Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

Assessing the impact of choosing different deformable registration algorithms on cone-beam CT enhancement by histogram matching

Authors: Halima Saadia Kidar, Hacene Azizi

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

The aim of this work is to assess the impact of using different deformable registration (DR) algorithms on the quality of cone-beam CT (CBCT) correction with histogram matching (HM).

Methods and materials

Data sets containing planning CT (pCT) and CBCT images for ten patients with prostate cancer were used. Each pCT image was registered to its corresponding CBCT image using one rigid registration algorithm with mutual information similarity metric (RR-MI) and three DR algorithms with normalized correlation coefficient, mutual information and normalized mutual information (DR-NCC, DR-MI and DR-NMI, respectively). Then, the HM was performed between deformed pCT and CBCT in order to correct the distribution of the Hounsfield Units (HU) in CBCT images.

Results

The visual assessment showed that the absolute difference between corrected CBCT and deformed pCT was reduced after correction with HM except for soft tissue-air and soft-tissue-bone interfaces due to the improper registration. Furthermore, volumes comparison in terms of average HU error showed that using DR-NCC algorithm with HM yielded the lowest error values of about 55.95 ± 10.43 HU compared to DR-MI and DR-NMI for which the errors were 58.60 ± 10.35 and 56.58 ± 10.51 HU, respectively. Tissue class’s comparison by the mean absolute error (MAE) plots confirmed the performance of DR-NCC algorithm to produce corrected CBCT images with lowest values of MAE even in regions where the misalignment is more pronounced. It was also found that the used method had successfully improved the spatial uniformity in the CBCT images by reducing the root mean squared difference (RMSD) between the pCT and CBCT in fat and muscle from 57 and 25 HU to 8HU, respectively.

Conclusion

The choice of an accurate DR algorithm before performing the HM leads to an accurate correction of CBCT images. The results suggest that applying DR process based on NCC similarity metric reduces significantly the uncertainties in CBCT images and generates images in good agreement with pCT.
Literature
1.
go back to reference Letourneau D, Martinez AA, Lockman D, et al. Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients. Int J Radiat Oncol Biol Phys. 2005;62:1239–46.CrossRef Letourneau D, Martinez AA, Lockman D, et al. Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients. Int J Radiat Oncol Biol Phys. 2005;62:1239–46.CrossRef
2.
go back to reference Oldham M, et al. Cone-beam CT guided radiation therapy: a model for on-line application. Radiother Oncol. 2005;75:271.e1–271.e8.CrossRef Oldham M, et al. Cone-beam CT guided radiation therapy: a model for on-line application. Radiother Oncol. 2005;75:271.e1–271.e8.CrossRef
3.
go back to reference Gukenberger M, Meyer J, Vordermark D, Baier K, et al. Magnitude and clinical relevence of translational and rotational patient setup errors: a cone-beam CT study. Int J Radiat Oncol Biol Phy. 2006;65:934–42.CrossRef Gukenberger M, Meyer J, Vordermark D, Baier K, et al. Magnitude and clinical relevence of translational and rotational patient setup errors: a cone-beam CT study. Int J Radiat Oncol Biol Phy. 2006;65:934–42.CrossRef
4.
go back to reference Streink MF, Bezak E. Technological approaches to in-room CBCT imaging. Phys Eng Sci Med Australas. 2008;31:167–79.CrossRef Streink MF, Bezak E. Technological approaches to in-room CBCT imaging. Phys Eng Sci Med Australas. 2008;31:167–79.CrossRef
5.
go back to reference Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed-tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53:1337–49.CrossRef Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed-tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53:1337–49.CrossRef
6.
go back to reference Lafond C, Simon A, Henry O, Prichon N. Radiothérapie adaptative en routine? Etat de l’art: point de vue du physicien médical. Cancer Radiothérapie. 2015; In press. Lafond C, Simon A, Henry O, Prichon N. Radiothérapie adaptative en routine? Etat de l’art: point de vue du physicien médical. Cancer Radiothérapie. 2015; In press.
7.
go back to reference Kim S, Yoo S, Yin FF. Kilovoltage cone-beam CT: comparative dose and image quality evaluation in partial and full-angle scan protocols. Med Phys. 2010;37:3648–459.CrossRef Kim S, Yoo S, Yin FF. Kilovoltage cone-beam CT: comparative dose and image quality evaluation in partial and full-angle scan protocols. Med Phys. 2010;37:3648–459.CrossRef
8.
go back to reference Stock S, Pasler M, Birkfellner W. Image quality and stability of image-guided radiotherapy (IGRT) devices: a comparatives study. Radiother Oncol. 2009;93:1–7.CrossRef Stock S, Pasler M, Birkfellner W. Image quality and stability of image-guided radiotherapy (IGRT) devices: a comparatives study. Radiother Oncol. 2009;93:1–7.CrossRef
9.
go back to reference Zijtveld MV, Dirkx M, Heijmen B. Correction of cone beam CT values using a planning CT for derivation of the dose of the day. Radiother Oncol. 2007;85:195–200.CrossRef Zijtveld MV, Dirkx M, Heijmen B. Correction of cone beam CT values using a planning CT for derivation of the dose of the day. Radiother Oncol. 2007;85:195–200.CrossRef
10.
go back to reference Yang Y, Schreibmann E, Li T, Wang C, Xing L. Evaluation of on-board kv cone beam CT (CBCT)-based dose calculation. Phys Med Biol. 2007;52:685–705.CrossRef Yang Y, Schreibmann E, Li T, Wang C, Xing L. Evaluation of on-board kv cone beam CT (CBCT)-based dose calculation. Phys Med Biol. 2007;52:685–705.CrossRef
11.
go back to reference Boggula R, Lorenz F, Abo-Madyan Y, Lohr F, Wolff D, Boda-Heggemann J, et al. A new strategy for online adaptive prostate radiotherapy on cone-beam CT. Med Phys. 2009;19:264–76.CrossRef Boggula R, Lorenz F, Abo-Madyan Y, Lohr F, Wolff D, Boda-Heggemann J, et al. A new strategy for online adaptive prostate radiotherapy on cone-beam CT. Med Phys. 2009;19:264–76.CrossRef
12.
go back to reference Fotina I, Hopfgartner J, Stock M, Steininger T, Ltegendorf-Cancig C, George D. Feasibility of CBCT-based dose calculation: comparative analysis of HU adjustment techniques. Radiother Oncol. 2012;104:249–56.CrossRef Fotina I, Hopfgartner J, Stock M, Steininger T, Ltegendorf-Cancig C, George D. Feasibility of CBCT-based dose calculation: comparative analysis of HU adjustment techniques. Radiother Oncol. 2012;104:249–56.CrossRef
13.
go back to reference Onozato Y, Kadoy N, Fujita Y, Arai K, Dobashi S, Tekeda K, et al. Evaluation of on board kv cone-beam computed tomography-based dose calculation with deformable image registration using hounsfeild unit modification. Int J Radiot Oncol Biol Phys. 2014;89:416–23.CrossRef Onozato Y, Kadoy N, Fujita Y, Arai K, Dobashi S, Tekeda K, et al. Evaluation of on board kv cone-beam computed tomography-based dose calculation with deformable image registration using hounsfeild unit modification. Int J Radiot Oncol Biol Phys. 2014;89:416–23.CrossRef
14.
go back to reference Almatani T, Hugtenburg RP, Lewis RD, Barley SE, Edwards MA. Automated algorithm for CBCT- based dose calculations of prostate radiotherpay with bilateral hip protheses. Br J Radiol. 2016;89:20160443.CrossRef Almatani T, Hugtenburg RP, Lewis RD, Barley SE, Edwards MA. Automated algorithm for CBCT- based dose calculations of prostate radiotherpay with bilateral hip protheses. Br J Radiol. 2016;89:20160443.CrossRef
15.
go back to reference Amit G, Purdie TG. Automated planning of breast radiotherapy using cone beam CT imaging. Med Phys. 2015;42:770–9.CrossRef Amit G, Purdie TG. Automated planning of breast radiotherapy using cone beam CT imaging. Med Phys. 2015;42:770–9.CrossRef
16.
go back to reference Yoo S, Yin FF. Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning. Int J Radiat Oncol Biol Phys. 2006;66(5):1553–61.CrossRef Yoo S, Yin FF. Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning. Int J Radiat Oncol Biol Phys. 2006;66(5):1553–61.CrossRef
17.
go back to reference Letourneau D, Wong R, Moseley D, et al. Online planning and delivery technique for radiotherapy of spinal metastases using cone-beam CT: image-quality and system performance. Int J Radiat Oncol Biol Phys. 2007;67(4):1229–37.CrossRef Letourneau D, Wong R, Moseley D, et al. Online planning and delivery technique for radiotherapy of spinal metastases using cone-beam CT: image-quality and system performance. Int J Radiat Oncol Biol Phys. 2007;67(4):1229–37.CrossRef
18.
go back to reference Ritcher A, Hu Q, Steglich D, et al. Investigation of the usability of cone beam CT data sets for dose calculation. Radiat Oncol. 2008;3:42.CrossRef Ritcher A, Hu Q, Steglich D, et al. Investigation of the usability of cone beam CT data sets for dose calculation. Radiat Oncol. 2008;3:42.CrossRef
19.
go back to reference Jarry G, Graham SA, Moseley DJ, et al. Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations. Med Phys. 2006;33(11):4320–9.CrossRef Jarry G, Graham SA, Moseley DJ, et al. Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations. Med Phys. 2006;33(11):4320–9.CrossRef
20.
go back to reference Zhu L, Xie Y, Wang J, et al. Scatter correction for cone-beam CT in radiation therapy. Med Phys. 2009;36(6):2258–68.CrossRef Zhu L, Xie Y, Wang J, et al. Scatter correction for cone-beam CT in radiation therapy. Med Phys. 2009;36(6):2258–68.CrossRef
21.
go back to reference Sun M, Star-lack JM. Improved scatter correction using adaptive scatter kernel superposition. Phys Med Biol. 2010;55(22):6695–720.CrossRef Sun M, Star-lack JM. Improved scatter correction using adaptive scatter kernel superposition. Phys Med Biol. 2010;55(22):6695–720.CrossRef
22.
go back to reference Poludniowski G, Evans PM, Hansen VN, et al. An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT. Phys Med Biol. 2009;56(12):3847–64.CrossRef Poludniowski G, Evans PM, Hansen VN, et al. An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT. Phys Med Biol. 2009;56(12):3847–64.CrossRef
23.
go back to reference Poludniowski G, Evans PM, Kavanagh A, et al. Removal and effects of scatter-glare in cone-beam CT with an amorphous-silicon flat-panal detector. Phys Med Biol. 2011;56(6):1837–51.CrossRef Poludniowski G, Evans PM, Kavanagh A, et al. Removal and effects of scatter-glare in cone-beam CT with an amorphous-silicon flat-panal detector. Phys Med Biol. 2011;56(6):1837–51.CrossRef
24.
go back to reference Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.CrossRef Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.CrossRef
25.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reas Imaging. 2012;30:1323–41.CrossRef Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reas Imaging. 2012;30:1323–41.CrossRef
26.
go back to reference Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. Elastix: a toolbox for intensity based medical image registration. IEEE Trans Med Imaging. 2010;29(1):196–205.CrossRef Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW. Elastix: a toolbox for intensity based medical image registration. IEEE Trans Med Imaging. 2010;29(1):196–205.CrossRef
27.
go back to reference Thing RS, Bernchou U, Mainegra-Hing E, et al. Hounsfield unit recovery in clinical coen beam CT images of the thorax acquired for image guided radiation therapy. Phys Med Biol. 2016;61:5781–802.CrossRef Thing RS, Bernchou U, Mainegra-Hing E, et al. Hounsfield unit recovery in clinical coen beam CT images of the thorax acquired for image guided radiation therapy. Phys Med Biol. 2016;61:5781–802.CrossRef
28.
go back to reference Boydev C, et al. Zero echo time MRI-only treatment planning for radiation therapy of brain tumors after resection. Phys Med. 2017; In press. Boydev C, et al. Zero echo time MRI-only treatment planning for radiation therapy of brain tumors after resection. Phys Med. 2017; In press.
29.
go back to reference Kida S, Nakano M, et al. Cone beam computed tomography image improvement using a deep convolutional neural network. Cureus. 2018;10(4):e2548.PubMedPubMedCentral Kida S, Nakano M, et al. Cone beam computed tomography image improvement using a deep convolutional neural network. Cureus. 2018;10(4):e2548.PubMedPubMedCentral
30.
go back to reference Poludniowski G, Evans PM, Webb S. Cone beam computed tomography number errors and consequences for radiotherapy planning: an investigation of correction methods. Int J Radiat Oncol Biol Phys. 2012;84(1):e109–14.CrossRef Poludniowski G, Evans PM, Webb S. Cone beam computed tomography number errors and consequences for radiotherapy planning: an investigation of correction methods. Int J Radiat Oncol Biol Phys. 2012;84(1):e109–14.CrossRef
Metadata
Title
Assessing the impact of choosing different deformable registration algorithms on cone-beam CT enhancement by histogram matching
Authors
Halima Saadia Kidar
Hacene Azizi
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1162-3

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue