Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

A patient-specific three-dimensional couplant pad for ultrasound image-guided radiation therapy: a feasibility study

Authors: Heejung Kim, Ah Ram Chang, Sungwoo Cho, Sung-Joon Ye

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

A wide application of ultrasound for radiation therapy has been hindered by a few issues such as skin and target deformations due to probe pressure, optical tracking disabilities caused by irregular surfaces and inter-user variations. The purpose of this study was to overcome these barriers by using a patient-specific three-dimensional (3D) couplant pad (CP).

Methods

A patient skin mold was designed using a skin contour of simulation CT images and fabricated by a 3D printer. A CP was then casted by pouring gelatin solution into a container accommodating the mold. To validate the use of the CP in positioning accuracy and imaging quality, phantom tests were carried out in our ultrasound-based localization system and then daily ultrasound images of four patients were acquired with and without the CP before treatment.

Results

In the phantom study, the use of CP increased a contrast-to-noise ratio from 2.4 to 4.0. The positioning accuracies in the US scans with and without the CP were less than 1 mm in all directions. In the patient study, the use of CP decreased the centroid offset of the target volume after target position alignment from 4.4 mm to 2.9 mm. One patient with a small volume of target showed a substantial increase in the inter-fractional target contour agreement (from 0.07 (poor agreement) to 0.31 (fair agreement) in Kappa values) by using the CP.

Conclusions

Our patient-specific 3D CP based on a 3D mold printing technique not only maintained the tracking accuracy but also reduced the inter-user variation, as well as that could potentially improve detectability of optical markers and target visibility for ultrasound image-guided radiotherapy.
Literature
1.
go back to reference Enke KA C, Saw CB, Zhen W, Thompson RB, Raman NV. Inter-Observer Variation in Prostate Localization Utilizing BAT. Int J Radiat Oncol Biol Phys. 2002;54(2):269.CrossRef Enke KA C, Saw CB, Zhen W, Thompson RB, Raman NV. Inter-Observer Variation in Prostate Localization Utilizing BAT. Int J Radiat Oncol Biol Phys. 2002;54(2):269.CrossRef
2.
go back to reference Robinson D, Liu D, Steciw S, Field C, Daly H, Saibishkumar EP, Fallone G. An evaluation of the Clarity 3D ultrasound system for prostate localization. J Appl Clin Med Phys. 2012;13:100–12.CrossRefPubMedCentral Robinson D, Liu D, Steciw S, Field C, Daly H, Saibishkumar EP, Fallone G. An evaluation of the Clarity 3D ultrasound system for prostate localization. J Appl Clin Med Phys. 2012;13:100–12.CrossRefPubMedCentral
3.
go back to reference Lachaine M, Falco T. Intrafractional prostate motion management with the clarity autoscan system. Med Phys Int. 2013;1:72–80. Lachaine M, Falco T. Intrafractional prostate motion management with the clarity autoscan system. Med Phys Int. 2013;1:72–80.
4.
go back to reference Fiandra C, Guarneri A, Munoz F, Moretto F, Filippi AR, Levis M, Ragona R, Ricardi U. Impact of the observers’ experience on daily prostate localization accuracy in ultrasound-based IGRT with the Clarity platform. J Appl Clin Med Phys. 2014;15:4795.CrossRefPubMed Fiandra C, Guarneri A, Munoz F, Moretto F, Filippi AR, Levis M, Ragona R, Ricardi U. Impact of the observers’ experience on daily prostate localization accuracy in ultrasound-based IGRT with the Clarity platform. J Appl Clin Med Phys. 2014;15:4795.CrossRefPubMed
5.
go back to reference Fuss M, Cavanaugh SX, Fuss C, Cheek DA, Salter BJ. Daily stereotactic ultrasound prostate targeting: inter-user variability. Technol Cancer Res Treat. 2003;2:161–70.CrossRefPubMed Fuss M, Cavanaugh SX, Fuss C, Cheek DA, Salter BJ. Daily stereotactic ultrasound prostate targeting: inter-user variability. Technol Cancer Res Treat. 2003;2:161–70.CrossRefPubMed
6.
go back to reference Langen KM, Pouliot J, Anezinos C, Aubin M, Gottschalk AR, Hsu IC, Lowther D, Liu YM, Shinohara K, Verhey LJ, et al. Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57:635–44.CrossRefPubMed Langen KM, Pouliot J, Anezinos C, Aubin M, Gottschalk AR, Hsu IC, Lowther D, Liu YM, Shinohara K, Verhey LJ, et al. Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57:635–44.CrossRefPubMed
7.
go back to reference Serago CF, Chungbin SJ, Buskirk SJ, Ezzell GA, Collie AC, Vora SA. Initial experience with ultrasound localization for positioning prostate cancer patients for external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53:1130–8.CrossRefPubMed Serago CF, Chungbin SJ, Buskirk SJ, Ezzell GA, Collie AC, Vora SA. Initial experience with ultrasound localization for positioning prostate cancer patients for external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53:1130–8.CrossRefPubMed
8.
go back to reference Fargier-Voiron M, Presles B, Pommier P, Rit S, Munoz A, Liebgott H, Sarrut D, Biston M-C. Impact of probe pressure variability on prostate localization for ultrasound-based image-guided radiotherapy. Radiother Oncol. 2014;111:132–7.CrossRefPubMed Fargier-Voiron M, Presles B, Pommier P, Rit S, Munoz A, Liebgott H, Sarrut D, Biston M-C. Impact of probe pressure variability on prostate localization for ultrasound-based image-guided radiotherapy. Radiother Oncol. 2014;111:132–7.CrossRefPubMed
9.
go back to reference Molloy JA, Chan G, Markovic A, McNeeley S, Pfeiffer D, Salter B, Tome WA. Quality assurance of U.S.-guided external beam radiotherapy for prostate cancer: report of AAPM Task Group 154. Med Phys. 2011;38:857–71.CrossRefPubMed Molloy JA, Chan G, Markovic A, McNeeley S, Pfeiffer D, Salter B, Tome WA. Quality assurance of U.S.-guided external beam radiotherapy for prostate cancer: report of AAPM Task Group 154. Med Phys. 2011;38:857–71.CrossRefPubMed
10.
go back to reference Goodsitt MM, Carson PL, Witt S, Hykes DL, Kofler JM Jr. Real-time B-mode ultrasound quality control test procedures. Report of AAPM Ultrasound Task Group No. 1. Med Phys. 1998;25:1385–406.CrossRefPubMed Goodsitt MM, Carson PL, Witt S, Hykes DL, Kofler JM Jr. Real-time B-mode ultrasound quality control test procedures. Report of AAPM Ultrasound Task Group No. 1. Med Phys. 1998;25:1385–406.CrossRefPubMed
11.
go back to reference American College of Radiology. Acr practice parameter for the performance of a breast ultrasound examination, Amended 2014 (Resolution 39). Reston: ACR (American College of Radiology); 2014. American College of Radiology. Acr practice parameter for the performance of a breast ultrasound examination, Amended 2014 (Resolution 39). Reston: ACR (American College of Radiology); 2014.
12.
go back to reference Klucinec B. The effectiveness of the aquaflex gel pad in the transmission of acoustic energy. J Athl Train. 1996;31:313–7.PubMedPubMedCentral Klucinec B. The effectiveness of the aquaflex gel pad in the transmission of acoustic energy. J Athl Train. 1996;31:313–7.PubMedPubMedCentral
13.
go back to reference Tsui BCH, Tsui J. A flexible gel pad as an effective medium for scanning irregular surface anatomy. Can J Anesth. 2011;59:226–7.CrossRefPubMed Tsui BCH, Tsui J. A flexible gel pad as an effective medium for scanning irregular surface anatomy. Can J Anesth. 2011;59:226–7.CrossRefPubMed
14.
go back to reference Yasukawa K, Kunisue T, Tsuta K, Shikinami Y, Kondo T. P6C-9 An Ultrasound Phantom with Long-Term Stability Using a New Biomimic Soft Gel Material. In: Ultrasonics Symposium, 2007 IEEE; 2007. p. 2501–2.CrossRef Yasukawa K, Kunisue T, Tsuta K, Shikinami Y, Kondo T. P6C-9 An Ultrasound Phantom with Long-Term Stability Using a New Biomimic Soft Gel Material. In: Ultrasonics Symposium, 2007 IEEE; 2007. p. 2501–2.CrossRef
15.
go back to reference Biller DS, Myer W. Ultrasound scanning of superficial structures using an ultrasound standoff pad. Vet Radiol. 1988;29:138–42.CrossRef Biller DS, Myer W. Ultrasound scanning of superficial structures using an ultrasound standoff pad. Vet Radiol. 1988;29:138–42.CrossRef
16.
go back to reference Claes HP, Reygaerts DO, Boven FA, Leemans J, De Boeck M, Geurts JM. An echo-free silicone elastomer block for ultrasonography. Radiology. 1984;150:596.CrossRefPubMed Claes HP, Reygaerts DO, Boven FA, Leemans J, De Boeck M, Geurts JM. An echo-free silicone elastomer block for ultrasonography. Radiology. 1984;150:596.CrossRefPubMed
17.
go back to reference Yeh HC, Wolf BS. A simple portable water bath for superficial ultrasonography. Am J Roentgenol. 1978;130:275–8.CrossRef Yeh HC, Wolf BS. A simple portable water bath for superficial ultrasonography. Am J Roentgenol. 1978;130:275–8.CrossRef
18.
go back to reference Amin VR. Tissue characterization by ultrasound: a study of tissue-mimicking materials and quantitative ultrasonics, Retrospective Theses and Dissertations: Iowa State University; 1992. http://lib.dr.iastate.edu/. Amin VR. Tissue characterization by ultrasound: a study of tissue-mimicking materials and quantitative ultrasonics, Retrospective Theses and Dissertations: Iowa State University; 1992. http://​lib.​dr.​iastate.​edu/​.
19.
go back to reference Madsen EL, Zagzebski JA, Banjavie RA, Jutila RE. Tissue mimicking materials for ultrasound phantoms. Med Phys. 1978;5:391–4.CrossRefPubMed Madsen EL, Zagzebski JA, Banjavie RA, Jutila RE. Tissue mimicking materials for ultrasound phantoms. Med Phys. 1978;5:391–4.CrossRefPubMed
20.
go back to reference Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30:1323–41.CrossRefPubMedPubMedCentral Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30:1323–41.CrossRefPubMedPubMedCentral
21.
go back to reference Pinter C, Lasso A, Wang A, Jaffray D, Fichtinger G. SlicerRT: radiation therapy research toolkit for 3D Slicer. Med Phys. 2012;39:6332–8.CrossRefPubMed Pinter C, Lasso A, Wang A, Jaffray D, Fichtinger G. SlicerRT: radiation therapy research toolkit for 3D Slicer. Med Phys. 2012;39:6332–8.CrossRefPubMed
22.
go back to reference Gorny KR, Hangiandreou NJ, Hesley GK, Felmlee JP. Evaluation of mineral oil as an acoustic coupling medium in clinical MRgFUS. Phys Med Biol. 2007;52:N13–9.CrossRefPubMed Gorny KR, Hangiandreou NJ, Hesley GK, Felmlee JP. Evaluation of mineral oil as an acoustic coupling medium in clinical MRgFUS. Phys Med Biol. 2007;52:N13–9.CrossRefPubMed
23.
go back to reference Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for radiotherapy research. Med Phys. 2003;30:979–85.CrossRefPubMed Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for radiotherapy research. Med Phys. 2003;30:979–85.CrossRefPubMed
24.
go back to reference Fleiss JL. Statistical methods for rates and proportions. 2nd ed. New York: Wiley. 1981. p. 38–46. Fleiss JL. Statistical methods for rates and proportions. 2nd ed. New York: Wiley. 1981. p. 38–46.
25.
go back to reference Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMed Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMed
26.
go back to reference Bude RO, Adler RS. An easily made, low-cost, tissue-like ultrasound phantom material. J Clin Ultrasound. 1995;23:271–3.CrossRefPubMed Bude RO, Adler RS. An easily made, low-cost, tissue-like ultrasound phantom material. J Clin Ultrasound. 1995;23:271–3.CrossRefPubMed
27.
go back to reference Mohler ER. Essentials of Vascular Laboratory Diagnosis. Hoboken: Wiley; 2008. Mohler ER. Essentials of Vascular Laboratory Diagnosis. Hoboken: Wiley; 2008.
28.
go back to reference McNair HA, Mangar SA, Coffey J, Shoulders B, Hansen VN, Norman A, Staffurth J, Sohaib SA, Warrington AP, Dearnaley DP. A comparison of CT- and ultrasound-based imaging to localize the prostate for external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2006;65:678–87.CrossRefPubMed McNair HA, Mangar SA, Coffey J, Shoulders B, Hansen VN, Norman A, Staffurth J, Sohaib SA, Warrington AP, Dearnaley DP. A comparison of CT- and ultrasound-based imaging to localize the prostate for external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2006;65:678–87.CrossRefPubMed
29.
go back to reference Boda-Heggemann J, Kohler FM, Kupper B, Wolff D, Wertz H, Mai S, Hesser J, Lohr F, Wenz F. Accuracy of ultrasound-based (BAT) prostate-repositioning: a three-dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2008;70:1247–55.CrossRefPubMed Boda-Heggemann J, Kohler FM, Kupper B, Wolff D, Wertz H, Mai S, Hesser J, Lohr F, Wenz F. Accuracy of ultrasound-based (BAT) prostate-repositioning: a three-dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2008;70:1247–55.CrossRefPubMed
30.
go back to reference van der Meer S, Bloemen-van Gurp E, Hermans J, Voncken R, Heuvelmans D, Gubbels C, Fontanarosa D, Visser P, Lutgens L, van Gils F, Verhaegen F. Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers. Med Phys. 2013;40:071707.CrossRefPubMed van der Meer S, Bloemen-van Gurp E, Hermans J, Voncken R, Heuvelmans D, Gubbels C, Fontanarosa D, Visser P, Lutgens L, van Gils F, Verhaegen F. Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers. Med Phys. 2013;40:071707.CrossRefPubMed
31.
go back to reference Li M, Ballhausen H, Hegemann NS, Ganswindt U, Manapov F, Tritschler S, Roosen A, Gratzke C, Reiner M, Belka C. A comparative assessment of prostate positioning guided by three-dimensional ultrasound and cone beam CT. Radiat Oncol. 2015;10:82.CrossRefPubMedPubMedCentral Li M, Ballhausen H, Hegemann NS, Ganswindt U, Manapov F, Tritschler S, Roosen A, Gratzke C, Reiner M, Belka C. A comparative assessment of prostate positioning guided by three-dimensional ultrasound and cone beam CT. Radiat Oncol. 2015;10:82.CrossRefPubMedPubMedCentral
32.
go back to reference Fargier-Voiron M, Presles B, Pommier P, Munoz A, Rit S, Sarrut D, Biston MC. Ultrasound versus Cone-beam CT image-guided radiotherapy for prostate and post-prostatectomy pretreatment localization. Phys Med. 2015;31:997–1004.CrossRefPubMed Fargier-Voiron M, Presles B, Pommier P, Munoz A, Rit S, Sarrut D, Biston MC. Ultrasound versus Cone-beam CT image-guided radiotherapy for prostate and post-prostatectomy pretreatment localization. Phys Med. 2015;31:997–1004.CrossRefPubMed
33.
go back to reference Richter A, Polat B, Lawrenz I, Weick S, Sauer O, Flentje M, Mantel F. Initial results for patient setup verification using transperineal ultrasound and cone beam CT in external beam radiation therapy of prostate cancer. Radiat Oncol. 2016;11:147.CrossRefPubMedPubMedCentral Richter A, Polat B, Lawrenz I, Weick S, Sauer O, Flentje M, Mantel F. Initial results for patient setup verification using transperineal ultrasound and cone beam CT in external beam radiation therapy of prostate cancer. Radiat Oncol. 2016;11:147.CrossRefPubMedPubMedCentral
34.
go back to reference Li M, Ballhausen H, Hegemann NS, Reiner M, Tritschler S, Gratzke C, Manapov F, Corradini S, Ganswindt U, Belka C. Comparison of prostate positioning guided by three-dimensional transperineal ultrasound and cone beam CT. Strahlenther Onkol. 2017;193:221–8.CrossRefPubMed Li M, Ballhausen H, Hegemann NS, Reiner M, Tritschler S, Gratzke C, Manapov F, Corradini S, Ganswindt U, Belka C. Comparison of prostate positioning guided by three-dimensional transperineal ultrasound and cone beam CT. Strahlenther Onkol. 2017;193:221–8.CrossRefPubMed
35.
go back to reference Wong P, Muanza T, Reynard E, Robert K, Barker J, Sultanem K. Use of three-dimensional ultrasound in the detection of breast tumor bed displacement during radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79:39–45.CrossRefPubMed Wong P, Muanza T, Reynard E, Robert K, Barker J, Sultanem K. Use of three-dimensional ultrasound in the detection of breast tumor bed displacement during radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79:39–45.CrossRefPubMed
Metadata
Title
A patient-specific three-dimensional couplant pad for ultrasound image-guided radiation therapy: a feasibility study
Authors
Heejung Kim
Ah Ram Chang
Sungwoo Cho
Sung-Joon Ye
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1098-7

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue