancer Res Treatment. 2018;17:1533033818806002.CrossRef Carl G, Reitz D, Schonecker S, et al. Optical surface scanning for patient positioning in radiation therapy: a prospective analysis of 1902 fractions. Technol Cancer Res Treatment. 2018;17:1533033818806002.CrossRef
19.
go back to reference Reitz D, Carl G, Schonecker S, et al. Real-time intra-fraction motion management in breast cancer radiotherapy: analysis of 2028 treatment sessions. Radiat Oncol. 2018;13(1):128.CrossRef Reitz D, Carl G, Schonecker S, et al. Real-time intra-fraction motion management in breast cancer radiotherapy: analysis of 2028 treatment sessions. Radiat Oncol. 2018;13(1):128.CrossRef
20.
go back to reference Crop F, Pasquier D, Baczkiewic A, et al. Surface imaging, laser positioning or volumetric imaging for breast cancer with nodal involvement treated by helical TomoTherapy. J Appl Clin Med Phys. 2016;17(5):200–11.CrossRef Crop F, Pasquier D, Baczkiewic A, et al. Surface imaging, laser positioning or volumetric imaging for breast cancer with nodal involvement treated by helical TomoTherapy. J Appl Clin Med Phys. 2016;17(5):200–11.CrossRef
21.
go back to reference Hamming VC, Visser C, Batin E, et al. Evaluation of a 3D surface imaging system for deep inspiration breath-hold patient positioning and intra-fraction monitoring. Radiat Oncol. 2019;14(1):125.CrossRef Hamming VC, Visser C, Batin E, et al. Evaluation of a 3D surface imaging system for deep inspiration breath-hold patient positioning and intra-fraction monitoring. Radiat Oncol. 2019;14(1):125.CrossRef
22.
go back to reference Laaksomaa M, Sarudis S, Rossi M, et al. AlignRT® and catalyst™ in whole-breast radiotherapy with DIBH: is IGRT still needed? J Appl Clin Med Phys. 2019;20(3):97–104.CrossRef Laaksomaa M, Sarudis S, Rossi M, et al. AlignRT® and catalyst™ in whole-breast radiotherapy with DIBH: is IGRT still needed? J Appl Clin Med Phys. 2019;20(3):97–104.CrossRef
23.
go back to reference Freislederer P, Reiner M, Hoischen W, et al. Characteristics of gated treatment using an optical surface imaging and gating system on an Elekta linac. Radiat Oncol. 2015;10:68.CrossRef Freislederer P, Reiner M, Hoischen W, et al. Characteristics of gated treatment using an optical surface imaging and gating system on an Elekta linac. Radiat Oncol. 2015;10:68.CrossRef
24.
go back to reference Cerviño LI, Gupta S, Rose MA, et al. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath-hold for left-breast-cancer radiotherapy. Phys Med Biol. 2009;54(22):6853–65.CrossRef Cerviño LI, Gupta S, Rose MA, et al. Using surface imaging and visual coaching to improve the reproducibility and stability of deep-inspiration breath-hold for left-breast-cancer radiotherapy. Phys Med Biol. 2009;54(22):6853–65.CrossRef
25.
go back to reference Kalet AM, Cao N, Smith WP, et al. Accuracy and stability of deep inspiration breath-hold in gated breast radiotherapy - a comparison of two tracking and guidance systems. Phys Med. 2019;60:174–81.CrossRef Kalet AM, Cao N, Smith WP, et al. Accuracy and stability of deep inspiration breath-hold in gated breast radiotherapy - a comparison of two tracking and guidance systems. Phys Med. 2019;60:174–81.CrossRef
26.
go back to reference Xiao A, Crosby J, Malin M, et al. Single-institution report of setup margins of voluntary deep-inspiration breath-hold (DIBH) whole breast radiotherapy implemented with real-time surface imaging. J Appl Clin Med Phys. 2018;19(4):205–13.CrossRef Xiao A, Crosby J, Malin M, et al. Single-institution report of setup margins of voluntary deep-inspiration breath-hold (DIBH) whole breast radiotherapy implemented with real-time surface imaging. J Appl Clin Med Phys. 2018;19(4):205–13.CrossRef
27.
go back to reference Fassi A, Ivaldi GB, Meaglia I, et al. Reproducibility of the external surface position in left-breast DIBH radiotherapy with spirometer-based monitoring. J Appl Clin Med Phys. 2014;15(1):4494.CrossRef Fassi A, Ivaldi GB, Meaglia I, et al. Reproducibility of the external surface position in left-breast DIBH radiotherapy with spirometer-based monitoring. J Appl Clin Med Phys. 2014;15(1):4494.CrossRef
28.
go back to reference Kugele M, Edvardsson A, Berg L, et al. Dosimetric effects of intrafractional isocenter variation during deep inspiration breath-hold for breast cancer patients using surface-guided radiotherapy. J Appl Clin Med Phys. 2018;19(1):25–38.CrossRef Kugele M, Edvardsson A, Berg L, et al. Dosimetric effects of intrafractional isocenter variation during deep inspiration breath-hold for breast cancer patients using surface-guided radiotherapy. J Appl Clin Med Phys. 2018;19(1):25–38.CrossRef
29.
go back to reference Stock M, Kontrisova K, Dieckmann K, et al. Development and application of a real-time monitoring and feedback system for deep inspiration breath-hold based on external marker tracking. Med Phys. 2006;33(8):2868–77.CrossRef Stock M, Kontrisova K, Dieckmann K, et al. Development and application of a real-time monitoring and feedback system for deep inspiration breath-hold based on external marker tracking. Med Phys. 2006;33(8):2868–77.CrossRef
Metadata
Title
Stability and reproducibility of 6013 deep inspiration breath-holds in left-sided breast cancer
Authors
D. Reitz
F. Walter
S. Schönecker
P. Freislederer
M. Pazos
M. Niyazi
G. Landry
F. Alongi
E. Bölke
C. Matuschek
M. Reiner
C. Belka
S. Corradini
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2020
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-020-01572-w

Other articles of this Issue 1/2020

Radiation Oncology 1/2020 Go to the issue