Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Glioblastoma | Research

Efficacy of moderately hypofractionated simultaneous integrated boost intensity-modulated radiotherapy combined with temozolomide for the postoperative treatment of glioblastoma multiforme: a single-institution experience

Authors: Liangzhi Zhong, Lu Chen, Shengqing Lv, Qingrui Li, Guangpeng Chen, Wen Luo, Pu Zhou, Guanghui Li

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Purpose

Despite recent advances in multimodal treatments, the prognosis of patients with glioblastoma multiforme (GBM) remains poor. The aim of this study was to evaluate the efficacy of moderately hypofractionated simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) combined with temozolomide (TMZ) for the postoperative treatment of GBM.

Materials and methods

From February 2012 to February 2018, 80 patients with newly diagnosed and histologically confirmed GBM in our institute were reviewed retrospectively. All patients underwent complete resection or partial resection surgery and then received hypofractionated SIB-IMRT with concomitant TMZ followed by adjuvant TMZ. A total dose of 64 Gy over 27 fractions was delivered to the gross tumor volume (GTV), clinical target volume 1 (CTV1) received 60 Gy over 27 fractions, and CTV2 received 54 Gy over 27 fractions. The progression-free survival (PFS) and overall survival (OS) rates and the toxicities were evaluated. Prognostic factors were analyzed using univariate and multivariate Cox models.

Results

The median follow-up was 16 months (range, 5~72 months). The median PFS was 15 months, and the 1-, 2-, and 3-year PFS rates were 56.0, 27.6, and 19.5%, respectively. The median OS was 21 months, and the 1-, 2-, 3-, and 5-year OS rates were 77.6, 41.6, 32.8, and 13.4%, respectively. The toxicities were mild and acceptable. Age, KPS scores and the total number of TMZ cycles were significant factors influencing patient survival.

Conclusion

Moderately hypofractionated SIB-IMRT combined with TMZ is a feasible and safe treatment option with mild toxicity and good PFS and OS.
Literature
1.
go back to reference Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.CrossRef Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.CrossRef
2.
go back to reference Chamberlain MC. Radiographic patterns of relapse in glioblastoma. J Neuro-Oncol. 2011;101(2):319–23.CrossRef Chamberlain MC. Radiographic patterns of relapse in glioblastoma. J Neuro-Oncol. 2011;101(2):319–23.CrossRef
3.
go back to reference Dobelbower MC, Burnet Iii OL, Nordal RA, et al. Patterns of failure for glioblastoma multiforme following concurrent radiation and temozolomide. J Med Imaging Radiat Oncol. 2011;55(1):77–81.CrossRef Dobelbower MC, Burnet Iii OL, Nordal RA, et al. Patterns of failure for glioblastoma multiforme following concurrent radiation and temozolomide. J Med Imaging Radiat Oncol. 2011;55(1):77–81.CrossRef
4.
go back to reference McDonald MW, Shu HK, Curran WJ Jr, et al. Pattern of failure after limited radiotherapy and temozolomide for glioblastoma. Int J Radiat Oncol Biol Phys. 2011;79(1):130–6.CrossRef McDonald MW, Shu HK, Curran WJ Jr, et al. Pattern of failure after limited radiotherapy and temozolomide for glioblastoma. Int J Radiat Oncol Biol Phys. 2011;79(1):130–6.CrossRef
5.
go back to reference Minniti G, Amelio D, Amichetti M, et al. Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother Oncol. 2010;97(3):377–81.CrossRef Minniti G, Amelio D, Amichetti M, et al. Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother Oncol. 2010;97(3):377–81.CrossRef
6.
go back to reference Curran WJ Jr, Scott CB, Horton J, et al. Recursive partitioning analysis in three radiation therapy oncology group malignant glioma trials. J Natl Cancer Inst. 1993;85(9):704–10.CrossRef Curran WJ Jr, Scott CB, Horton J, et al. Recursive partitioning analysis in three radiation therapy oncology group malignant glioma trials. J Natl Cancer Inst. 1993;85(9):704–10.CrossRef
7.
go back to reference Nakagawa K, Aoki Y, Fujimaki T, et al. High dose conformal radiotherapy influenced the pattern of failure but did not improve survival in glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 1998;40(5):1141–9.CrossRef Nakagawa K, Aoki Y, Fujimaki T, et al. High dose conformal radiotherapy influenced the pattern of failure but did not improve survival in glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 1998;40(5):1141–9.CrossRef
8.
go back to reference Wang JZ, Li XA. Impact of tumor repopulation on radiotherapy planning. Int J Radiat Oncol Biol Phys. 2005;61(1):220–7.CrossRef Wang JZ, Li XA. Impact of tumor repopulation on radiotherapy planning. Int J Radiat Oncol Biol Phys. 2005;61(1):220–7.CrossRef
9.
go back to reference Floyd NS, Woo SY, Teh BS, et al. Hypofractionated intensity-modulated radiotherapy for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2004;58(3):721–6.CrossRef Floyd NS, Woo SY, Teh BS, et al. Hypofractionated intensity-modulated radiotherapy for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2004;58(3):721–6.CrossRef
10.
go back to reference Iuchi T, Hatano K, Narita Y, et al. Hypofractionated highdose irradiation for the treatment of malignant astrocytomas using simultaneous integrated boost technique by IMRT. Int J Radiat Oncol Biol Phys. 2006;64(5):1317–24.CrossRef Iuchi T, Hatano K, Narita Y, et al. Hypofractionated highdose irradiation for the treatment of malignant astrocytomas using simultaneous integrated boost technique by IMRT. Int J Radiat Oncol Biol Phys. 2006;64(5):1317–24.CrossRef
11.
go back to reference Suzuki M, Nakamatso K, Kanamori S, et al. Feasibility study of the simultaneous integrated boost (SIB) method for malignant gliomas using intensity-modulated radiotherapy (IMRT). Jpn J Clin Oncol. 2003;33(6):271–7.CrossRef Suzuki M, Nakamatso K, Kanamori S, et al. Feasibility study of the simultaneous integrated boost (SIB) method for malignant gliomas using intensity-modulated radiotherapy (IMRT). Jpn J Clin Oncol. 2003;33(6):271–7.CrossRef
12.
go back to reference Cho KH, Kim JY, Lee SH, et al. Simultaneous integrated boost intensity-modulated radiotherapy in patients with highgrade gliomas. Int J Radiat Oncol Biol Phys. 2010;78(2):390–7.CrossRef Cho KH, Kim JY, Lee SH, et al. Simultaneous integrated boost intensity-modulated radiotherapy in patients with highgrade gliomas. Int J Radiat Oncol Biol Phys. 2010;78(2):390–7.CrossRef
13.
go back to reference Panet-Raymond V, Souhami L, Roberge D, et al. Accelerated Hypofractionated intensity-modulated radiotherapy with concurrent and adjuvant Temozolomide for patients with glioblastoma Multiforme: a safety and efficacy analysis. Int J Radiat Oncol Biol Phys. 2009;73(2):473–8.CrossRef Panet-Raymond V, Souhami L, Roberge D, et al. Accelerated Hypofractionated intensity-modulated radiotherapy with concurrent and adjuvant Temozolomide for patients with glioblastoma Multiforme: a safety and efficacy analysis. Int J Radiat Oncol Biol Phys. 2009;73(2):473–8.CrossRef
14.
go back to reference Chen C, Damek D, Gaspar LE, Waziri A, et al. Phase I trial of hypofractionated intensitymodulated radiotherapy with temozolomide chemotherapy for patients with newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2011;81(4):1066–74.CrossRef Chen C, Damek D, Gaspar LE, Waziri A, et al. Phase I trial of hypofractionated intensitymodulated radiotherapy with temozolomide chemotherapy for patients with newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2011;81(4):1066–74.CrossRef
15.
go back to reference Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.CrossRef Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.CrossRef
16.
go back to reference Yoon SM, Kim JH, Kim SJ, et al. Hypofractionated intensity-modulated radiotherapy using simultaneous integrated boost technique with concurrent and adjuvant temozolomide for glioblastoma. Tumori. 2013;99(4):480–7.CrossRef Yoon SM, Kim JH, Kim SJ, et al. Hypofractionated intensity-modulated radiotherapy using simultaneous integrated boost technique with concurrent and adjuvant temozolomide for glioblastoma. Tumori. 2013;99(4):480–7.CrossRef
17.
go back to reference Sultanem K, Patrocinio H, Lambert C, et al. The use of hypofractionated intensity-modulated irradiation in the treatment of glioblastoma multiforme: preliminary results of a prospective trial. Int J Radiat Oncol Biol Phys. 2004;58(1):247–52.CrossRef Sultanem K, Patrocinio H, Lambert C, et al. The use of hypofractionated intensity-modulated irradiation in the treatment of glioblastoma multiforme: preliminary results of a prospective trial. Int J Radiat Oncol Biol Phys. 2004;58(1):247–52.CrossRef
18.
go back to reference Mallick S, Kunhiparambath H, Gupta S, et al. Hypofractionated accelerated radiotherapy (HART) with concurrent and adjuvant temozolomide in newly diagnosed glioblastoma: a phase II randomized trial (HART-GBM trial). J Neuro-Oncol. 2018;140(1):75–82.CrossRef Mallick S, Kunhiparambath H, Gupta S, et al. Hypofractionated accelerated radiotherapy (HART) with concurrent and adjuvant temozolomide in newly diagnosed glioblastoma: a phase II randomized trial (HART-GBM trial). J Neuro-Oncol. 2018;140(1):75–82.CrossRef
19.
go back to reference Scoccianti S, Krengli M, Marrazzo L, et al. Hypofractionated radiotherapy with simultaneous integrated boost (SIB) plus temozolomide in good prognosis patients with glioblastoma: a multicenter phase II study by the brain study Group of the Italian Association of radiation oncology (AIRO). Radiol Med. 2018;123(1):48–62.CrossRef Scoccianti S, Krengli M, Marrazzo L, et al. Hypofractionated radiotherapy with simultaneous integrated boost (SIB) plus temozolomide in good prognosis patients with glioblastoma: a multicenter phase II study by the brain study Group of the Italian Association of radiation oncology (AIRO). Radiol Med. 2018;123(1):48–62.CrossRef
20.
go back to reference Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190–8.CrossRef Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190–8.CrossRef
21.
go back to reference Darefsky AS, King JT Jr, Dubrow R. Adult glioblastoma multiforme survival in the temozolomide era: a population-based analysis of surveillance, epidemiology, and end results registries. Cancer. 2012;118(8):2163–72.CrossRef Darefsky AS, King JT Jr, Dubrow R. Adult glioblastoma multiforme survival in the temozolomide era: a population-based analysis of surveillance, epidemiology, and end results registries. Cancer. 2012;118(8):2163–72.CrossRef
22.
go back to reference Scoccianti S, Magrini SM, Ricardi U, et al. Patterns of care and survival in a retrospective analysis of 1059 patients with glioblastoma multiforme treated between 2002 and 2007: a multicenter study by the central nervous system study Group of Airo (Italian Association of Radiation Oncology). Neurosurgery. 2010;67(2):446–58.CrossRef Scoccianti S, Magrini SM, Ricardi U, et al. Patterns of care and survival in a retrospective analysis of 1059 patients with glioblastoma multiforme treated between 2002 and 2007: a multicenter study by the central nervous system study Group of Airo (Italian Association of Radiation Oncology). Neurosurgery. 2010;67(2):446–58.CrossRef
23.
go back to reference Darlix A, Baumann C, Lorgis V, et al. Prolonged administration of adjuvant temozolomide improves survival in adult patients with glioblastoma. Anticancer Res. 2013;33(8):3467–74.PubMed Darlix A, Baumann C, Lorgis V, et al. Prolonged administration of adjuvant temozolomide improves survival in adult patients with glioblastoma. Anticancer Res. 2013;33(8):3467–74.PubMed
24.
go back to reference Sherriff J, Tamangani J, Senthil L, et al. Patterns of relapse in glioblastoma multiforme following concomitant chemoradiotherapy with temozolomide. Br J Radiol. 2013;86(1022):20120414.CrossRef Sherriff J, Tamangani J, Senthil L, et al. Patterns of relapse in glioblastoma multiforme following concomitant chemoradiotherapy with temozolomide. Br J Radiol. 2013;86(1022):20120414.CrossRef
25.
go back to reference McDonald MW, Shu HG, Curran WJ, Crocker IR. Pattern of failure after limited margin radiotherapy and temozolomide for glioblastoma. Int J Radiat Oncol Biol Phys. 2011;79(1):130–6.CrossRef McDonald MW, Shu HG, Curran WJ, Crocker IR. Pattern of failure after limited margin radiotherapy and temozolomide for glioblastoma. Int J Radiat Oncol Biol Phys. 2011;79(1):130–6.CrossRef
26.
go back to reference Milano MT, Okunieff P, Donatello RS, et al. Patterns and timing of recurrence after temozolomide-based chemoradiation for glioblastoma. Int J Radiat Oncol Biol Phys. 2010;78(4):1147–55.CrossRef Milano MT, Okunieff P, Donatello RS, et al. Patterns and timing of recurrence after temozolomide-based chemoradiation for glioblastoma. Int J Radiat Oncol Biol Phys. 2010;78(4):1147–55.CrossRef
27.
go back to reference Schiffer D. Neuropathology and imaging: the ways in which glioma spreads and varies in its histological aspect. In: Walker M.D.,Thomas D.G.T., editors. Biology of brain tumour. Boston: Springer; 1986. p. 163–72.CrossRef Schiffer D. Neuropathology and imaging: the ways in which glioma spreads and varies in its histological aspect. In: Walker M.D.,Thomas D.G.T., editors. Biology of brain tumour. Boston: Springer; 1986. p. 163–72.CrossRef
Metadata
Title
Efficacy of moderately hypofractionated simultaneous integrated boost intensity-modulated radiotherapy combined with temozolomide for the postoperative treatment of glioblastoma multiforme: a single-institution experience
Authors
Liangzhi Zhong
Lu Chen
Shengqing Lv
Qingrui Li
Guangpeng Chen
Wen Luo
Pu Zhou
Guanghui Li
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1305-1

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue