Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Methodology

Methodology paper: a novel phantom setup for commissioning of scanned ion beam delivery and TPS

Authors: O. Jäkel, B. Ackermann, S. Ecker, M. Ellerbrock, P. Heeg, K. Henkner, M. Winter

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

Commissioning of treatment planning systems (TPS) and beam delivery for scanned light ion beams is an important quality assurance task. This requires measurement of large sets of high quality dosimetric data in anthropomorphic phantoms to benchmark the TPS and dose delivery under realistic conditions.

Method

A novel measurement setup is described, which allows for an efficient collection of a large set of accurate dose data in complex phantom geometries. This setup allows dose measurements based on a set of 24 small volume ionization chambers calibrated in dose to water and mounted in a holder, which can be freely positioned in a water phantom with various phantoms mounted in front of the water tank. The phantoms can be scanned in a CT and a CT-based treatment planning can be performed for a direct benchmark of the dose calculation algorithm in various situations.

Results

The system has been used for acceptance testing in scanned light ion beam therapy at Heidelberg Ion Beam Therapy Center for scanned proton and carbon ion beams. It demonstrated to be useful to collect large amounts of high quality data for comparison with the TPS calculation using various phantom geometries.

Conclusion

The setup is an efficient tool for commissioning and verification of treatment planning systems. It is especially suited for dynamic beam delivery, as many data points can be obtained during a single plan delivery, but can be adapted also for other dynamic therapies, like rotational IMRT.
Literature
1.
go back to reference Fraas B, et al. AAPM TG 53: quality assurance for clinical radiotherapy treatment planning. Med Phys. 1998;25:1773.CrossRef Fraas B, et al. AAPM TG 53: quality assurance for clinical radiotherapy treatment planning. Med Phys. 1998;25:1773.CrossRef
2.
go back to reference Int. Atomic Energy Agency, Technical document TECDOC-1583. Commissioning of radiotherapy treatment planning systems - testing for typical external beam treatment techniques. Vienna: Int. Atomic Energy Agency; 2008. Int. Atomic Energy Agency, Technical document TECDOC-1583. Commissioning of radiotherapy treatment planning systems - testing for typical external beam treatment techniques. Vienna: Int. Atomic Energy Agency; 2008.
3.
go back to reference Saini J, Maes D, Egan A, Bowen SR, St James S, Janson M, Wong T, Bloch C. Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations. Phys Med Biol. 2017;62(19):7659–81.CrossRef Saini J, Maes D, Egan A, Bowen SR, St James S, Janson M, Wong T, Bloch C. Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations. Phys Med Biol. 2017;62(19):7659–81.CrossRef
4.
go back to reference Sorriaux J, Testa M, Paganetti H, Orban de Xivry J, Lee JA, Traneus E, Souris K, Vynckier S, Sterpin E. Experimental assessment of proton dose calculation accuracy in inhomogeneous media. Phys Med. 2017;38:10–5.CrossRef Sorriaux J, Testa M, Paganetti H, Orban de Xivry J, Lee JA, Traneus E, Souris K, Vynckier S, Sterpin E. Experimental assessment of proton dose calculation accuracy in inhomogeneous media. Phys Med. 2017;38:10–5.CrossRef
5.
go back to reference Jäkel O, Hartmann GH, Karger CP, Heeg P. Quality assurance for a treatment planning system in scanned ion beam therapy. Med Phys. 2000;27:1588–600.CrossRef Jäkel O, Hartmann GH, Karger CP, Heeg P. Quality assurance for a treatment planning system in scanned ion beam therapy. Med Phys. 2000;27:1588–600.CrossRef
6.
go back to reference Karger CP, Jäkel O, Palmans H, Kanai T. Dosimetry for ion beam radiotherapy. Phys Med Biol. 2010;55:R193–234.CrossRef Karger CP, Jäkel O, Palmans H, Kanai T. Dosimetry for ion beam radiotherapy. Phys Med Biol. 2010;55:R193–234.CrossRef
7.
go back to reference Karger CP, Jäkel O, Hartmann GH, Heeg P. A system for three-dimensional Dosimetric verification of treatment plans in intensity-modulated radiotherapy with heavy ions. Med Phys. 1999;26:2125–32.CrossRef Karger CP, Jäkel O, Hartmann GH, Heeg P. A system for three-dimensional Dosimetric verification of treatment plans in intensity-modulated radiotherapy with heavy ions. Med Phys. 1999;26:2125–32.CrossRef
8.
go back to reference Fracchiolla F, Lorentini S, Widesott L, Schwarz M. Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning. Phys Med Biol. 2015;60:8601–19.CrossRef Fracchiolla F, Lorentini S, Widesott L, Schwarz M. Characterization and validation of a Monte Carlo code for independent dose calculation in proton therapy treatments with pencil beam scanning. Phys Med Biol. 2015;60:8601–19.CrossRef
9.
go back to reference Albertini F, Casiraghi M, Lorentini S, Rombi B, Lomax AJ. Experimental verification of IMPT treatment plans in an anthropomorphic phantom in the presence of delivery uncertainties. Phys Med Biol. 2011;56:4415–31.CrossRef Albertini F, Casiraghi M, Lorentini S, Rombi B, Lomax AJ. Experimental verification of IMPT treatment plans in an anthropomorphic phantom in the presence of delivery uncertainties. Phys Med Biol. 2011;56:4415–31.CrossRef
10.
go back to reference Mirandola A, Molinelli S, Vilches Freixas G, Mairani A, Gallio E, Panizza D, Russo S, Ciocca M, Donetti M, Magro G, Giordanengo S, Orecchia R. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for oncological Hadrontherapy. Med Phys. 2015;42(9):5287–300.CrossRef Mirandola A, Molinelli S, Vilches Freixas G, Mairani A, Gallio E, Panizza D, Russo S, Ciocca M, Donetti M, Magro G, Giordanengo S, Orecchia R. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for oncological Hadrontherapy. Med Phys. 2015;42(9):5287–300.CrossRef
11.
go back to reference Parodi K, Mairani A, Brons S, Hasch BG, Sommerer F, Naumann J, Jäkel O, Haberer T, Debus J. Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility. Phys Med Biol. 2012;57(12):3759–84.CrossRef Parodi K, Mairani A, Brons S, Hasch BG, Sommerer F, Naumann J, Jäkel O, Haberer T, Debus J. Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchrotron-based facility. Phys Med Biol. 2012;57(12):3759–84.CrossRef
Metadata
Title
Methodology paper: a novel phantom setup for commissioning of scanned ion beam delivery and TPS
Authors
O. Jäkel
B. Ackermann
S. Ecker
M. Ellerbrock
P. Heeg
K. Henkner
M. Winter
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1281-5

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue