Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Prostate Cancer | Research

Fiducial markers visibility and artefacts in prostate cancer radiotherapy multi-modality imaging

Authors: Sarah O. S. Osman, Emily Russell, Raymond B. King, Karen Crowther, Suneil Jain, Cormac McGrath, Alan R. Hounsell, Kevin M. Prise, Conor K. McGarry

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

In this study, a novel pelvic phantom was developed and used to assess the visibility and presence of artefacts from different types of commercial fiducial markers (FMs) on multi-modality imaging relevant to prostate cancer.

Methods and materials

The phantom was designed with 3D printed hollow cubes in the centre. These cubes were filled with gel to mimic the prostate gland and two parallel PVC rods were used to mimic bones in the pelvic region. Each cube was filled with gelatine and three unique FMs were positioned with a clinically-relevant spatial distribution. The FMs investigated were; Gold Marker (GM) CIVCO, GM RiverPoint, GM Gold Anchor (GA) line and ball shape, and polymer marker (PM) from CIVCO. The phantom was scanned using several imaging modalities typically used to image prostate cancer patients; MRI, CT, CBCT, planar kV-pair, ExacTrac, 6MV, 2.5MV and integrated EPID imaging. The visibility of the markers and any observed artefacts in the phantom were compared to in-vivo scans of prostate cancer patients with FMs.

Results

All GMs were visible in volumetric scans, however, they also had the most visible artefacts on CT and CBCT scans, with the magnitude of artefacts increasing with FM size. PM FMs had the least visible artefacts in volumetric scans but they were not visible on portal images and had poor visibility on lateral kV images. The smallest diameter GMs (GA) were the most difficult GMs to identify on lateral kV images.

Conclusion

The choice between different FMs is also dependent on the adopted IGRT strategy. PM was found to be superior to investigated gold markers in the most commonly used modalities in the management of prostate cancer; CT, CBCT and MRI imaging.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brenner DJ, Martinez AA, Edmunson GK, Mitchell C, Thames HD, Armour EP. Direct evidence that prostate tumors show high sensitivity to fractionation (low). Int J Radiat Oncol Biol Phys. 2002;52(1):6–13.CrossRef Brenner DJ, Martinez AA, Edmunson GK, Mitchell C, Thames HD, Armour EP. Direct evidence that prostate tumors show high sensitivity to fractionation (low). Int J Radiat Oncol Biol Phys. 2002;52(1):6–13.CrossRef
2.
go back to reference Brenner DJ, Martinez AA, Edmundson GK, Mitchell C, Thames HD, Armour EP. Direct evidence that prostate tumors show high sensitivity to fractionation (low α/β ratio), similar to late-responding normal tissue. Int J Radiat Oncol. 2002;52(1):6–13.CrossRef Brenner DJ, Martinez AA, Edmundson GK, Mitchell C, Thames HD, Armour EP. Direct evidence that prostate tumors show high sensitivity to fractionation (low α/β ratio), similar to late-responding normal tissue. Int J Radiat Oncol. 2002;52(1):6–13.CrossRef
3.
go back to reference Catton CN, et al. Randomized trial of a Hypofractionated radiation regimen for the treatment of localized prostate cancer. J Clin Oncol. 2017;35(17):1884–90.CrossRef Catton CN, et al. Randomized trial of a Hypofractionated radiation regimen for the treatment of localized prostate cancer. J Clin Oncol. 2017;35(17):1884–90.CrossRef
4.
go back to reference Bauman G, Haider M, Van der Heide UA, Ménard C. Boosting imaging defined dominant prostatic tumors: a systematic review. Radiother Oncol. 2013;107(3):274–81.CrossRef Bauman G, Haider M, Van der Heide UA, Ménard C. Boosting imaging defined dominant prostatic tumors: a systematic review. Radiother Oncol. 2013;107(3):274–81.CrossRef
5.
go back to reference Hoogeman MS, Nuyttens JJ, Levendag PC, Heijmen BJM. Time dependence of Intrafraction patient motion assessed by repeat stereoscopic imaging. Int J Radiat Oncol. 2008;70(2):609–18.CrossRef Hoogeman MS, Nuyttens JJ, Levendag PC, Heijmen BJM. Time dependence of Intrafraction patient motion assessed by repeat stereoscopic imaging. Int J Radiat Oncol. 2008;70(2):609–18.CrossRef
6.
go back to reference Thongphiew D, et al. Comparison of online IGRT techniques for prostate IMRT treatment: adaptive vs repositioning correction. Med Phys. 2009;36(5):1651–62.CrossRef Thongphiew D, et al. Comparison of online IGRT techniques for prostate IMRT treatment: adaptive vs repositioning correction. Med Phys. 2009;36(5):1651–62.CrossRef
7.
go back to reference L. G. W. Kerkmeijer, M. Maspero, G. J. Meijer, J. R. N. van der Voort van Zyp, H. C. J. de Boer, and C. A. T. van den Berg Magnetic resonance imaging only workflow for radiotherapy simulation and planning in prostate cancer. Clin Oncol 30:692-701 2018.CrossRef L. G. W. Kerkmeijer, M. Maspero, G. J. Meijer, J. R. N. van der Voort van Zyp, H. C. J. de Boer, and C. A. T. van den Berg Magnetic resonance imaging only workflow for radiotherapy simulation and planning in prostate cancer. Clin Oncol 30:692-701 2018.CrossRef
8.
go back to reference Deegan T, et al. Assessment of cone beam CT registration for prostate radiation therapy: Fiducial marker and soft tissue methods. J Med Imaging Radiat Oncol. 2015;59:91–8.CrossRef Deegan T, et al. Assessment of cone beam CT registration for prostate radiation therapy: Fiducial marker and soft tissue methods. J Med Imaging Radiat Oncol. 2015;59:91–8.CrossRef
9.
go back to reference O’Neill AGM, Jain S, Hounsell AR, O’Sullivan JM. Fiducial marker guided prostate radiotherapy: a review. Br J Radiol. 2016;89(1068):20160296.CrossRef O’Neill AGM, Jain S, Hounsell AR, O’Sullivan JM. Fiducial marker guided prostate radiotherapy: a review. Br J Radiol. 2016;89(1068):20160296.CrossRef
10.
go back to reference Shinohara K, Roach M. Technique for implantation of Fiducial markers in the prostate. Urology. 2008;71:196–200.CrossRef Shinohara K, Roach M. Technique for implantation of Fiducial markers in the prostate. Urology. 2008;71:196–200.CrossRef
11.
go back to reference R. A. Linden et al. Technique of outpatient placement of Intraprostatic fiducial markers before external beam radiotherapy. Urology 73:881-886 2009. R. A. Linden et al. Technique of outpatient placement of Intraprostatic fiducial markers before external beam radiotherapy. Urology 73:881-886 2009.
12.
go back to reference Igdem OS, Akpinar H, Alço G, Agaçayak F, Turkan S. Implantation of fiducial markers for image guidance in prostate radiotherapy: patient-reported toxicity. Br J Radiol. 2009;82(983):941–5.CrossRef Igdem OS, Akpinar H, Alço G, Agaçayak F, Turkan S. Implantation of fiducial markers for image guidance in prostate radiotherapy: patient-reported toxicity. Br J Radiol. 2009;82(983):941–5.CrossRef
13.
go back to reference King RB, et al. Efficacy of a rectal spacer with prostate SABR—first UK experience. Br J Radiol. 2018;91(1083):20170672.CrossRef King RB, et al. Efficacy of a rectal spacer with prostate SABR—first UK experience. Br J Radiol. 2018;91(1083):20170672.CrossRef
14.
go back to reference McVicar N, Popescu IA, Heath E. Techniques for adaptive prostate radiotherapy. Phys Med. 2016;32(3):492–8.CrossRef McVicar N, Popescu IA, Heath E. Techniques for adaptive prostate radiotherapy. Phys Med. 2016;32(3):492–8.CrossRef
15.
go back to reference Beltran C, Herman MG, Davis BJ. Planning target margin calculations for prostate radiotherapy based on Intrafraction and Interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys. 2008;70:289–95.CrossRef Beltran C, Herman MG, Davis BJ. Planning target margin calculations for prostate radiotherapy based on Intrafraction and Interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys. 2008;70:289–95.CrossRef
16.
go back to reference Schallenkamp JM, Herman MG, Kruse JJ, Pisansky TM. Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging. Int J Radiat Oncol Biol Phys. 2005;63:800–11.CrossRef Schallenkamp JM, Herman MG, Kruse JJ, Pisansky TM. Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging. Int J Radiat Oncol Biol Phys. 2005;63:800–11.CrossRef
17.
go back to reference Schmidt MA, Payne GS. Radiotherapy planning using MRI. Phys Med Biol. 2015;60:R323–61.CrossRef Schmidt MA, Payne GS. Radiotherapy planning using MRI. Phys Med Biol. 2015;60:R323–61.CrossRef
18.
go back to reference Kassim I, Joosten H, Barnhoorn JC, Heijmen BJM, Dirkx MLP. Implications of artefacts reduction in the planning CT originating from implanted fiducial markers. Med Dosim. 2011;36:119–25.CrossRef Kassim I, Joosten H, Barnhoorn JC, Heijmen BJM, Dirkx MLP. Implications of artefacts reduction in the planning CT originating from implanted fiducial markers. Med Dosim. 2011;36:119–25.CrossRef
19.
go back to reference Chow JCL, Grigorov GN. Dose measurements near a non-radioactive gold seed using radiographic film. Phys Med Biol. 2005;50(18):226–34.CrossRef Chow JCL, Grigorov GN. Dose measurements near a non-radioactive gold seed using radiographic film. Phys Med Biol. 2005;50(18):226–34.CrossRef
20.
go back to reference Huang JY, Newhauser WD, Zhu XR, Lee AK, Kudchadker RJ. Investigation of dose perturbations and the radiographic visibility of potential fiducials for proton radiation therapy of the prostate. Phys Med Biol. 2011;56(16):5287.CrossRef Huang JY, Newhauser WD, Zhu XR, Lee AK, Kudchadker RJ. Investigation of dose perturbations and the radiographic visibility of potential fiducials for proton radiation therapy of the prostate. Phys Med Biol. 2011;56(16):5287.CrossRef
21.
go back to reference Handsfield LL, Yue NJ, Zhou J, Chen T, Goyal S. Determination of optimal fiducial marker across image-guided radiation therapy (IGRT) modalities: visibility and artifact analysis of gold, carbon, and polymer fiducial markers. J Appl Clin Med Phys. 2012;13(5):181–9.CrossRef Handsfield LL, Yue NJ, Zhou J, Chen T, Goyal S. Determination of optimal fiducial marker across image-guided radiation therapy (IGRT) modalities: visibility and artifact analysis of gold, carbon, and polymer fiducial markers. J Appl Clin Med Phys. 2012;13(5):181–9.CrossRef
22.
go back to reference Gurney-Champion OJ, et al. Visibility and artifacts of gold fiducial markers used for image guided radiation therapy of pancreatic cancer on MRI. Med Phys. 2015;42(5):2638–47.CrossRef Gurney-Champion OJ, et al. Visibility and artifacts of gold fiducial markers used for image guided radiation therapy of pancreatic cancer on MRI. Med Phys. 2015;42(5):2638–47.CrossRef
23.
go back to reference Chan MF, Cohen GN, Deasy JO. Qualitative evaluation of Fiducial markers for radiotherapy imaging. Technol Cancer Res Treat. 2015;14(3):298–304.CrossRef Chan MF, Cohen GN, Deasy JO. Qualitative evaluation of Fiducial markers for radiotherapy imaging. Technol Cancer Res Treat. 2015;14(3):298–304.CrossRef
24.
go back to reference D-A Radford, DS Followill, WF Hanson. Design of an anthropomorphic intensity modulated radiation therapy\nquality assurance phantom. In Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37143); 2000. D-A Radford, DS Followill, WF Hanson. Design of an anthropomorphic intensity modulated radiation therapy\nquality assurance phantom. In Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37143); 2000.
25.
go back to reference Schneider S, Jølck RI, Troost EGC, Hoffmann AL. Quantification of MRI visibility and artifacts at 3T of liquid fiducial marker in a pancreas tissue-mimicking phantom. Med Phys. 2018;45:37–47.CrossRef Schneider S, Jølck RI, Troost EGC, Hoffmann AL. Quantification of MRI visibility and artifacts at 3T of liquid fiducial marker in a pancreas tissue-mimicking phantom. Med Phys. 2018;45:37–47.CrossRef
26.
go back to reference Luo W, Yoo S, Wu QJ, Wang Z, Yin FF. Analysis of image quality for real-time target tracking using simultaneous kV-MV imaging. Med Phys. 2008;35:5501–9.CrossRef Luo W, Yoo S, Wu QJ, Wang Z, Yin FF. Analysis of image quality for real-time target tracking using simultaneous kV-MV imaging. Med Phys. 2008;35:5501–9.CrossRef
27.
28.
go back to reference Jelvehgaran P, et al. Visibility of fiducial markers used for image-guided radiation therapy on optical coherence tomography for registration with CT: an esophageal phantom study: an. Med Phys. 2017;44:6570–82.CrossRef Jelvehgaran P, et al. Visibility of fiducial markers used for image-guided radiation therapy on optical coherence tomography for registration with CT: an esophageal phantom study: an. Med Phys. 2017;44:6570–82.CrossRef
29.
go back to reference Gräfe JL, Owen J, Villarreal-Barajas JE, Khan RF. Characterization of a 2.5 MV inline portal imaging beam. J Appl Clin Med Phys. 2016;17(5):222–34.CrossRef Gräfe JL, Owen J, Villarreal-Barajas JE, Khan RF. Characterization of a 2.5 MV inline portal imaging beam. J Appl Clin Med Phys. 2016;17(5):222–34.CrossRef
30.
go back to reference Lee M-J, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. RadioGraphics. 2007;27:791–803.CrossRef Lee M-J, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. RadioGraphics. 2007;27:791–803.CrossRef
31.
go back to reference Nam H, Baek J. A metal artifact reduction algorithm in CT using multiple prior images by recursive active contour segmentation. PLoS One. 2017;12(6):1–21. Nam H, Baek J. A metal artifact reduction algorithm in CT using multiple prior images by recursive active contour segmentation. PLoS One. 2017;12(6):1–21.
32.
go back to reference Boas FE, Fleischmann D. Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Radiology. 2011;259:894–902.CrossRef Boas FE, Fleischmann D. Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Radiology. 2011;259:894–902.CrossRef
35.
go back to reference Riisgaard S, et al. Clinical and translational radiation oncology long term safety and visibility of a novel liquid fiducial marker for use in image guided radiotherapy of non-small cell lung cancer. Clin Transl Radiat Oncol. 2018;13:24–8. Riisgaard S, et al. Clinical and translational radiation oncology long term safety and visibility of a novel liquid fiducial marker for use in image guided radiotherapy of non-small cell lung cancer. Clin Transl Radiat Oncol. 2018;13:24–8.
36.
go back to reference Giantsoudi D, et al. Metal artifacts in computed tomography for radiation therapy planning: Dosimetric effects and impact of metal artifact reduction. Phys Med Biol. 2017;62(8):R49–80.CrossRef Giantsoudi D, et al. Metal artifacts in computed tomography for radiation therapy planning: Dosimetric effects and impact of metal artifact reduction. Phys Med Biol. 2017;62(8):R49–80.CrossRef
37.
go back to reference O’Neill AGM, Osman SO, Jain S, Hounsell AR, O’Sullivan JM. Observed high incidence of prostatic calculi with the potential to act as natural fiducials for prostate image guided radiotherapy. Tech Innov Patient Support Radiat Oncol. 2019;9:35–40.CrossRef O’Neill AGM, Osman SO, Jain S, Hounsell AR, O’Sullivan JM. Observed high incidence of prostatic calculi with the potential to act as natural fiducials for prostate image guided radiotherapy. Tech Innov Patient Support Radiat Oncol. 2019;9:35–40.CrossRef
Metadata
Title
Fiducial markers visibility and artefacts in prostate cancer radiotherapy multi-modality imaging
Authors
Sarah O. S. Osman
Emily Russell
Raymond B. King
Karen Crowther
Suneil Jain
Cormac McGrath
Alan R. Hounsell
Kevin M. Prise
Conor K. McGarry
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1447-1

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue