Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Commentary

Upcoming imaging concepts and their impact on treatment planning and treatment response in radiation oncology

Authors: Paul Russell Roberts, Ashesh B. Jani, Satyaseelan Packianathan, Ashley Albert, Rahul Bhandari, Srinivasan Vijayakumar

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

For 2018, the American Cancer Society estimated that there would be approximately 1.7 million new diagnoses of cancer and about 609,640 cancer-related deaths in the United States. By 2030 these numbers are anticipated to exceed a staggering 21 million annual diagnoses and 13 million cancer-related deaths. The three primary therapeutic modalities for cancer treatments are surgery, chemotherapy, and radiation therapy. Individually or in combination, these treatment modalities have provided and continue to provide curative and palliative care to the myriad victims of cancer.
Today, CT-based treatment planning is the primary means through which conventional photon radiation therapy is planned. Although CT remains the primary treatment planning modality, the field of radiation oncology is moving beyond the sole use of CT scans to define treatment targets and organs at risk. Complementary tissue scans, such as magnetic resonance imaging (MRI) and positron electron emission (PET) scans, have all improved a physician’s ability to more specifically identify target tissues, and in some cases, international guidelines have even been issued. Moreover, efforts to combine PET and MR to define solid tumors for radiotherapy planning and treatment evaluation are also gaining traction.
Keeping these advances in mind, we present brief overviews of other up-and-coming key imaging concepts that appear promising for initial treatment target definition or treatment response from radiation therapy.
Literature
1.
go back to reference Coleman CN, et al. The international cancer expert corps: a unique approach for sustainable cancer care in low and lower-middle income countries. Front Oncol. 2014;4:333.CrossRefPubMedPubMedCentral Coleman CN, et al. The international cancer expert corps: a unique approach for sustainable cancer care in low and lower-middle income countries. Front Oncol. 2014;4:333.CrossRefPubMedPubMedCentral
2.
go back to reference ICRU Prescribing, Recording and reporting photon beam therapy (supplement to ICRU report 50), ICRU report 62. 1999. ICRU Prescribing, Recording and reporting photon beam therapy (supplement to ICRU report 50), ICRU report 62. 1999.
3.
go back to reference ICRU Prescribing, Recording, and reporting photon beam therapy (report 50), ICRU report 50. ICRU, 1978. ICRU Prescribing, Recording, and reporting photon beam therapy (report 50), ICRU report 50. ICRU, 1978.
4.
go back to reference Wu VW, Kwong DL, Sham JS. Target dose conformity in 3-dimensional conformal radiotherapy and intensity modulated radiotherapy. Radiother Oncol. 2004;71(2):201–6.CrossRefPubMed Wu VW, Kwong DL, Sham JS. Target dose conformity in 3-dimensional conformal radiotherapy and intensity modulated radiotherapy. Radiother Oncol. 2004;71(2):201–6.CrossRefPubMed
5.
go back to reference Metcalfe P, et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat. 2013;12(5):429–46.CrossRefPubMed Metcalfe P, et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat. 2013;12(5):429–46.CrossRefPubMed
7.
go back to reference Awan MJ, et al. Application of positron emission tomography/computed tomography in radiation treatment planning for head and neck cancers. World J Radiol. 2015;7(11):382–93.CrossRefPubMedPubMedCentral Awan MJ, et al. Application of positron emission tomography/computed tomography in radiation treatment planning for head and neck cancers. World J Radiol. 2015;7(11):382–93.CrossRefPubMedPubMedCentral
8.
go back to reference Lee P, et al. Current concepts in F18 FDG PET/CT-based radiation therapy planning for lung cancer. Front Oncol. 2012;2:71.PubMedPubMedCentral Lee P, et al. Current concepts in F18 FDG PET/CT-based radiation therapy planning for lung cancer. Front Oncol. 2012;2:71.PubMedPubMedCentral
9.
go back to reference Boellard R, Delgado-Bolton R, WJG O, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging – version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.CrossRef Boellard R, Delgado-Bolton R, WJG O, Giammarile F, Tatsch K, Eschner W, Verzijlbergen FJ, Barrington SF, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging – version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.CrossRef
10.
go back to reference Balyasnikova S, et al. PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging. Am J Nucl Med Mol Imaging. 2012;2(4):458–74.PubMedPubMedCentral Balyasnikova S, et al. PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging. Am J Nucl Med Mol Imaging. 2012;2(4):458–74.PubMedPubMedCentral
11.
go back to reference Vali R, et al. Imaging of prostate cancer with PET/CT using (18)F-Fluorocholine. Am J Nucl Med Mol Imaging. 2015;5(2):96–108.PubMedPubMedCentral Vali R, et al. Imaging of prostate cancer with PET/CT using (18)F-Fluorocholine. Am J Nucl Med Mol Imaging. 2015;5(2):96–108.PubMedPubMedCentral
12.
go back to reference Af M, Rosenschold P, et al. Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro Oncol. 2015;17(5):757–63.CrossRef Af M, Rosenschold P, et al. Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro Oncol. 2015;17(5):757–63.CrossRef
13.
go back to reference Visgauss JD, Eward WC, Brigman BE. Innovations in intraoperative tumor visualization. Orthop Clin North Am. 2016;47(1):253–64.CrossRefPubMed Visgauss JD, Eward WC, Brigman BE. Innovations in intraoperative tumor visualization. Orthop Clin North Am. 2016;47(1):253–64.CrossRefPubMed
14.
go back to reference Moriichi K, Fujiya M, Okumura T. The efficacy of autofluorescence imaging in the diagnosis of colorectal diseases. Clin J Gastroenterol. 2016;9(4):175–83.CrossRefPubMed Moriichi K, Fujiya M, Okumura T. The efficacy of autofluorescence imaging in the diagnosis of colorectal diseases. Clin J Gastroenterol. 2016;9(4):175–83.CrossRefPubMed
15.
go back to reference Chamma E, et al. Optically-tracked handheld fluorescence imaging platform for monitoring skin response in the management of soft tissue sarcoma. J Biomed Opt. 2015;20(7):076011.CrossRefPubMed Chamma E, et al. Optically-tracked handheld fluorescence imaging platform for monitoring skin response in the management of soft tissue sarcoma. J Biomed Opt. 2015;20(7):076011.CrossRefPubMed
16.
go back to reference Reznicek L, et al. Role of wide-field autofluorescence imaging and scanning laser ophthalmoscopy in differentiation of choroidal pigmented lesions. Int J Ophthalmol. 2014;7(4):697–703.PubMedPubMedCentral Reznicek L, et al. Role of wide-field autofluorescence imaging and scanning laser ophthalmoscopy in differentiation of choroidal pigmented lesions. Int J Ophthalmol. 2014;7(4):697–703.PubMedPubMedCentral
17.
go back to reference Heimann H, Jmor F, Damato B. Imaging of retinal and choroidal vascular tumours. Eye (Lond). 2013;27(2):208–16.CrossRef Heimann H, Jmor F, Damato B. Imaging of retinal and choroidal vascular tumours. Eye (Lond). 2013;27(2):208–16.CrossRef
18.
go back to reference Damato B. Progress in the management of patients with uveal melanoma. The 2012 Ashton lecture. Eye (Lond). 2012;26(9):1157–72.CrossRef Damato B. Progress in the management of patients with uveal melanoma. The 2012 Ashton lecture. Eye (Lond). 2012;26(9):1157–72.CrossRef
19.
go back to reference Nguyen PT, et al. Combining autofluorescence and narrow band imaging with image analysis in the evaluation of preneoplastic lesions in the bronchus and larynx. J Bronchology Interv Pulmonol. 2010;17(2):109–16.CrossRefPubMed Nguyen PT, et al. Combining autofluorescence and narrow band imaging with image analysis in the evaluation of preneoplastic lesions in the bronchus and larynx. J Bronchology Interv Pulmonol. 2010;17(2):109–16.CrossRefPubMed
20.
go back to reference Keller MD, et al. Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis. Lasers Surg Med. 2010;42(1):15–23.CrossRefPubMed Keller MD, et al. Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis. Lasers Surg Med. 2010;42(1):15–23.CrossRefPubMed
21.
go back to reference Herth FJ, Eberhardt R, Ernst A. The future of bronchoscopy in diagnosing, staging and treatment of lung cancer. Respiration. 2006;73(4):399–409.CrossRefPubMed Herth FJ, Eberhardt R, Ernst A. The future of bronchoscopy in diagnosing, staging and treatment of lung cancer. Respiration. 2006;73(4):399–409.CrossRefPubMed
22.
go back to reference Schols RM, Connell NJ, Stassen LP. Near-infrared fluorescence imaging for real-time intraoperative anatomical guidance in minimally invasive surgery: a systematic review of the literature. World J Surg. 2015;39(5):1069–79.CrossRefPubMed Schols RM, Connell NJ, Stassen LP. Near-infrared fluorescence imaging for real-time intraoperative anatomical guidance in minimally invasive surgery: a systematic review of the literature. World J Surg. 2015;39(5):1069–79.CrossRefPubMed
23.
go back to reference Zhu B, Sevick-Muraca EM. A review of performance of near-infrared fluorescence imaging devices used in clinical studies. Br J Radiol. 2015;88:1045.CrossRef Zhu B, Sevick-Muraca EM. A review of performance of near-infrared fluorescence imaging devices used in clinical studies. Br J Radiol. 2015;88:1045.CrossRef
24.
go back to reference Neuman BP, et al. Real-time, near-infrared fluorescence imaging with an optimized dye/light source/camera combination for surgical guidance of prostate cancer. Clin Cancer Res. 2015;21(4):771–80.CrossRefPubMed Neuman BP, et al. Real-time, near-infrared fluorescence imaging with an optimized dye/light source/camera combination for surgical guidance of prostate cancer. Clin Cancer Res. 2015;21(4):771–80.CrossRefPubMed
25.
go back to reference Pleijhuis RG, et al. Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms. Eur J Surg Oncol. 2011;37(1):32–9.CrossRefPubMed Pleijhuis RG, et al. Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms. Eur J Surg Oncol. 2011;37(1):32–9.CrossRefPubMed
26.
go back to reference Leblond F, et al. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B. 2010;98(1):77–94.CrossRefPubMed Leblond F, et al. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B. 2010;98(1):77–94.CrossRefPubMed
27.
go back to reference Hariri G, et al. Multifunctional FePt nanoparticles for radiation-guided targeting and imaging of cancer. Ann Biomed Eng. 2011;39(3):946–52.CrossRefPubMed Hariri G, et al. Multifunctional FePt nanoparticles for radiation-guided targeting and imaging of cancer. Ann Biomed Eng. 2011;39(3):946–52.CrossRefPubMed
28.
go back to reference Souris JS, et al. Radioluminescence characterization of in situ x-ray nanodosimeters: potential real-time monitors and modulators of external beam radiation therapy. Appl Phys Lett. 2014;105(20):203110.CrossRefPubMedPubMedCentral Souris JS, et al. Radioluminescence characterization of in situ x-ray nanodosimeters: potential real-time monitors and modulators of external beam radiation therapy. Appl Phys Lett. 2014;105(20):203110.CrossRefPubMedPubMedCentral
29.
go back to reference Bertrand N, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.CrossRefPubMed Bertrand N, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.CrossRefPubMed
30.
go back to reference Wakabayashi H, et al. Fundamental and clinical studies on fluorescence laparoscopy after intravenous injection of fluorescein-sodium. Gastroenterol Jpn. 1989;24(6):676–84.CrossRefPubMed Wakabayashi H, et al. Fundamental and clinical studies on fluorescence laparoscopy after intravenous injection of fluorescein-sodium. Gastroenterol Jpn. 1989;24(6):676–84.CrossRefPubMed
31.
go back to reference Whitley MJ, Weissleder R, Kirsch DG. Tailoring adjuvant radiation therapy by intraoperative imaging to detect residual Cancer. Semin Radiat Oncol. 2015;25(4):313–21.CrossRefPubMedPubMedCentral Whitley MJ, Weissleder R, Kirsch DG. Tailoring adjuvant radiation therapy by intraoperative imaging to detect residual Cancer. Semin Radiat Oncol. 2015;25(4):313–21.CrossRefPubMedPubMedCentral
32.
go back to reference Ambrosini V, et al. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52(Suppl 2):42S–55S.CrossRefPubMed Ambrosini V, et al. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52(Suppl 2):42S–55S.CrossRefPubMed
33.
go back to reference van Waarde A, et al. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. Biochim Biophys Acta. 2015;1848(10 Pt B):2703–14.CrossRefPubMed van Waarde A, et al. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. Biochim Biophys Acta. 2015;1848(10 Pt B):2703–14.CrossRefPubMed
34.
go back to reference Allweis TM, et al. A prospective, randomized, controlled, multicenter study of a real-time, intraoperative probe for positive margin detection in breast-conserving surgery. Am J Surg. 2008;196(4):483–9.CrossRefPubMed Allweis TM, et al. A prospective, randomized, controlled, multicenter study of a real-time, intraoperative probe for positive margin detection in breast-conserving surgery. Am J Surg. 2008;196(4):483–9.CrossRefPubMed
35.
go back to reference van den Bergen B, et al. Uniform prostate imaging and spectroscopy at 7 T: comparison between a microstrip array and an endorectal coil. NMR Biomed. 2011;24(4):358–65.PubMed van den Bergen B, et al. Uniform prostate imaging and spectroscopy at 7 T: comparison between a microstrip array and an endorectal coil. NMR Biomed. 2011;24(4):358–65.PubMed
36.
go back to reference Raman CV, K K. A new type of secondary radiation. Nature. 1928;121(501) Raman CV, K K. A new type of secondary radiation. Nature. 1928;121(501)
37.
go back to reference Devpura S, et al. Vision 20/20: the role of Raman spectroscopy in early stage cancer detection and feasibility for application in radiation therapy response assessment. Med Phys. 2014;41(5):050901.CrossRefPubMed Devpura S, et al. Vision 20/20: the role of Raman spectroscopy in early stage cancer detection and feasibility for application in radiation therapy response assessment. Med Phys. 2014;41(5):050901.CrossRefPubMed
38.
go back to reference Kast RE, et al. Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev. 2014;33(2–3):673–93.CrossRefPubMed Kast RE, et al. Emerging technology: applications of Raman spectroscopy for prostate cancer. Cancer Metastasis Rev. 2014;33(2–3):673–93.CrossRefPubMed
42.
go back to reference Camus VL, et al. Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors. Analyst. 2016;141(17):5056–61.CrossRefPubMed Camus VL, et al. Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors. Analyst. 2016;141(17):5056–61.CrossRefPubMed
43.
go back to reference Harder SJ, et al. A Raman spectroscopic study of cell response to clinical doses of ionizing radiation. Appl Spectrosc. 2015;69(2):193–204.CrossRefPubMed Harder SJ, et al. A Raman spectroscopic study of cell response to clinical doses of ionizing radiation. Appl Spectrosc. 2015;69(2):193–204.CrossRefPubMed
44.
go back to reference Yasser M, et al. Raman spectroscopic study of radioresistant oral cancer sublines established by fractionated ionizing radiation. PLoS One. 2014;9(5):e97777.CrossRefPubMedPubMedCentral Yasser M, et al. Raman spectroscopic study of radioresistant oral cancer sublines established by fractionated ionizing radiation. PLoS One. 2014;9(5):e97777.CrossRefPubMedPubMedCentral
45.
go back to reference Matthews Q, et al. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy. Phys Med Biol. 2011;56(21):6839–55.CrossRefPubMed Matthews Q, et al. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy. Phys Med Biol. 2011;56(21):6839–55.CrossRefPubMed
46.
go back to reference Zhu C, et al. Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach. J Biomed Opt. 2008;13(3):034015.CrossRefPubMed Zhu C, et al. Diagnosis of breast cancer using fluorescence and diffuse reflectance spectroscopy: a Monte-Carlo-model-based approach. J Biomed Opt. 2008;13(3):034015.CrossRefPubMed
47.
go back to reference Bigio IJ, et al. Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. J Biomed Opt. 2000;5(2):221–8.CrossRefPubMed Bigio IJ, et al. Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. J Biomed Opt. 2000;5(2):221–8.CrossRefPubMed
48.
go back to reference Dhar A, et al. Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique. Gastrointest Endosc. 2006;63(2):257–61.CrossRefPubMed Dhar A, et al. Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique. Gastrointest Endosc. 2006;63(2):257–61.CrossRefPubMed
49.
go back to reference Lin WC, et al. In vivo optical spectroscopy detects radiation damage in brain tissue. Neurosurgery. 2005;57(3):518–25. discussion 518-25CrossRefPubMed Lin WC, et al. In vivo optical spectroscopy detects radiation damage in brain tissue. Neurosurgery. 2005;57(3):518–25. discussion 518-25CrossRefPubMed
50.
go back to reference Sunar U, et al. Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study. J Biomed Opt. 2006;11(6):064021.CrossRefPubMed Sunar U, et al. Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: a pilot study. J Biomed Opt. 2006;11(6):064021.CrossRefPubMed
51.
go back to reference Nagle SM, et al. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound. J Ultrasound Med. 2013;32(11):1897–911.CrossRefPubMed Nagle SM, et al. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound. J Ultrasound Med. 2013;32(11):1897–911.CrossRefPubMed
52.
go back to reference Doyle TE, et al. High-frequency ultrasound for intraoperative margin assessments in breast conservation surgery: a feasibility study. BMC Cancer. 2011;11:444.CrossRefPubMedPubMedCentral Doyle TE, et al. High-frequency ultrasound for intraoperative margin assessments in breast conservation surgery: a feasibility study. BMC Cancer. 2011;11:444.CrossRefPubMedPubMedCentral
53.
go back to reference Ramos M, et al. Ultrasound-guided excision combined with intraoperative assessment of gross macroscopic margins decreases the rate of reoperations for non-palpable invasive breast cancer. Breast. 2013;22(4):520–4.CrossRefPubMed Ramos M, et al. Ultrasound-guided excision combined with intraoperative assessment of gross macroscopic margins decreases the rate of reoperations for non-palpable invasive breast cancer. Breast. 2013;22(4):520–4.CrossRefPubMed
54.
go back to reference Kwok SJ, et al. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound. Ultrasound Med Biol. 2013;39(11):1983–90.CrossRefPubMed Kwok SJ, et al. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound. Ultrasound Med Biol. 2013;39(11):1983–90.CrossRefPubMed
55.
go back to reference Adriaenssens N, et al. Ultrasound elastography as an objective diagnostic measurement tool for lymphoedema of the treated breast in breast cancer patients following breast conserving surgery and radiotherapy. Radiol Oncol. 2012;46(4):284–95.CrossRefPubMedPubMedCentral Adriaenssens N, et al. Ultrasound elastography as an objective diagnostic measurement tool for lymphoedema of the treated breast in breast cancer patients following breast conserving surgery and radiotherapy. Radiol Oncol. 2012;46(4):284–95.CrossRefPubMedPubMedCentral
56.
go back to reference Huang YP, et al. High frequency ultrasound assessment of skin fibrosis: clinical results. Ultrasound Med Biol. 2007;33(8):1191–8.CrossRefPubMed Huang YP, et al. High frequency ultrasound assessment of skin fibrosis: clinical results. Ultrasound Med Biol. 2007;33(8):1191–8.CrossRefPubMed
57.
go back to reference Wratten CR, et al. Breast edema in patients undergoing breast-conserving treatment for breast cancer: assessment via high frequency ultrasound. Breast J. 2007;13(3):266–73.CrossRefPubMed Wratten CR, et al. Breast edema in patients undergoing breast-conserving treatment for breast cancer: assessment via high frequency ultrasound. Breast J. 2007;13(3):266–73.CrossRefPubMed
58.
go back to reference Daftari I, et al. Use of high-frequency ultrasound imaging to improve delineation of anterior uveal melanoma for proton irradiation. Phys Med Biol. 2001;46(2):579–90.CrossRefPubMed Daftari I, et al. Use of high-frequency ultrasound imaging to improve delineation of anterior uveal melanoma for proton irradiation. Phys Med Biol. 2001;46(2):579–90.CrossRefPubMed
59.
go back to reference Yang X, R P, Ogunleye T, Jani a, Curran W, Liu T. MR-US Prostate Registration Using Patient-Specific Tissue Elasticity Property Prior for MR-Targeted, TRUS-Guided HDR Brachytherapy. Med Phys. 2014;41(6):470–1.CrossRef Yang X, R P, Ogunleye T, Jani a, Curran W, Liu T. MR-US Prostate Registration Using Patient-Specific Tissue Elasticity Property Prior for MR-Targeted, TRUS-Guided HDR Brachytherapy. Med Phys. 2014;41(6):470–1.CrossRef
60.
go back to reference Claudon M, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) - update 2008. Ultraschall Med. 2008;29(1):28–44.CrossRefPubMed Claudon M, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) - update 2008. Ultraschall Med. 2008;29(1):28–44.CrossRefPubMed
61.
go back to reference Madsen HH, Rasmussen F. Contrast-enhanced ultrasound in oncology. Cancer Imaging. 2011; 11 Spec No A: p. S167–73 Madsen HH, Rasmussen F. Contrast-enhanced ultrasound in oncology. Cancer Imaging. 2011; 11 Spec No A: p. S167–73
62.
go back to reference Xie L, et al. Diagnostic value of contrast-enhanced ultrasound, computed tomography and magnetic resonance imaging for focal liver lesions: a meta-analysis. Ultrasound Med Biol. 2011;37(6):854–61.CrossRefPubMed Xie L, et al. Diagnostic value of contrast-enhanced ultrasound, computed tomography and magnetic resonance imaging for focal liver lesions: a meta-analysis. Ultrasound Med Biol. 2011;37(6):854–61.CrossRefPubMed
63.
go back to reference Kedar RP, et al. Microbubble contrast agent for color Doppler US: effect on breast masses. Work in progress. Radiology. 1996;198(3):679–86.CrossRefPubMed Kedar RP, et al. Microbubble contrast agent for color Doppler US: effect on breast masses. Work in progress. Radiology. 1996;198(3):679–86.CrossRefPubMed
64.
go back to reference Balleyguier C, et al. New potential and applications of contrast-enhanced ultrasound of the breast: own investigations and review of the literature. Eur J Radiol. 2009;69(1):14–23.CrossRefPubMed Balleyguier C, et al. New potential and applications of contrast-enhanced ultrasound of the breast: own investigations and review of the literature. Eur J Radiol. 2009;69(1):14–23.CrossRefPubMed
65.
go back to reference Catalano O, et al. Contrast-enhanced sonography of the spleen. Semin Ultrasound CT MR. 2006;27(5):426–33.CrossRefPubMed Catalano O, et al. Contrast-enhanced sonography of the spleen. Semin Ultrasound CT MR. 2006;27(5):426–33.CrossRefPubMed
66.
go back to reference Zhou X, et al. Characterization and diagnostic confidence of contrast-enhanced ultrasound for solid renal tumors. Ultrasound Med Biol. 2011;37(6):845–53.CrossRefPubMed Zhou X, et al. Characterization and diagnostic confidence of contrast-enhanced ultrasound for solid renal tumors. Ultrasound Med Biol. 2011;37(6):845–53.CrossRefPubMed
67.
go back to reference D'Onofrio M, et al. Pancreatic multicenter ultrasound study (PAMUS). Eur J Radiol. 2012;81(4):630–8.CrossRefPubMed D'Onofrio M, et al. Pancreatic multicenter ultrasound study (PAMUS). Eur J Radiol. 2012;81(4):630–8.CrossRefPubMed
68.
go back to reference Keane PA, Sadda SR. Retinal imaging in the twenty-first century: state of the art and future directions. Ophthalmology. 2014;121(12):2489–500.CrossRefPubMed Keane PA, Sadda SR. Retinal imaging in the twenty-first century: state of the art and future directions. Ophthalmology. 2014;121(12):2489–500.CrossRefPubMed
69.
go back to reference Gupta M, S L. Current and Evolving Uses of Optical Coherence Tomography in the Genitourinary Tract. Current Urology Reports. 2015;16(3) Gupta M, S L. Current and Evolving Uses of Optical Coherence Tomography in the Genitourinary Tract. Current Urology Reports. 2015;16(3)
70.
go back to reference L S. New developments in optical coherence tomography. Acta Ophthalmol. 2012:90. L S. New developments in optical coherence tomography. Acta Ophthalmol. 2012:90.
71.
go back to reference Taruttis A, van Dam GM, Ntziachristos V. Mesoscopic and macroscopic optoacoustic imaging of cancer. Cancer Res. 2015;75(8):1548–59.CrossRefPubMed Taruttis A, van Dam GM, Ntziachristos V. Mesoscopic and macroscopic optoacoustic imaging of cancer. Cancer Res. 2015;75(8):1548–59.CrossRefPubMed
72.
go back to reference Razansky D, Buehler A, Ntziachristos V. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc. 2011;6(8):1121–9.CrossRefPubMed Razansky D, Buehler A, Ntziachristos V. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc. 2011;6(8):1121–9.CrossRefPubMed
73.
go back to reference Heijblom M, et al. Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements? Opt Express. 2012;20(11):11582–97.CrossRefPubMed Heijblom M, et al. Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements? Opt Express. 2012;20(11):11582–97.CrossRefPubMed
75.
go back to reference Yang JM, et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat Med. 2012;18(8):1297–302.CrossRefPubMed Yang JM, et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat Med. 2012;18(8):1297–302.CrossRefPubMed
76.
77.
go back to reference Maher NG, et al. In vivo confocal microscopy for the oral cavity: current state of the field and future potential. Oral Oncol. 2016;54:28–35.CrossRefPubMed Maher NG, et al. In vivo confocal microscopy for the oral cavity: current state of the field and future potential. Oral Oncol. 2016;54:28–35.CrossRefPubMed
78.
go back to reference Que SK, et al. Through the looking glass: basics and principles of reflectance confocal microscopy. J Am Acad Dermatol. 2015;73(2):276–84.CrossRefPubMed Que SK, et al. Through the looking glass: basics and principles of reflectance confocal microscopy. J Am Acad Dermatol. 2015;73(2):276–84.CrossRefPubMed
79.
go back to reference Erie JC, McLaren JW, Patel SV. Confocal microscopy in ophthalmology. Am J Ophthalmol. 2009;148(5):639–46.CrossRefPubMed Erie JC, McLaren JW, Patel SV. Confocal microscopy in ophthalmology. Am J Ophthalmol. 2009;148(5):639–46.CrossRefPubMed
80.
go back to reference Ibrahim O, Gastman B, Zhang A. Advances in diagnosis and treatment of nonmelanoma skin cancer. Ann Plast Surg. 2014;73(5):615–9.CrossRefPubMed Ibrahim O, Gastman B, Zhang A. Advances in diagnosis and treatment of nonmelanoma skin cancer. Ann Plast Surg. 2014;73(5):615–9.CrossRefPubMed
81.
go back to reference Cuneo KC, et al. Imaging primary mouse sarcomas after radiation therapy using cathepsin-activatable fluorescent imaging agents. Int J Radiat Oncol Biol Phys. 2013;86(1):136–42.CrossRefPubMedPubMedCentral Cuneo KC, et al. Imaging primary mouse sarcomas after radiation therapy using cathepsin-activatable fluorescent imaging agents. Int J Radiat Oncol Biol Phys. 2013;86(1):136–42.CrossRefPubMedPubMedCentral
82.
go back to reference Davies Cde L, et al. Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer Res. 2004;64(2):547–53.CrossRefPubMed Davies Cde L, et al. Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer Res. 2004;64(2):547–53.CrossRefPubMed
83.
go back to reference Ling CC, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys. 2000;47(3):551–60.CrossRefPubMed Ling CC, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys. 2000;47(3):551–60.CrossRefPubMed
84.
go back to reference Grégoire V, M T. State of the art on dose prescription, reporting and recording in intensity-modulated radiation therapy (ICRU report No. 83). Cancer Radiotherapy. 2011;15:555–9.CrossRef Grégoire V, M T. State of the art on dose prescription, reporting and recording in intensity-modulated radiation therapy (ICRU report No. 83). Cancer Radiotherapy. 2011;15:555–9.CrossRef
85.
go back to reference Schutze C, et al. Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice. Radiother Oncol. 2007;83(3):311–5.CrossRefPubMed Schutze C, et al. Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice. Radiother Oncol. 2007;83(3):311–5.CrossRefPubMed
87.
go back to reference Duprez F, et al. Adaptive dose painting by numbers for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2011;80(4):1045–55.CrossRefPubMed Duprez F, et al. Adaptive dose painting by numbers for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2011;80(4):1045–55.CrossRefPubMed
Metadata
Title
Upcoming imaging concepts and their impact on treatment planning and treatment response in radiation oncology
Authors
Paul Russell Roberts
Ashesh B. Jani
Satyaseelan Packianathan
Ashley Albert
Rahul Bhandari
Srinivasan Vijayakumar
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1091-1

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue