Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

Improving 3D-printing of megavoltage X-rays radiotherapy bolus with surface-scanner

Authors: Giovanna Dipasquale, Alexis Poirier, Yannick Sprunger, Johannes Wilhelmus Edmond Uiterwijk, Raymond Miralbell

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

Computed tomography (CT) data used for patient radiotherapy planning can nowadays be used to create 3D-printed boluses. Nevertheless, this methodology requires a second CT scan and planning process when immobilization masks are used in order to fit the bolus under it for treatment.
This study investigates the use of a high-grade surface-scanner to produce, prior to the planning CT scan, a 3D-printed bolus in order to increase the workflow efficiency, improve treatment quality and avoid extra radiation dose to the patient.

Methods

The scanner capabilities were tested on a phantom and on volunteers. A phantom was used to produce boluses in the orbital region either from CT data (resolution ≈1 mm), or from surface-scanner images (resolution 0.05 mm). Several 3D-printing techniques and materials were tested. To quantify which boluses fit best, they were placed on the phantom and scanned by CT. Hounsfield Unit (HU) profiles were traced perpendicular to the phantom’s surface. The minimum HU in the profiles was compared to the HU values for calibrated air-gaps. Boluses were then created from surface images of volunteers to verify the feasibility of surface-scanner use in-vivo.

Results

Phantom based tests showed a better fit of boluses modeled from surface-scanner than from CT data. Maximum bolus-to-skin air gaps were 1-2 mm using CT models and always < 0.6 mm using surface-scanner models. Tests on volunteers showed good and comfortable fit of boluses produced from surface-scanner images acquired in 0.6 to 7 min. Even in complex surface regions of the body such as ears and fingers, the high-resolution surface-scanner was able to acquire good models. A breast bolus model generated from images acquired in deep inspiration breath hold was also successful. None of the 3D-printed bolus using surface-scanner models required enlarging or shrinking of the initial model acquired in-vivo.

Conclusions

Regardless of the material or printing technique, 3D-printed boluses created from high-resolution surface-scanner images proved to be superior in fitting compared to boluses created from CT data. Tests on volunteers were promising, indicating the possibility to improve overall radiotherapy treatments, primarily for megavoltage X-rays, using bolus modeled from a high-resolution surface-scanner even in regions of complex surface anatomy.
Literature
1.
go back to reference Vyas V, Palmer L, Mudge R, et al. On bolus for megavoltage photon and electron radiation therapy. Med Dosim. 2013;38:268–73.CrossRef Vyas V, Palmer L, Mudge R, et al. On bolus for megavoltage photon and electron radiation therapy. Med Dosim. 2013;38:268–73.CrossRef
2.
go back to reference Canters RA, Lips IM, Wendling M, et al. Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer. Radiother Oncol. 2016;121(1):148–53.CrossRef Canters RA, Lips IM, Wendling M, et al. Clinical implementation of 3D printing in the construction of patient specific bolus for electron beam radiotherapy for non-melanoma skin cancer. Radiother Oncol. 2016;121(1):148–53.CrossRef
3.
go back to reference Robar JL, Moran K, Allan J, et al. Intrapatient study comparing 3D printed bolus versus standard vinyl gel sheet bolus for postmastectomy chest wall radiation therapy. Pract Radiat Oncol. 2018;8(4):221–9.CrossRef Robar JL, Moran K, Allan J, et al. Intrapatient study comparing 3D printed bolus versus standard vinyl gel sheet bolus for postmastectomy chest wall radiation therapy. Pract Radiat Oncol. 2018;8(4):221–9.CrossRef
4.
go back to reference Michiels S, Barragán AM, Souris K, et al. Patient-specific bolus for range shifter air gap reduction in intensity-modulated proton therapy of head-and-neck cancer studied with Monte Carlo based plan optimization. Radiother Oncol. 2018;128(1):161–6.CrossRef Michiels S, Barragán AM, Souris K, et al. Patient-specific bolus for range shifter air gap reduction in intensity-modulated proton therapy of head-and-neck cancer studied with Monte Carlo based plan optimization. Radiother Oncol. 2018;128(1):161–6.CrossRef
6.
go back to reference Park JW, Oh SA, Yea JW, Kang MK. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner. PLoS One. 2017;12:e0177562.CrossRef Park JW, Oh SA, Yea JW, Kang MK. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner. PLoS One. 2017;12:e0177562.CrossRef
7.
go back to reference Michiels S, D'Hollander A, Lammens N, et al. Towards 3D printed multifunctional immobilization for proton therapy: initial materials characterization. Med Phys. 2016;43:5392.CrossRef Michiels S, D'Hollander A, Lammens N, et al. Towards 3D printed multifunctional immobilization for proton therapy: initial materials characterization. Med Phys. 2016;43:5392.CrossRef
8.
go back to reference Butson MJ, Cheung T, Yu P, Metcalfe P. Effects on skin dose from unwanted air gaps under bolus in photon beam radiotherapy. Radiat Meas. 2000;32(3):201–4 2000.CrossRef Butson MJ, Cheung T, Yu P, Metcalfe P. Effects on skin dose from unwanted air gaps under bolus in photon beam radiotherapy. Radiat Meas. 2000;32(3):201–4 2000.CrossRef
9.
go back to reference Verbakel WF, Cuijpers JP, Hoffmans D, Bieker M, Slotman BJ, Senan S. Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys. 2009;74(1):252–9.CrossRef Verbakel WF, Cuijpers JP, Hoffmans D, Bieker M, Slotman BJ, Senan S. Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys. 2009;74(1):252–9.CrossRef
10.
go back to reference Su S, Moran K, Robar JL. Design and production of 3D printed bolus for electron radiation therapy. J Appl Clin Med Phys. 2014;15(4):194–211.CrossRef Su S, Moran K, Robar JL. Design and production of 3D printed bolus for electron radiation therapy. J Appl Clin Med Phys. 2014;15(4):194–211.CrossRef
11.
go back to reference Ricotti R, Ciardo D, Pansini F, et al. Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy. Phys Med. 2017;39:25–32.CrossRef Ricotti R, Ciardo D, Pansini F, et al. Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy. Phys Med. 2017;39:25–32.CrossRef
12.
go back to reference Burleson S, Baker J, Hsia AT, Xu Z. Use of 3D printers to create a patient-specific 3D bolus for external beam therapy. J Appl Clin Med Phys. 2015;16:5247.CrossRef Burleson S, Baker J, Hsia AT, Xu Z. Use of 3D printers to create a patient-specific 3D bolus for external beam therapy. J Appl Clin Med Phys. 2015;16:5247.CrossRef
14.
go back to reference Craft DF, Kry SF, Balter P, Salehpour M, Woodward W, Howell RM. Material matters: analysis of density uncertainty in 3D printing and its consequences for radiation oncology. Med Phys. 2018;45:1614–21.CrossRef Craft DF, Kry SF, Balter P, Salehpour M, Woodward W, Howell RM. Material matters: analysis of density uncertainty in 3D printing and its consequences for radiation oncology. Med Phys. 2018;45:1614–21.CrossRef
15.
go back to reference Dancewicz OL, Sylvander SR, Markwell TS, Crowe SB, Trapp JV. Radiological properties of 3D printed materials in kilovoltage and megavoltage photon beams. Phys Med. 2017;38:111–8.CrossRef Dancewicz OL, Sylvander SR, Markwell TS, Crowe SB, Trapp JV. Radiological properties of 3D printed materials in kilovoltage and megavoltage photon beams. Phys Med. 2017;38:111–8.CrossRef
16.
go back to reference Dipasquale G, Miralbell R, Starkov P, Ratib O. 66 - first tests to implement an in-house 3d-printed photon bolus procedure using clinical treatment planning system data. Radiother Oncol. 2016;118(Suppl 1):S32–3.CrossRef Dipasquale G, Miralbell R, Starkov P, Ratib O. 66 - first tests to implement an in-house 3d-printed photon bolus procedure using clinical treatment planning system data. Radiother Oncol. 2016;118(Suppl 1):S32–3.CrossRef
Metadata
Title
Improving 3D-printing of megavoltage X-rays radiotherapy bolus with surface-scanner
Authors
Giovanna Dipasquale
Alexis Poirier
Yannick Sprunger
Johannes Wilhelmus Edmond Uiterwijk
Raymond Miralbell
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1148-1

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue