Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Prostate Cancer | Research

Long-term results of a phase II study of hypofractionated proton therapy for prostate cancer: moderate versus extreme hypofractionation

Authors: Boram Ha, Kwan Ho Cho, Kang Hyun Lee, Jae Young Joung, Yeon-Joo Kim, Sung Uk Lee, Hyunjung Kim, Yang-Gun Suh, Sung Ho Moon, Young Kyung Lim, Jong Hwi Jeong, Haksoo Kim, Weon Seo Park, Sun Ho Kim

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

We performed a prospective phase II study to compare acute toxicity among five different hypofractionated schedules using proton therapy. This study was an exploratory analysis to investigate the secondary end-point of biochemical failure-free survival (BCFFS) of patients with long-term follow-up.

Methods

Eighty-two patients with T1-3bN0M0 prostate cancer who had not received androgen-deprivation therapy were randomized to one of five arms: Arm 1, 60 cobalt gray equivalent (CGE)/20 fractions/5 weeks; Arm 2, 54 CGE/15 fractions/5 weeks; Arm 3, 47 CGE/10 fractions/5 weeks; Arm 4, 35 CGE/5 fractions/2.5 weeks; and Arm 5, 35 CGE/5 fractions/4 weeks. In the current exploratory analysis, these ardms were categorized into the moderate hypofractionated (MHF) group (52 patients in Arms 1–3) and the extreme hypofractionated (EHF) group (30 patients in Arms 4–5).

Results

At a median follow-up of 7.5 years (range, 1.3–9.6 years), 7-year BCFFS was 76.2% for the MHF group and 46.2% for the EHF group (p = 0.005). The 7-year BCFFS of the MHF and EHF groups were 90.5 and 57.1% in the low-risk group (p = 0.154); 83.5 and 42.9% in the intermediate risk group (p = 0.018); and 41.7 and 40.0% in the high risk group (p = 0.786), respectively. Biochemical failure tended to be a late event with a median time to occurrence of 5 years. Acute GU toxicities were more common in the MHF than the EHF group (85 vs. 57%, p = 0.009), but late GI and GU toxicities did not differ between groups.

Conclusions

Our results suggest that the efficacy of EHF is potentially inferior to that of MHF and that further studies are warranted, therefore, to confirm these findings.

Trial registration

This study is registered at ClinicalTrials.gov, no. NCT01709253; registered October 18, 2012; retrospectively registered).
Literature
1.
go back to reference Brenner DJ, Hall EJ. Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys. 1999;43(5):1095–101.CrossRef Brenner DJ, Hall EJ. Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys. 1999;43(5):1095–101.CrossRef
2.
go back to reference Proust-Lima C, Taylor JMG, Sécher S, et al. Confirmation of a low α/β ratio for prostate cancer treated by external beam radiation therapy alone using a post-treatment repeated-measures model for PSA dynamics. Int J Radiat Oncol Biol Phys. 2011;79(1):195–201.CrossRef Proust-Lima C, Taylor JMG, Sécher S, et al. Confirmation of a low α/β ratio for prostate cancer treated by external beam radiation therapy alone using a post-treatment repeated-measures model for PSA dynamics. Int J Radiat Oncol Biol Phys. 2011;79(1):195–201.CrossRef
3.
go back to reference Fowler J, Chappell R, Ritter M. Is alpha/beta for prostate tumors really low? Int J Radiat Oncol Biol Phys. 2001;50(4):1021–31.CrossRef Fowler J, Chappell R, Ritter M. Is alpha/beta for prostate tumors really low? Int J Radiat Oncol Biol Phys. 2001;50(4):1021–31.CrossRef
4.
go back to reference Dasu A, Toma-Dasu I. Prostate alpha/beta revisited -- an analysis of clinical results from 14 168 patients. Acta Oncol. 2012;51(8):963–74.CrossRef Dasu A, Toma-Dasu I. Prostate alpha/beta revisited -- an analysis of clinical results from 14 168 patients. Acta Oncol. 2012;51(8):963–74.CrossRef
5.
go back to reference Miralbell R, Roberts SA, Zubizarreta E, et al. Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9-2.2) Gy. Int J Radiat Oncol Biol Phys. 2012;82(1):e17–24.CrossRef Miralbell R, Roberts SA, Zubizarreta E, et al. Dose-fractionation sensitivity of prostate cancer deduced from radiotherapy outcomes of 5,969 patients in seven international institutional datasets: α/β = 1.4 (0.9-2.2) Gy. Int J Radiat Oncol Biol Phys. 2012;82(1):e17–24.CrossRef
6.
go back to reference Kim Y-J, Cho KH, Pyo HR, et al. A phase II study of hypofractionated proton therapy for prostate cancer. Acta Oncol. 2013;52(3):477–85.CrossRef Kim Y-J, Cho KH, Pyo HR, et al. A phase II study of hypofractionated proton therapy for prostate cancer. Acta Oncol. 2013;52(3):477–85.CrossRef
7.
go back to reference Slater JD, Rossi CJ, Yonemoto LT, et al. Proton therapy for prostate cancer: the initial Loma Linda University experience. Int J Radiat Oncol Biol Phys. 2004;59(2):348–52.CrossRef Slater JD, Rossi CJ, Yonemoto LT, et al. Proton therapy for prostate cancer: the initial Loma Linda University experience. Int J Radiat Oncol Biol Phys. 2004;59(2):348–52.CrossRef
8.
go back to reference Perez CA, Michalski J, Mansur D, et al. Impact of elapsed treatment time on outcome of external-beam radiation therapy for localized carcinoma of the prostate. Cancer J. 2004;10(6):349–56.CrossRef Perez CA, Michalski J, Mansur D, et al. Impact of elapsed treatment time on outcome of external-beam radiation therapy for localized carcinoma of the prostate. Cancer J. 2004;10(6):349–56.CrossRef
9.
go back to reference Yoon M, Kim D, Shin DH, et al. Inter- and intrafractional movement-induced dose reduction of prostate target volume in proton beam treatment. Int J Radiat Oncol Biol Phys. 2008;71(4):1091–102.CrossRef Yoon M, Kim D, Shin DH, et al. Inter- and intrafractional movement-induced dose reduction of prostate target volume in proton beam treatment. Int J Radiat Oncol Biol Phys. 2008;71(4):1091–102.CrossRef
10.
go back to reference Simon R, Wittes RE, Ellenberg SS. Randomized phase II clinical trials. Cancer Treat Rep. 1985;69(12):1375–81.PubMed Simon R, Wittes RE, Ellenberg SS. Randomized phase II clinical trials. Cancer Treat Rep. 1985;69(12):1375–81.PubMed
11.
go back to reference Williams SG, Taylor JMG, Liu N, et al. Use of individual fraction size data from 3756 patients to directly determine the alpha/beta ratio of prostate cancer. Int J Radiat Oncol Biol Phys. 2007;68(1):24–33.CrossRef Williams SG, Taylor JMG, Liu N, et al. Use of individual fraction size data from 3756 patients to directly determine the alpha/beta ratio of prostate cancer. Int J Radiat Oncol Biol Phys. 2007;68(1):24–33.CrossRef
12.
go back to reference Nahum AE, Movsas B, Horwitz EM, et al. Incorporating clinical measurements of hypoxia into tumor local control modeling of prostate cancer: implications for the alpha/beta ratio. Int J Radiat Oncol Biol Phys. 2003;57(2):391–401.CrossRef Nahum AE, Movsas B, Horwitz EM, et al. Incorporating clinical measurements of hypoxia into tumor local control modeling of prostate cancer: implications for the alpha/beta ratio. Int J Radiat Oncol Biol Phys. 2003;57(2):391–401.CrossRef
13.
go back to reference Pollack A, Walker G, Horwitz EM, et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol. 2013;31(31):3860–8.CrossRef Pollack A, Walker G, Horwitz EM, et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol. 2013;31(31):3860–8.CrossRef
14.
go back to reference Lee WR, Dignam JJ, Amin MB, et al. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate Cancer. J Clin Oncol. 2016;34(20):2325–32.CrossRef Lee WR, Dignam JJ, Amin MB, et al. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate Cancer. J Clin Oncol. 2016;34(20):2325–32.CrossRef
15.
go back to reference Incrocci L, Wortel RC, Alemayehu WG, et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016;17(8):1061–9.CrossRef Incrocci L, Wortel RC, Alemayehu WG, et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016;17(8):1061–9.CrossRef
16.
go back to reference Dearnaley D, Syndikus I, Mossop H, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016;17(8):1047–60.CrossRef Dearnaley D, Syndikus I, Mossop H, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016;17(8):1047–60.CrossRef
17.
go back to reference Catton CN, Lukka H, Gu C-S, et al. Randomized trial of a Hypofractionated radiation regimen for the treatment of localized prostate Cancer. J Clin Oncol. 2017;35(17):1884–90.CrossRef Catton CN, Lukka H, Gu C-S, et al. Randomized trial of a Hypofractionated radiation regimen for the treatment of localized prostate Cancer. J Clin Oncol. 2017;35(17):1884–90.CrossRef
18.
go back to reference Loblaw A, Cheung P, D'Alimonte L, et al. Prostate stereotactic ablative body radiotherapy using a standard linear accelerator: toxicity, biochemical, and pathological outcomes. Radiother Oncol. 2013;107(2):153–8.CrossRef Loblaw A, Cheung P, D'Alimonte L, et al. Prostate stereotactic ablative body radiotherapy using a standard linear accelerator: toxicity, biochemical, and pathological outcomes. Radiother Oncol. 2013;107(2):153–8.CrossRef
19.
go back to reference King CR, Freeman D, Kaplan I, et al. Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother Oncol. 2013;109(2):217–21.CrossRef King CR, Freeman D, Kaplan I, et al. Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother Oncol. 2013;109(2):217–21.CrossRef
20.
go back to reference King CR, Brooks JD, Gill H, et al. Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82(2):877–82.CrossRef King CR, Brooks JD, Gill H, et al. Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82(2):877–82.CrossRef
21.
go back to reference Kim DWN, Cho LC, Straka C, et al. Predictors of rectal tolerance observed in a dose-escalated phase 1-2 trial of stereotactic body radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2014;89(3):509–17.CrossRef Kim DWN, Cho LC, Straka C, et al. Predictors of rectal tolerance observed in a dose-escalated phase 1-2 trial of stereotactic body radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2014;89(3):509–17.CrossRef
22.
go back to reference Katz AJ, Kang J. Quality of life and toxicity after SBRT for organ-confined prostate Cancer, a 7-year study. Front Oncol. 2014;4:301.PubMedPubMedCentral Katz AJ, Kang J. Quality of life and toxicity after SBRT for organ-confined prostate Cancer, a 7-year study. Front Oncol. 2014;4:301.PubMedPubMedCentral
23.
go back to reference Gao M, Mayr NA, Huang Z, et al. When tumor repopulation starts? The onset time of prostate cancer during radiation therapy. Acta Oncol. 2010;49(8):1269–75.CrossRef Gao M, Mayr NA, Huang Z, et al. When tumor repopulation starts? The onset time of prostate cancer during radiation therapy. Acta Oncol. 2010;49(8):1269–75.CrossRef
24.
go back to reference Lai PP, Pilepich MV, Krall JM, et al. The effect of overall treatment time on the outcome of definitive radiotherapy for localized prostate carcinoma: the radiation therapy oncology group 75-06 and 77-06 experience. Int J Radiat Oncol Biol Phys. 1991;21(4):925–33.CrossRef Lai PP, Pilepich MV, Krall JM, et al. The effect of overall treatment time on the outcome of definitive radiotherapy for localized prostate carcinoma: the radiation therapy oncology group 75-06 and 77-06 experience. Int J Radiat Oncol Biol Phys. 1991;21(4):925–33.CrossRef
25.
go back to reference Amdur RJ, Parsons JT, Fitzgerald LT, et al. The effect of overall treatment time on local control in patients with adenocarcinoma of the prostate treated with radiation therapy. Int J Radiat Oncol Biol Phys. 1990;19(6):1377–82.CrossRef Amdur RJ, Parsons JT, Fitzgerald LT, et al. The effect of overall treatment time on local control in patients with adenocarcinoma of the prostate treated with radiation therapy. Int J Radiat Oncol Biol Phys. 1990;19(6):1377–82.CrossRef
26.
go back to reference Thames HD, Kuban D, Levy LB, et al. The role of overall treatment time in the outcome of radiotherapy of prostate cancer: an analysis of biochemical failure in 4839 men treated between 1987 and 1995. Radiother Oncol. 2010;96(1):6–12.CrossRef Thames HD, Kuban D, Levy LB, et al. The role of overall treatment time in the outcome of radiotherapy of prostate cancer: an analysis of biochemical failure in 4839 men treated between 1987 and 1995. Radiother Oncol. 2010;96(1):6–12.CrossRef
27.
go back to reference Kupelian PA, Reddy CA, Klein EA, et al. Short-course intensity-modulated radiotherapy (70 GY at 2.5 GY per fraction) for localized prostate cancer: preliminary results on late toxicity and quality of life. Int J Radiat Oncol Biol Phys. 2001;51(4):988–93.CrossRef Kupelian PA, Reddy CA, Klein EA, et al. Short-course intensity-modulated radiotherapy (70 GY at 2.5 GY per fraction) for localized prostate cancer: preliminary results on late toxicity and quality of life. Int J Radiat Oncol Biol Phys. 2001;51(4):988–93.CrossRef
28.
go back to reference D'Ambrosio DJ, Li T, Horwitz EM, et al. Does treatment duration affect outcome after radiotherapy for prostate cancer? Int J Radiat Oncol Biol Phys. 2008;72(5):1402–7.CrossRef D'Ambrosio DJ, Li T, Horwitz EM, et al. Does treatment duration affect outcome after radiotherapy for prostate cancer? Int J Radiat Oncol Biol Phys. 2008;72(5):1402–7.CrossRef
29.
go back to reference Morgan SC, Hoffman K, Loblaw DA, et al. Hypofractionated radiation therapy for localized prostate Cancer: executive summary of an ASTRO, ASCO, and AUA evidence-based guideline. Pract Radiat Oncol. 2018;8(6):354–60.CrossRef Morgan SC, Hoffman K, Loblaw DA, et al. Hypofractionated radiation therapy for localized prostate Cancer: executive summary of an ASTRO, ASCO, and AUA evidence-based guideline. Pract Radiat Oncol. 2018;8(6):354–60.CrossRef
Metadata
Title
Long-term results of a phase II study of hypofractionated proton therapy for prostate cancer: moderate versus extreme hypofractionation
Authors
Boram Ha
Kwan Ho Cho
Kang Hyun Lee
Jae Young Joung
Yeon-Joo Kim
Sung Uk Lee
Hyunjung Kim
Yang-Gun Suh
Sung Ho Moon
Young Kyung Lim
Jong Hwi Jeong
Haksoo Kim
Weon Seo Park
Sun Ho Kim
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1210-7

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue