Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Radiotherapy | Research

Estimating intrafraction tumor motion during fiducial-based liver stereotactic radiotherapy via an iterative closest point (ICP) algorithm

Authors: Wu-zhou Li, Zhi-wen Liang, Yi Cao, Ting-ting Cao, Hong Quan, Zhi-yong Yang, Qin Li, Zhi-tao Dai

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

Tumor motion may compromise the accuracy of liver stereotactic radiotherapy. In order to carry out a precise planning, estimating liver tumor motion during radiotherapy has received a lot of attention. Previous approach may have difficult to deal with image data corrupted by noise. The iterative closest point (ICP) algorithm is widely used for estimating the rigid registration of three-dimensional point sets when these data were dense or corrupted. In the light of this, our study estimated the three-dimensional (3D) rigid motion of liver tumors during stereotactic liver radiotherapy using reconstructed 3D coordinates of fiducials based on the ICP algorithm.

Methods

Four hundred ninety-five pairs of orthogonal kilovoltage (KV) images from the CyberKnife stereo imaging system for 12 patients were used in this study. For each pair of images, the 3D coordinates of fiducial markers inside the liver were calculated via geometric derivations. The 3D coordinates were used to calculate the real-time translational and rotational motion of liver tumors around three axes via an ICP algorithm. The residual error was also investigated both with and without rotational correction.

Results

The translational shifts of liver tumors in left-right (LR), anterior-posterior (AP),and superior-inferior (SI) directions were 2.92 ± 1.98 mm, 5.54 ± 3.12 mm, and 16.22 ± 5.86 mm, respectively; the rotational angles in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions were 3.95° ± 3.08°, 4.93° ± 2.90°, and 4.09° ± 1.99°, respectively. Rotational correction decreased 3D fiducial displacement from 1.19 ± 0.35 mm to 0.65 ± 0.24 mm (P<0.001).

Conclusions

The maximum translational movement occurred in the SI direction. Rotational correction decreased fiducial displacements and increased tumor tracking accuracy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wei X, Jiang Y, Zhang X, et al. Neoadjuvant three-dimensional conformal radiotherapy for Resectable hepatocellular carcinoma with portal vein tumor Thrombus: a randomized, open-label, Multicenter Controlled Study. J Clin Oncol. 2019;37(24):2141.CrossRef Wei X, Jiang Y, Zhang X, et al. Neoadjuvant three-dimensional conformal radiotherapy for Resectable hepatocellular carcinoma with portal vein tumor Thrombus: a randomized, open-label, Multicenter Controlled Study. J Clin Oncol. 2019;37(24):2141.CrossRef
2.
go back to reference Dawson LA, Ten Haken RK, Lawrence TS. Partial irradiation of the liver. Semin Radiat Oncol. 2001;11(3):240–6.CrossRef Dawson LA, Ten Haken RK, Lawrence TS. Partial irradiation of the liver. Semin Radiat Oncol. 2001;11(3):240–6.CrossRef
3.
go back to reference Zhang SY, Zhu GY, Li G, Zhang YB, Geng JH. Application of stereotactic body radiation therapy to cancer liver metastasis. Cancer Lett. 2016;379(2):225–9.CrossRef Zhang SY, Zhu GY, Li G, Zhang YB, Geng JH. Application of stereotactic body radiation therapy to cancer liver metastasis. Cancer Lett. 2016;379(2):225–9.CrossRef
4.
go back to reference Wulf J, Guckenberger M, Haedinger U, Oppitz U, Mueller G, Baier K, Flentje M. Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol. 2006;45(7):838–47.CrossRef Wulf J, Guckenberger M, Haedinger U, Oppitz U, Mueller G, Baier K, Flentje M. Stereotactic radiotherapy of primary liver cancer and hepatic metastases. Acta Oncol. 2006;45(7):838–47.CrossRef
5.
go back to reference Lee MT, Kim JJ, Dinniwell R, Brierley J, Lockwood G, Wong R, Cummings B, Ringash J, Tse RV, Knox JJ, Dawson LA. Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol. 2009;27(10):1585–91.CrossRef Lee MT, Kim JJ, Dinniwell R, Brierley J, Lockwood G, Wong R, Cummings B, Ringash J, Tse RV, Knox JJ, Dawson LA. Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol. 2009;27(10):1585–91.CrossRef
6.
go back to reference Aitken KL, Hawkins M. A: stereotactic body radiotherapy for liver metastases. Clin Oncol. 2015;27(5):307–15.CrossRef Aitken KL, Hawkins M. A: stereotactic body radiotherapy for liver metastases. Clin Oncol. 2015;27(5):307–15.CrossRef
7.
go back to reference Fundowicz M, Adamczyk M, Kołodziej-Dybaś A. Stereotactic body radiation therapy for liver metastasis—the linac-based greater Poland cancer Centre practice. Rep Pract Oncol Radiother. 2017;22(2):158–62.CrossRef Fundowicz M, Adamczyk M, Kołodziej-Dybaś A. Stereotactic body radiation therapy for liver metastasis—the linac-based greater Poland cancer Centre practice. Rep Pract Oncol Radiother. 2017;22(2):158–62.CrossRef
8.
go back to reference Koay EJ, Owen D, Das P. Radiation-induced liver disease and modern radiotherapy. Semin Radiat Oncol. 2018;28(4):321–31.CrossRef Koay EJ, Owen D, Das P. Radiation-induced liver disease and modern radiotherapy. Semin Radiat Oncol. 2018;28(4):321–31.CrossRef
9.
go back to reference Suramo I, Päivänsalo M, Myllylä V. Cranio-caudal movements of the liver, pancreas and kidneys in respiration. Acta Radiol Diagn (Stockh). 1984;25(2):129–31.CrossRef Suramo I, Päivänsalo M, Myllylä V. Cranio-caudal movements of the liver, pancreas and kidneys in respiration. Acta Radiol Diagn (Stockh). 1984;25(2):129–31.CrossRef
10.
go back to reference Langen KM, Jones DTL. Organ motion and its management. Int J Radiat Oncol Biol Phys. 2001;50(1):265–78.CrossRef Langen KM, Jones DTL. Organ motion and its management. Int J Radiat Oncol Biol Phys. 2001;50(1):265–78.CrossRef
11.
go back to reference Tanguturi SK, Wo JY, Zhu AX, Dawson LA, Hong TS. Radiation therapy for liver tumors: ready for inclusion in guidelines? Oncologist. 2014;9(8):868–79.CrossRef Tanguturi SK, Wo JY, Zhu AX, Dawson LA, Hong TS. Radiation therapy for liver tumors: ready for inclusion in guidelines? Oncologist. 2014;9(8):868–79.CrossRef
12.
go back to reference Rosu M, Dawson LA, Balter JM, McShan DL, Lawrence TS, Ten Haken RK. Alterations in normal liver doses due to organ motion. Int J Radiat Oncol Biol Phys. 2003;57(5):1472–9.CrossRef Rosu M, Dawson LA, Balter JM, McShan DL, Lawrence TS, Ten Haken RK. Alterations in normal liver doses due to organ motion. Int J Radiat Oncol Biol Phys. 2003;57(5):1472–9.CrossRef
13.
go back to reference Velec M, Moseley JL, Eccles CL, Craig T, Sharpe MB, Dawson LA, Brock KK. Effect of breathing motion on radiotherapy dose accumulation in the abdomen using deformable registration. Int J Radiat Oncol Biol Phys. 2011;80(1):265–72.CrossRef Velec M, Moseley JL, Eccles CL, Craig T, Sharpe MB, Dawson LA, Brock KK. Effect of breathing motion on radiotherapy dose accumulation in the abdomen using deformable registration. Int J Radiat Oncol Biol Phys. 2011;80(1):265–72.CrossRef
14.
go back to reference Velec M, Moseley JL, Craig T, Dawson LA, Brock KK. Accumulated dose in liver stereotactic body radiotherapy: positioning, breathing, and deformation effects. Int J Radiat Oncol Biol Phys. 2012;83(4):1132–40.CrossRef Velec M, Moseley JL, Craig T, Dawson LA, Brock KK. Accumulated dose in liver stereotactic body radiotherapy: positioning, breathing, and deformation effects. Int J Radiat Oncol Biol Phys. 2012;83(4):1132–40.CrossRef
15.
go back to reference Case RB, Sonke JJ, Moseley DJ, Kim J, Brock KK, Dawson LA. Inter- and intrafraction variability in liver position in non–breath-hold stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2009;75(1):302–8.CrossRef Case RB, Sonke JJ, Moseley DJ, Kim J, Brock KK, Dawson LA. Inter- and intrafraction variability in liver position in non–breath-hold stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2009;75(1):302–8.CrossRef
16.
go back to reference Eccles CL, Dawson LA, Moseley JL, Brock KK. Interfraction liver shape variability and impact on GTV position during liver stereotactic radiotherapy using abdominal compression. Int J Radiat Oncol Biol Phys. 2011;80(3):938–46.CrossRef Eccles CL, Dawson LA, Moseley JL, Brock KK. Interfraction liver shape variability and impact on GTV position during liver stereotactic radiotherapy using abdominal compression. Int J Radiat Oncol Biol Phys. 2011;80(3):938–46.CrossRef
17.
go back to reference Cao M, Lasley FD, Das IJ, Desrosiers CM, Slessinger ED, Cardenes HR. Evaluation of rotational errors in treatment setup of stereotactic body radiation therapy of liver cancer. Int J Radiat Oncol Biol Phys. 2012;84(3):e435–40.CrossRef Cao M, Lasley FD, Das IJ, Desrosiers CM, Slessinger ED, Cardenes HR. Evaluation of rotational errors in treatment setup of stereotactic body radiation therapy of liver cancer. Int J Radiat Oncol Biol Phys. 2012;84(3):e435–40.CrossRef
18.
go back to reference Bertholet J, Worm ES, Fledelius W, Høyer M, Poulsen PR. Time-resolved intrafraction target translations and rotations during stereotactic liver radiation therapy: implications for marker-based localization accuracy. Int J Radiat Oncol Biol Phys. 2016;95(2):802–9.CrossRef Bertholet J, Worm ES, Fledelius W, Høyer M, Poulsen PR. Time-resolved intrafraction target translations and rotations during stereotactic liver radiation therapy: implications for marker-based localization accuracy. Int J Radiat Oncol Biol Phys. 2016;95(2):802–9.CrossRef
19.
go back to reference Saw CB, Chen H, Wagner H Jr. Implementation of fiducial-based image registration in the Cyberknife robotic system. Med Dosim. 2008;33(2):156–60.CrossRef Saw CB, Chen H, Wagner H Jr. Implementation of fiducial-based image registration in the Cyberknife robotic system. Med Dosim. 2008;33(2):156–60.CrossRef
20.
go back to reference Park JC, Park SH, Kim JH, Yoon SM, Song SY, Liu Z, Song B, Kauweloa K, Webster MJ, Sandhu A, Mell LK, Jiang SB, Mundt AJ, Song WY. Liver motion during cone beam computed tomography guided stereotactic body radiation therapy. Med Phys. 2012;39(10):6431–42.CrossRef Park JC, Park SH, Kim JH, Yoon SM, Song SY, Liu Z, Song B, Kauweloa K, Webster MJ, Sandhu A, Mell LK, Jiang SB, Mundt AJ, Song WY. Liver motion during cone beam computed tomography guided stereotactic body radiation therapy. Med Phys. 2012;39(10):6431–42.CrossRef
21.
go back to reference Shimohigashi Y, Toya R, Saito T, Ikeda O, Maruyama M, Yonemura K, Nakaguchi Y, Kai Y, Yamashita Y, Oya N, Araki F. Tumor motion changes in stereotactic body radiotherapy for liver tumors: an evaluation based on four-dimensional cone-beam computed tomography and fiducial markers. Radiat Oncol. 2017;12(1):61.CrossRef Shimohigashi Y, Toya R, Saito T, Ikeda O, Maruyama M, Yonemura K, Nakaguchi Y, Kai Y, Yamashita Y, Oya N, Araki F. Tumor motion changes in stereotactic body radiotherapy for liver tumors: an evaluation based on four-dimensional cone-beam computed tomography and fiducial markers. Radiat Oncol. 2017;12(1):61.CrossRef
22.
go back to reference Xu Q, Hanna G, Grimm J, Kubicek G, Pahlajani N, Asbell S, Fan J, Chen Y, LaCouture T. Quantifying rigid and nonrigid motion of liver tumors during stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(1):94–101.CrossRef Xu Q, Hanna G, Grimm J, Kubicek G, Pahlajani N, Asbell S, Fan J, Chen Y, LaCouture T. Quantifying rigid and nonrigid motion of liver tumors during stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(1):94–101.CrossRef
23.
go back to reference Arun KS, Huang TS, Blostein SD. Least-squares fitting of two 3-d point sets. IEEE Trans Pattern Anal Mach Intell. 1987;9(5):698–700.CrossRef Arun KS, Huang TS, Blostein SD. Least-squares fitting of two 3-d point sets. IEEE Trans Pattern Anal Mach Intell. 1987;9(5):698–700.CrossRef
24.
go back to reference Murphy MJ. Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys. 2002;29(3):334–44.CrossRef Murphy MJ. Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys. 2002;29(3):334–44.CrossRef
25.
go back to reference Professor Sir William Rowan Hamilton LL.D. V.P.R.I.A. F.R.A.S. XXXVI. On quaternions; or on a new system of imaginaries in algebra. Philosophical Magazine Series 3, 31(207):214–219. Professor Sir William Rowan Hamilton LL.D. V.P.R.I.A. F.R.A.S. XXXVI. On quaternions; or on a new system of imaginaries in algebra. Philosophical Magazine Series 3, 31(207):214–219.
26.
go back to reference Tehrani JN, O'Brien RT, Poulsen PR, Keall P. Real-time estimation of prostate tumor rotation and translation with a kv imaging system based on an iterative closest point algorithm. Phys Med Biol. 2013;58(23):8517–33.CrossRef Tehrani JN, O'Brien RT, Poulsen PR, Keall P. Real-time estimation of prostate tumor rotation and translation with a kv imaging system based on an iterative closest point algorithm. Phys Med Biol. 2013;58(23):8517–33.CrossRef
27.
go back to reference Park SJ, Ionascu D, Hacker F, Mamon H, Berbeco R. Automatic marker detection and 3D position reconstruction using cine EPID images for SBRT verification. Med Phys. 2009;36(10):4536–46.CrossRef Park SJ, Ionascu D, Hacker F, Mamon H, Berbeco R. Automatic marker detection and 3D position reconstruction using cine EPID images for SBRT verification. Med Phys. 2009;36(10):4536–46.CrossRef
28.
go back to reference Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.CrossRef Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.CrossRef
29.
go back to reference Besl P, McKay ND. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell. 1992;14(2):239–56.CrossRef Besl P, McKay ND. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell. 1992;14(2):239–56.CrossRef
30.
go back to reference Horn BKP. Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A. 1987;4(2):629–42.CrossRef Horn BKP. Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A. 1987;4(2):629–42.CrossRef
31.
go back to reference Almhdie A, Léger C, Deriche M, Lédée R. 3D registration using a new implementation of the ICP algorithm based on a comprehensive lookup matrix: application to medical imaging. Pattern Recogn Lett. 2007;28(12):1523–33.CrossRef Almhdie A, Léger C, Deriche M, Lédée R. 3D registration using a new implementation of the ICP algorithm based on a comprehensive lookup matrix: application to medical imaging. Pattern Recogn Lett. 2007;28(12):1523–33.CrossRef
32.
go back to reference Pan M-s, Tang J-t, Rong Q-s, Zhang F. Medical image registration using modified iterative closest points. Int J Numer Method Biomed Eng. 2011;27(8):1150–66.CrossRef Pan M-s, Tang J-t, Rong Q-s, Zhang F. Medical image registration using modified iterative closest points. Int J Numer Method Biomed Eng. 2011;27(8):1150–66.CrossRef
33.
go back to reference Mao W, Wiersma RD, Xing L. Fast internal marker tracking algorithm for onboard mv and kv imaging systems. Med Phys. 2008;35(5):1942–9.CrossRef Mao W, Wiersma RD, Xing L. Fast internal marker tracking algorithm for onboard mv and kv imaging systems. Med Phys. 2008;35(5):1942–9.CrossRef
34.
go back to reference Poulsen PR, Fledelius W, Keall PJ, Weiss E, Lu J, Brackbill E, Hugo GD. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections. Med Phys. 2011;38(4):2151–6.CrossRef Poulsen PR, Fledelius W, Keall PJ, Weiss E, Lu J, Brackbill E, Hugo GD. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections. Med Phys. 2011;38(4):2151–6.CrossRef
Metadata
Title
Estimating intrafraction tumor motion during fiducial-based liver stereotactic radiotherapy via an iterative closest point (ICP) algorithm
Authors
Wu-zhou Li
Zhi-wen Liang
Yi Cao
Ting-ting Cao
Hong Quan
Zhi-yong Yang
Qin Li
Zhi-tao Dai
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Radiotherapy
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1401-2

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue