Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

Technical and dosimetric implications of respiratory induced density variations in a heterogeneous lung phantom

Authors: Dennis J. Mohatt, Tianjun Ma, David B. Wiant, Naveed M. Islam, Jorge Gomez, Anurag K. Singh, Harish K. Malhotra

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

Stereotactic Body Radiotherapy (SBRT) is an ablative dose delivery technique which requires the highest levels of precision and accuracy. Modeling dose to a lung treatment volume has remained a complex and challenging endeavor due to target motion and the low density of the surrounding media. When coupled together, these factors give rise to pulmonary induced tissue heterogeneities which can lead to inaccuracies in dose computation. This investigation aims to determine which combination of imaging techniques and computational algorithms best compensates for time dependent lung target displacements.

Methods

A Quasar phantom was employed to simulate respiratory motion for target ranges up to 3 cm. 4DCT imaging was used to generate Average Intensity Projection (AIP), Free Breathing (FB), and Maximum Intensity Projection (MIP) image sets. In addition, we introduce and compare a fourth dataset for dose computation based on a novel phase weighted density (PWD) technique. All plans were created using Eclipse version 13.6 treatment planning system and calculated using the Analytical Anisotropic Algorithm and Acuros XB. Dose delivery was performed using Truebeam STx linear accelerator where radiochromic film measurements were accessed using gamma analysis to compare planned versus delivered dose.

Results

In the most extreme case scenario, the mean CT difference between FB and MIP datasets was found to be greater than 200 HU. The near maximum dose discrepancies between AAA and AXB algorithms were determined to be marginal (< 2.2%), with a greater variability occurring within the near minimum dose regime (< 7%). Radiochromatic film verification demonstrated all AIP and FB based computations exceeded 98% passing rates under conventional radiotherapy tolerances (gamma 3%, 3 mm). Under more stringent SBRT tolerances (gamma 3%, 1 mm), the AIP and FB based treatment plans exhibited higher pass rates (> 85%) when compared to MIP and PWD (< 85%) for AAA computations. For AXB, however, the delivery accuracy for all datasets were greater than 85% (gamma 3%,1 mm), with a corresponding reduction in overall lung irradiation.

Conclusions

Despite the substantial density variations between computational datasets over an extensive range of target movement, the dose difference between CT datasets is small and could not be quantified with ion chamber. Radiochromatic film analysis suggests the optimal CT dataset is dependent on the dose algorithm used for evaluation. With AAA, AIP and FB resulted in the best conformance between measured versus calculated dose for target motion ranging up to 3 cm under both conventional and SBRT tolerance criteria. With AXB, pass rates improved for all datasets with the PWD technique demonstrating slightly better conformity over AIP and FB based computations (gamma 3%, 1 mm). As verified in previous studies, our results confirm a clear advantage in delivery accuracy along with a relative decrease in calculated dose to the lung when using Acuros XB over AAA.
Literature
1.
go back to reference Wulf J, Haedinger U, Oppitz U, Thiele W, Mueller G, Flentje M. Stereotactic radiotherapy for primary lung cancer and pulmonary metastases: a noninvasive treatment approach in medically inoperable patients. Int J Radiat Oncol Biol Phys. 2004;60:186–96.CrossRefPubMed Wulf J, Haedinger U, Oppitz U, Thiele W, Mueller G, Flentje M. Stereotactic radiotherapy for primary lung cancer and pulmonary metastases: a noninvasive treatment approach in medically inoperable patients. Int J Radiat Oncol Biol Phys. 2004;60:186–96.CrossRefPubMed
2.
go back to reference Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM task group 101. Med Phys. 2010;37:4078–101.CrossRefPubMed Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM task group 101. Med Phys. 2010;37:4078–101.CrossRefPubMed
3.
go back to reference Bethesda, M. Tissue substitutes in radiation Dosimetry and measurement, Report 44 of the International Commission on Radiation Units and Measurements; 1989. Bethesda, M. Tissue substitutes in radiation Dosimetry and measurement, Report 44 of the International Commission on Radiation Units and Measurements; 1989.
4.
go back to reference Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76a. Med Phys. 2006;33(10):3874–900.CrossRefPubMed Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76a. Med Phys. 2006;33(10):3874–900.CrossRefPubMed
5.
go back to reference Onishi H, Kuriyama K, Komiyama T, et al. CT evaluation of patient deep inspiration self-breath-holding: how precisely can patients reproduce the tumor position in the absence of respiratory monitoring devices? Med Phys. 2003;30(6):1183–7.CrossRefPubMed Onishi H, Kuriyama K, Komiyama T, et al. CT evaluation of patient deep inspiration self-breath-holding: how precisely can patients reproduce the tumor position in the absence of respiratory monitoring devices? Med Phys. 2003;30(6):1183–7.CrossRefPubMed
6.
go back to reference Mampuya WA, Nakamura M, Matsuo Y, et al. Interfraction variation in lung tumor position with abdominal compression during stereotactic body radiotherapy. Med Phys. 2013;40(9):091718.CrossRefPubMed Mampuya WA, Nakamura M, Matsuo Y, et al. Interfraction variation in lung tumor position with abdominal compression during stereotactic body radiotherapy. Med Phys. 2013;40(9):091718.CrossRefPubMed
7.
go back to reference Ling CC, Yorke E, Fuks Z. From IMRT to IGRT: frontierland or neverland? Radiother Oncol. 2006;78(2):119–22.CrossRefPubMed Ling CC, Yorke E, Fuks Z. From IMRT to IGRT: frontierland or neverland? Radiother Oncol. 2006;78(2):119–22.CrossRefPubMed
8.
go back to reference Gierga DP, Brewer J, Sharp GC, et al. The correlation between internal and external markers for abdominal tumors: implications for respiratory gating. Int J Radiat Oncol Biol Phys. 2005;61:1551–8.CrossRefPubMed Gierga DP, Brewer J, Sharp GC, et al. The correlation between internal and external markers for abdominal tumors: implications for respiratory gating. Int J Radiat Oncol Biol Phys. 2005;61:1551–8.CrossRefPubMed
9.
go back to reference Radiation Therapy Oncology Group. RTOG 0915: a randomized phase ii study comparing 2 stereotactic body radiation therapy (SBRT) schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer. Philadelphia: RTOG; 2009. Radiation Therapy Oncology Group. RTOG 0915: a randomized phase ii study comparing 2 stereotactic body radiation therapy (SBRT) schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer. Philadelphia: RTOG; 2009.
10.
go back to reference Mexner V, Wolthaus JW, van Herk M, Damen EM, Sonke JJ. Effects of respiration-induced density variations on dose distributions in radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys. 2009;74:1266–75.CrossRefPubMed Mexner V, Wolthaus JW, van Herk M, Damen EM, Sonke JJ. Effects of respiration-induced density variations on dose distributions in radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys. 2009;74:1266–75.CrossRefPubMed
11.
go back to reference Vanderstraeten B, Reynaert N, Paelinck L, et al. Accuracy of patient dose calculation for lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Med Phys. 2006;33:3149–58.CrossRefPubMed Vanderstraeten B, Reynaert N, Paelinck L, et al. Accuracy of patient dose calculation for lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Med Phys. 2006;33:3149–58.CrossRefPubMed
12.
go back to reference Ding GX, Duggan DM, Lu B, et al. Impact of inhomogeneity corrections on dose coverage in the treatment of lung cancer using stereotactic body radiation therapy. Med Phys. 2007;34:2985–94.CrossRefPubMed Ding GX, Duggan DM, Lu B, et al. Impact of inhomogeneity corrections on dose coverage in the treatment of lung cancer using stereotactic body radiation therapy. Med Phys. 2007;34:2985–94.CrossRefPubMed
13.
go back to reference Miura H, Masai N, Oh RJ, Shiomi H, Yamada K, Sasaki J, Inoue T. Clinical introduction of Monte Carlo treatment planning for lung stereotactic body radiotherapy. J Appl Clin Medical Phys. 2014;15:38–46.CrossRef Miura H, Masai N, Oh RJ, Shiomi H, Yamada K, Sasaki J, Inoue T. Clinical introduction of Monte Carlo treatment planning for lung stereotactic body radiotherapy. J Appl Clin Medical Phys. 2014;15:38–46.CrossRef
15.
go back to reference Ojala JJ, Kapanen MK, Hyödynmaa SJ, Wigren TK, Pitkänen MA. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys. 2014;15:4–18.CrossRef Ojala JJ, Kapanen MK, Hyödynmaa SJ, Wigren TK, Pitkänen MA. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys. 2014;15:4–18.CrossRef
16.
go back to reference Van Esch A, Tillikainen L, Pyykkonen J, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys. 2006;33:4130–48.CrossRefPubMed Van Esch A, Tillikainen L, Pyykkonen J, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys. 2006;33:4130–48.CrossRefPubMed
17.
go back to reference Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of Acuros® XB with Monte Carlo methods for photon dose calculations. Med Phys. 2011;38:2208–21.CrossRefPubMed Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of Acuros® XB with Monte Carlo methods for photon dose calculations. Med Phys. 2011;38:2208–21.CrossRefPubMed
18.
go back to reference Sievinen J, Waldemar U, and Wolfgang K, “AAA photon dose calculation model in Eclipse™,” 2005. Sievinen J, Waldemar U, and Wolfgang K, “AAA photon dose calculation model in Eclipse™,” 2005.
19.
go back to reference Failla GA, Wareing T, Archambault Y, Thompson S. Acuros XB advanced dose calculation for the eclipse treatment planning system. Palo Alto, CA: Varian Medical Systems; 2010. Failla GA, Wareing T, Archambault Y, Thompson S. Acuros XB advanced dose calculation for the eclipse treatment planning system. Palo Alto, CA: Varian Medical Systems; 2010.
20.
go back to reference Vedam SS, Kini VR, Keall PJ, Ramakrishnan V, Mostafavi H, Mohan R. Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Med Phys. 2003;30:505–13.CrossRefPubMed Vedam SS, Kini VR, Keall PJ, Ramakrishnan V, Mostafavi H, Mohan R. Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Med Phys. 2003;30:505–13.CrossRefPubMed
21.
go back to reference Rietzel E, Chen GT, Choi NC, Willet CG. Four-dimensional image-based treatment planning: target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys. 2005;61:1535–50.CrossRefPubMed Rietzel E, Chen GT, Choi NC, Willet CG. Four-dimensional image-based treatment planning: target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys. 2005;61:1535–50.CrossRefPubMed
22.
go back to reference Huang L, Park K, Boike T, et al. A study on the dosimetric accuracy of treatment planning for stereotactic body radiation therapy of lung cancer using average and maximum intensity projection images. Radiother Oncol. 2010;96:48–54.CrossRefPubMed Huang L, Park K, Boike T, et al. A study on the dosimetric accuracy of treatment planning for stereotactic body radiation therapy of lung cancer using average and maximum intensity projection images. Radiother Oncol. 2010;96:48–54.CrossRefPubMed
23.
go back to reference Han K, Basran PS, Cheung P. Comparison of helical and average computed tomography for stereotactic body radiation treatment planning and normal tissue contouring in lung cancer. Clin Oncol. 2010;22:862–7.CrossRef Han K, Basran PS, Cheung P. Comparison of helical and average computed tomography for stereotactic body radiation treatment planning and normal tissue contouring in lung cancer. Clin Oncol. 2010;22:862–7.CrossRef
24.
go back to reference Tian Y, Wang Z, Ge H, Zhang T, Cai J, Kelsey C, Yoo D, Yin FF. Dosimetric comparison of treatment plans based on free breathing, maximum, and average intensity projection CTs for lung cancer SBRT. Med Phys. 2012;39:2754–60.CrossRefPubMed Tian Y, Wang Z, Ge H, Zhang T, Cai J, Kelsey C, Yoo D, Yin FF. Dosimetric comparison of treatment plans based on free breathing, maximum, and average intensity projection CTs for lung cancer SBRT. Med Phys. 2012;39:2754–60.CrossRefPubMed
25.
go back to reference Oechsner M, Odersky L, Berndt J, Combs SE, Wilkens JJ, Duma MN. Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy. Radiat Oncol. 2015;10(1):249.CrossRefPubMedPubMedCentral Oechsner M, Odersky L, Berndt J, Combs SE, Wilkens JJ, Duma MN. Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy. Radiat Oncol. 2015;10(1):249.CrossRefPubMedPubMedCentral
26.
go back to reference Wiant D, Vanderstraeten C, Maurer J, Pursley J, Terrell J, Sintay BJ. On the validity of density overrides for VMAT lung SBRT planning. Med Phys. 2014;41(8):081707.CrossRefPubMed Wiant D, Vanderstraeten C, Maurer J, Pursley J, Terrell J, Sintay BJ. On the validity of density overrides for VMAT lung SBRT planning. Med Phys. 2014;41(8):081707.CrossRefPubMed
27.
go back to reference Zvolanek K, Ma R, Zhou C, et al. Still equivalent for dose calculation in the Monte Carlo era? A comparison of free breathing and average intensity projection CT datasets for lung SBRT using three generations of dose calculation algorithms. Med Phys. 2017;44:1939–47.CrossRefPubMed Zvolanek K, Ma R, Zhou C, et al. Still equivalent for dose calculation in the Monte Carlo era? A comparison of free breathing and average intensity projection CT datasets for lung SBRT using three generations of dose calculation algorithms. Med Phys. 2017;44:1939–47.CrossRefPubMed
28.
go back to reference Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25:656–61.CrossRefPubMed Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25:656–61.CrossRefPubMed
29.
go back to reference Liu Q, Liang J, Stanhope CW, Yan D. The effect of density variation on photon dose calculation and its impact on intensity modulated radiotherapy and stereotactic body radiotherapy. Med Phys. 2016;43:5717–29.CrossRefPubMed Liu Q, Liang J, Stanhope CW, Yan D. The effect of density variation on photon dose calculation and its impact on intensity modulated radiotherapy and stereotactic body radiotherapy. Med Phys. 2016;43:5717–29.CrossRefPubMed
30.
go back to reference Aarup LR, Nahum AE, Zacharatou C, Juhler-Nøttrup T, Knöös T, Nyström H, Specht L, Wieslander E, Korreman SS. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage. Radiother Oncol. 2009;91:405–14.CrossRefPubMed Aarup LR, Nahum AE, Zacharatou C, Juhler-Nøttrup T, Knöös T, Nyström H, Specht L, Wieslander E, Korreman SS. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage. Radiother Oncol. 2009;91:405–14.CrossRefPubMed
31.
go back to reference Kroon PS, Hol S, Essers M. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans. Radiat Oncol. 2013;8(1):149.CrossRefPubMedPubMedCentral Kroon PS, Hol S, Essers M. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans. Radiat Oncol. 2013;8(1):149.CrossRefPubMedPubMedCentral
32.
go back to reference Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Critical appraisal of Acuros XB and anisotropic analytic algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J of Radiat Oncol Biol Phys. 2012;83(5):1587–95.CrossRef Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Critical appraisal of Acuros XB and anisotropic analytic algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J of Radiat Oncol Biol Phys. 2012;83(5):1587–95.CrossRef
33.
go back to reference Huang B, Wu L, Lin P, Chen C. Dose calculation of Acuros XB and anisotropic analytical algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size. Radiat Oncol. 2015;10(1):53.CrossRefPubMedPubMedCentral Huang B, Wu L, Lin P, Chen C. Dose calculation of Acuros XB and anisotropic analytical algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size. Radiat Oncol. 2015;10(1):53.CrossRefPubMedPubMedCentral
Metadata
Title
Technical and dosimetric implications of respiratory induced density variations in a heterogeneous lung phantom
Authors
Dennis J. Mohatt
Tianjun Ma
David B. Wiant
Naveed M. Islam
Jorge Gomez
Anurag K. Singh
Harish K. Malhotra
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1110-2

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue