Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Esophageal Cancer | Review

Effect of modern high-dose versus standard-dose radiation in definitive concurrent chemo-radiotherapy on outcome of esophageal squamous cell cancer: a meta-analysis

Authors: He-San Luo, He-Cheng Huang, Lian-Xing Lin

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background and objectives

Radiation Therapy Oncology Group (RTOG) 94–05 has demonstrated that higher dose radiation didn’t improve outcome of patients with esophageal cancer (EC). However, several retrospective studies showed that a higher dose radiation based on modern radiotherapy techniques could improve overall survival (OS) and local control rate (LCR) of patients with EC, especially esophageal squamous cell cancer (ESCC). As trials have provided updated and controversial data, we performed this updated meta-analysis to investigate whether high-dose (> = 60 Gy) radiotherapy in definitive concurrent chemo-radiotherapy (CCRT) could yield benefit compared to standard dose radiotherapy.

Methods

A systematic literature search was carried out in the database of MEDLINE, PubMed and Embase. All studies published between 1 January 1990 and 31 December 2018 on the association between radiation dose and curative efficiency in EC were included in this meta-analysis. The hazard ratio (HR) was used to evaluate the time-to-event data employing RevMan version 5.3.

Results

Eight articles with a total of 3736 patients were finally included. Results indicated that there was a significant benefit in favor of high dose radiotherapy (HD-RT) regarding OS (HR = 0.78, 95%CI: 0.72–0.84, p < 0.001; 2-year OS risk ratio (RR) = 1.25, 95%CI: 1.14–1.37, p < 0.001), progression-free survival (PFS) (P = 0.001, HR = 0.7, 95%CI: 0.57–0.87) and LRFS (P < 0.001, HR = 0.52, 95%CI: 0.36–0.74) .

Conclusions

HD-RT (> = 60 Gy) based on modern radiotherapy techniques in definitive CCRT appears to improve OS, PFS amd LRFS compared to the SD-RT in patients with ESCC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.CrossRef Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.CrossRef
2.
go back to reference Feng RM, Zong YN, Cao SM, et al. Current cancer situation in China: good or bad news from the 2018 global Cancer statistics? Cancer Commun (Lond). 2019;39(1):22.CrossRef Feng RM, Zong YN, Cao SM, et al. Current cancer situation in China: good or bad news from the 2018 global Cancer statistics? Cancer Commun (Lond). 2019;39(1):22.CrossRef
3.
go back to reference Zeng H, Zheng R, Zhang S, et al. Esophageal cancer statistics in China, 2011: estimates based on 177 cancer registries. Thorac Cancer. 2016;7(2):232–7.CrossRef Zeng H, Zheng R, Zhang S, et al. Esophageal cancer statistics in China, 2011: estimates based on 177 cancer registries. Thorac Cancer. 2016;7(2):232–7.CrossRef
4.
go back to reference Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.CrossRef Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.CrossRef
5.
go back to reference Cooper JS, Guo MD, Herskovic A, et al. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation therapy oncology group. JAMA. 1999;281(17):1623–7.CrossRef Cooper JS, Guo MD, Herskovic A, et al. Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation therapy oncology group. JAMA. 1999;281(17):1623–7.CrossRef
6.
go back to reference Minsky BD, Pajak TF, Ginsberg RJ, et al. INT 0123 (radiation therapy oncology group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol. 2002;20(5):1167–74.CrossRef Minsky BD, Pajak TF, Ginsberg RJ, et al. INT 0123 (radiation therapy oncology group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol. 2002;20(5):1167–74.CrossRef
7.
go back to reference Li M, Zhang X, Zhao F, et al. Involved-field radiotherapy for esophageal squamous cell carcinoma: theory and practice. Radiat Oncol. 2016;11:18.CrossRef Li M, Zhang X, Zhao F, et al. Involved-field radiotherapy for esophageal squamous cell carcinoma: theory and practice. Radiat Oncol. 2016;11:18.CrossRef
8.
go back to reference Song T, Liang X, Fang M, et al. High-dose versus conventional-dose irradiation in cisplatin-based definitive concurrent chemoradiotherapy for esophageal cancer: a systematic review and pooled analysis. Expert Rev Anticancer Ther. 2015;15(10):1157–69.CrossRef Song T, Liang X, Fang M, et al. High-dose versus conventional-dose irradiation in cisplatin-based definitive concurrent chemoradiotherapy for esophageal cancer: a systematic review and pooled analysis. Expert Rev Anticancer Ther. 2015;15(10):1157–69.CrossRef
9.
go back to reference Fan CY, Su YF, Huang WY, et al. Definitive radiotherapy dose escalation with chemotherapy for treating non-metastatic oesophageal cancer. Sci Rep. 2018;8(1):12877.CrossRef Fan CY, Su YF, Huang WY, et al. Definitive radiotherapy dose escalation with chemotherapy for treating non-metastatic oesophageal cancer. Sci Rep. 2018;8(1):12877.CrossRef
10.
go back to reference Yu W, Cai XW, Liu Q, et al. Safety of dose escalation by simultaneous integrated boosting radiation dose within the primary tumor guided by (18)FDG-PET/CT for esophageal cancer. Radiother Oncol. 2015;114(2):195–200.CrossRef Yu W, Cai XW, Liu Q, et al. Safety of dose escalation by simultaneous integrated boosting radiation dose within the primary tumor guided by (18)FDG-PET/CT for esophageal cancer. Radiother Oncol. 2015;114(2):195–200.CrossRef
11.
go back to reference Chen J, Guo H, Zhai T, et al. Radiation dose escalation by simultaneous modulated accelerated radiotherapy combined with chemotherapy for esophageal cancer: a phase II study. Oncotarget. 2016;7(16):22711–9.PubMedPubMedCentral Chen J, Guo H, Zhai T, et al. Radiation dose escalation by simultaneous modulated accelerated radiotherapy combined with chemotherapy for esophageal cancer: a phase II study. Oncotarget. 2016;7(16):22711–9.PubMedPubMedCentral
12.
go back to reference Clavier JB, Antoni D, Atlani D, et al. Definitive chemoradiotherapy for esophageal cancer: 66Gy versus 50Gy, a retrospective study. Cancer Radiother. 2013;17(3):221–8.CrossRef Clavier JB, Antoni D, Atlani D, et al. Definitive chemoradiotherapy for esophageal cancer: 66Gy versus 50Gy, a retrospective study. Cancer Radiother. 2013;17(3):221–8.CrossRef
13.
go back to reference Suh YG, Lee IJ, Koom WS, et al. High-dose versus standard-dose radiotherapy with concurrent chemotherapy in stages II-III esophageal cancer. Jpn J Clin Oncol. 2014;44(6):534–40.CrossRef Suh YG, Lee IJ, Koom WS, et al. High-dose versus standard-dose radiotherapy with concurrent chemotherapy in stages II-III esophageal cancer. Jpn J Clin Oncol. 2014;44(6):534–40.CrossRef
14.
go back to reference Chen CY, Li CC, Chien CR. Does higher radiation dose lead to better outcome for non-operated localized esophageal squamous cell carcinoma patients who received concurrent chemoradiotherapy? A population based propensity-score matched analysis. Radiother Oncol. 2016;120(1):136–9.CrossRef Chen CY, Li CC, Chien CR. Does higher radiation dose lead to better outcome for non-operated localized esophageal squamous cell carcinoma patients who received concurrent chemoradiotherapy? A population based propensity-score matched analysis. Radiother Oncol. 2016;120(1):136–9.CrossRef
15.
go back to reference Kim HJ, Suh YG, Lee YC, et al. Dose-response relationship between radiation dose and loco-regional control in patients with stage II-III esophageal Cancer treated with definitive Chemoradiotherapy. Cancer Res Treat. 2017;49(3):669–77.CrossRef Kim HJ, Suh YG, Lee YC, et al. Dose-response relationship between radiation dose and loco-regional control in patients with stage II-III esophageal Cancer treated with definitive Chemoradiotherapy. Cancer Res Treat. 2017;49(3):669–77.CrossRef
16.
go back to reference Deng Y, Bian C, Tao H, et al. Improved survival with higher radiation dose for esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy. Oncotarget. 2017;8(45):79662–9.CrossRef Deng Y, Bian C, Tao H, et al. Improved survival with higher radiation dose for esophageal squamous cell carcinoma patients treated with definitive chemoradiotherapy. Oncotarget. 2017;8(45):79662–9.CrossRef
17.
go back to reference Chang CL, Tsai HC, Lin WC, et al. Dose escalation intensity-modulated radiotherapy-based concurrent chemoradiotherapy is effective for advanced-stage thoracic esophageal squamous cell carcinoma. Radiother Oncol. 2017;125(1):73–9.CrossRef Chang CL, Tsai HC, Lin WC, et al. Dose escalation intensity-modulated radiotherapy-based concurrent chemoradiotherapy is effective for advanced-stage thoracic esophageal squamous cell carcinoma. Radiother Oncol. 2017;125(1):73–9.CrossRef
18.
go back to reference Chen H, Zhou L, Yang Y, et al. Clinical effect of radiotherapy combined with chemotherapy for non-surgical treatment of the esophageal squamous cell carcinoma. Med Sci Monit. 2018;24:4183–91.CrossRef Chen H, Zhou L, Yang Y, et al. Clinical effect of radiotherapy combined with chemotherapy for non-surgical treatment of the esophageal squamous cell carcinoma. Med Sci Monit. 2018;24:4183–91.CrossRef
19.
go back to reference Fletcher GH. Clinical dose-response curves of human malignant epithelial tumours. Br J Radiol. 1973;46(541):1–12.CrossRef Fletcher GH. Clinical dose-response curves of human malignant epithelial tumours. Br J Radiol. 1973;46(541):1–12.CrossRef
20.
go back to reference Tong DK, Law S, Kwong DL, et al. Histological regression of squamous esophageal carcinoma assessed by percentage of residual viable cells after neoadjuvant chemoradiation is an important prognostic factor. Ann Surg Oncol. 2010;17(8):2184–92.CrossRef Tong DK, Law S, Kwong DL, et al. Histological regression of squamous esophageal carcinoma assessed by percentage of residual viable cells after neoadjuvant chemoradiation is an important prognostic factor. Ann Surg Oncol. 2010;17(8):2184–92.CrossRef
21.
go back to reference Chen Y, Zhu HP, Wang T, et al. What is the optimal radiation dose for non-operable esophageal cancer? Dissecting the evidence in a meta-analysis. Oncotarget. 2017;8(51):89095–107.PubMedPubMedCentral Chen Y, Zhu HP, Wang T, et al. What is the optimal radiation dose for non-operable esophageal cancer? Dissecting the evidence in a meta-analysis. Oncotarget. 2017;8(51):89095–107.PubMedPubMedCentral
22.
go back to reference Yamashita H, Nakagawa K, Tago M, et al. The intergroup/RTOG 85-01 concurrent chemoradiation regimen for Japanese esophageal cancer. Hepatogastroenterology. 2006;53(72):863–8.PubMed Yamashita H, Nakagawa K, Tago M, et al. The intergroup/RTOG 85-01 concurrent chemoradiation regimen for Japanese esophageal cancer. Hepatogastroenterology. 2006;53(72):863–8.PubMed
23.
go back to reference Ling TC, Slater JM, Nookala P, et al. Analysis of intensity-modulated radiation therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) for reducing perioperative cardiopulmonary complications in esophageal Cancer patients. Cancers (Basel). 2014;6(4):2356–68.CrossRef Ling TC, Slater JM, Nookala P, et al. Analysis of intensity-modulated radiation therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) for reducing perioperative cardiopulmonary complications in esophageal Cancer patients. Cancers (Basel). 2014;6(4):2356–68.CrossRef
24.
go back to reference Suntharalingam M, Winter K, Ilson D, et al. Effect of the addition of Cetuximab to paclitaxel, Cisplatin, and radiation therapy for patients with esophageal Cancer: the NRG oncology RTOG 0436 phase 3 randomized clinical trial. JAMA Oncol. 2017;3(11):1520–8.CrossRef Suntharalingam M, Winter K, Ilson D, et al. Effect of the addition of Cetuximab to paclitaxel, Cisplatin, and radiation therapy for patients with esophageal Cancer: the NRG oncology RTOG 0436 phase 3 randomized clinical trial. JAMA Oncol. 2017;3(11):1520–8.CrossRef
25.
go back to reference Hsieh HY, Hsu CP, Yeh HL, et al. Definite intensity-modulated radiotherapy with concurrent chemotherapy more than 4 cycles improved survival for patients with locally-advanced or inoperable esophageal squamous cell carcinoma. Kaohsiung J Med Sci. 2018;34(5):281–9.CrossRef Hsieh HY, Hsu CP, Yeh HL, et al. Definite intensity-modulated radiotherapy with concurrent chemotherapy more than 4 cycles improved survival for patients with locally-advanced or inoperable esophageal squamous cell carcinoma. Kaohsiung J Med Sci. 2018;34(5):281–9.CrossRef
26.
go back to reference Zhang W, Luo Y, Wang X, et al. Dose-escalated radiotherapy improved survival for esophageal cancer patients with a clinical complete response after standard-dose radiotherapy with concurrent chemotherapy. Cancer Manag Res. 2018;10:2675–82.CrossRef Zhang W, Luo Y, Wang X, et al. Dose-escalated radiotherapy improved survival for esophageal cancer patients with a clinical complete response after standard-dose radiotherapy with concurrent chemotherapy. Cancer Manag Res. 2018;10:2675–82.CrossRef
27.
go back to reference Brower JV, Chen S, Bassetti MF, et al. Radiation dose escalation in esophageal Cancer revisited: a contemporary analysis of the National Cancer Data Base, 2004 to 2012. Int J Radiat Oncol Biol Phys. 2016;96(5):985–93.CrossRef Brower JV, Chen S, Bassetti MF, et al. Radiation dose escalation in esophageal Cancer revisited: a contemporary analysis of the National Cancer Data Base, 2004 to 2012. Int J Radiat Oncol Biol Phys. 2016;96(5):985–93.CrossRef
28.
go back to reference He L, Allen PK, Potter A, et al. Re-evaluating the optimal radiation dose for definitive chemoradiotherapy for esophageal squamous cell carcinoma. J Thorac Oncol. 2014;9(9):1398–405.CrossRef He L, Allen PK, Potter A, et al. Re-evaluating the optimal radiation dose for definitive chemoradiotherapy for esophageal squamous cell carcinoma. J Thorac Oncol. 2014;9(9):1398–405.CrossRef
Metadata
Title
Effect of modern high-dose versus standard-dose radiation in definitive concurrent chemo-radiotherapy on outcome of esophageal squamous cell cancer: a meta-analysis
Authors
He-San Luo
He-Cheng Huang
Lian-Xing Lin
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1386-x

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue