Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

The potential failure risk of the cone-beam computed tomography-based planning target volume margin definition for prostate image-guided radiotherapy based on a prospective single-institutional hybrid analysis

Authors: Katsumi Hirose, Mariko Sato, Yoshiomi Hatayama, Hideo Kawaguchi, Fumio Komai, Makoto Sohma, Hideki Obara, Masashi Suzuki, Mitsuki Tanaka, Ichitaro Fujioka, Koji Ichise, Yoshihiro Takai, Masahiko Aoki

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

The purpose of this study was to evaluate the impact of markerless on-board kilovoltage (kV) cone-beam computed tomography (CBCT)-based positioning uncertainty on determination of the planning target volume (PTV) margin by comparison with kV on-board imaging (OBI) with gold fiducial markers (FMs), and to validate a methodology for the evaluation of PTV margins for markerless kV-CBCT in prostate image-guided radiotherapy (IGRT).

Methods

A total of 1177 pre- and 1177 post-treatment kV-OBI and 1177 pre- and 206 post-treatment kV-CBCT images were analyzed in 25 patients who received prostate IGRT with daily localization by implanted FMs. Intrafractional motion of the prostate was evaluated between each pre- and post-treatment image with these two different techniques. The differences in prostate deviations and intrafractional motions between matching by FM in kV-OBI (OBI-FM) and matching by soft tissues in kV-CBCT (CBCT-ST) were compared by Bland-Altman limits of agreement. Compensated PTV margins were determined and compensated by references.

Results

Mean differences between OBI-FM and CBCT-ST in the anterior to posterior (AP), superior to inferior (SI), and left to right (LR) directions were − 0.43 ± 1.45, − 0.09 ± 1.65, and − 0.12 ± 0.80 mm, respectively, with R2 = 0.85, 0.88, and 0.83, respectively. Intrafractional motions obtained from CBCT-ST were 0.00 ± 1.46, 0.02 ± 1.49, and 0.15 ± 0.64 mm, respectively, which were smaller than the results from OBI-FM, with 0.43 ± 1.90, 0.12 ± 1.98, and 0.26 ± 0.80 mm, respectively, with R2 = 0.42, 0.33, and 0.16, respectively. Bland-Altman analysis showed a significant proportional bias. PTV margins of 1.5 mm, 1.4 mm, and 0.9 mm for CBCT-ST were calculated from the values of CBCT-ST, which were also smaller than the values of 3.15 mm, 3.66 mm, and 1.60 mm from OBI-FM. The practical PTV margin for CBCT-ST was compensated with the values from OBI-FM as 4.1 mm, 4.8 mm, and 2.2 mm.

Conclusions

PTV margins calculated from CBCT-ST might be underestimated compared to the true PTV margins. To determine a reliable CBCT-ST-based PTV margin, at least the systemic error Σ and the random error σ for on-line matching errors need to be investigated by supportive preliminary FM evaluation at least once.
Literature
1.
go back to reference Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, Yarnold J, Horwich A. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet. 1999;353(9149):267–72.CrossRefPubMed Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, Yarnold J, Horwich A. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet. 1999;353(9149):267–72.CrossRefPubMed
2.
go back to reference Dearnaley DP, Hall E, Lawrence D, Huddart RA, Eeles R, Nutting CM, Gadd J, Warrington A, Bidmead M, Horwich A. Phase III pilot study of dose escalation using conformal radiotherapy in prostate cancer: PSA control and side effects. Br J Cancer. 2005;92(3):488–98.CrossRefPubMedPubMedCentral Dearnaley DP, Hall E, Lawrence D, Huddart RA, Eeles R, Nutting CM, Gadd J, Warrington A, Bidmead M, Horwich A. Phase III pilot study of dose escalation using conformal radiotherapy in prostate cancer: PSA control and side effects. Br J Cancer. 2005;92(3):488–98.CrossRefPubMedPubMedCentral
3.
go back to reference Koper PC, Heemsbergen WD, Hoogeman MS, Jansen PP, Hart GA, Wijnmaalen AJ, van Os M, Boersma LJ, Lebesque JV, Levendag P. Impact of volume and location of irradiated rectum wall on rectal blood loss after radiotherapy of prostate cancer. Int J Radiat Oncol Biol Phys. 2004;58(4):1072–82.CrossRefPubMed Koper PC, Heemsbergen WD, Hoogeman MS, Jansen PP, Hart GA, Wijnmaalen AJ, van Os M, Boersma LJ, Lebesque JV, Levendag P. Impact of volume and location of irradiated rectum wall on rectal blood loss after radiotherapy of prostate cancer. Int J Radiat Oncol Biol Phys. 2004;58(4):1072–82.CrossRefPubMed
4.
go back to reference Zelefsky MJ, Fuks Z, Happersett L, Lee HJ, Ling CC, Burman CM, Hunt M, Wolfe T, Venkatraman ES, Jackson A, et al. Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol. 2000;55(3):241–9.CrossRefPubMed Zelefsky MJ, Fuks Z, Happersett L, Lee HJ, Ling CC, Burman CM, Hunt M, Wolfe T, Venkatraman ES, Jackson A, et al. Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol. 2000;55(3):241–9.CrossRefPubMed
5.
go back to reference Cahlon O, Zelefsky MJ, Shippy A, Chan H, Fuks Z, Yamada Y, Hunt M, Greenstein S, Amols H. Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys. 2008;71(2):330–7.CrossRefPubMed Cahlon O, Zelefsky MJ, Shippy A, Chan H, Fuks Z, Yamada Y, Hunt M, Greenstein S, Amols H. Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys. 2008;71(2):330–7.CrossRefPubMed
6.
go back to reference Spratt DE, Zumsteg ZS, Ghadjar P, Kollmeier MA, Pei X, Cohen G, Polkinghorn W, Yamada Y, Zelefsky MJ. Comparison of high-dose (86.4 Gy) IMRT vs combined brachytherapy plus IMRT for intermediate-risk prostate cancer. BJU Int. 2014;114(3):360–7.PubMed Spratt DE, Zumsteg ZS, Ghadjar P, Kollmeier MA, Pei X, Cohen G, Polkinghorn W, Yamada Y, Zelefsky MJ. Comparison of high-dose (86.4 Gy) IMRT vs combined brachytherapy plus IMRT for intermediate-risk prostate cancer. BJU Int. 2014;114(3):360–7.PubMed
7.
go back to reference Schallenkamp JM, Herman MG, Kruse JJ, Pisansky TM. Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging. Int J Radiat Oncol Biol Phys. 2005;63(3):800–11.CrossRefPubMed Schallenkamp JM, Herman MG, Kruse JJ, Pisansky TM. Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and electronic portal imaging. Int J Radiat Oncol Biol Phys. 2005;63(3):800–11.CrossRefPubMed
8.
go back to reference Owen R, Foroudi F, Kron T, Milner A, Cox J, Cramb J, Zhu L, Duchesne G. A comparison of in-room computerized tomography options for detection of fiducial markers in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2010;77(4):1248–56.CrossRefPubMed Owen R, Foroudi F, Kron T, Milner A, Cox J, Cramb J, Zhu L, Duchesne G. A comparison of in-room computerized tomography options for detection of fiducial markers in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2010;77(4):1248–56.CrossRefPubMed
9.
go back to reference Song S, Yenice KM, Kopec M, Liauw SL. Image-guided radiotherapy using surgical clips as fiducial markers after prostatectomy: a report of total setup error, required PTV expansion, and dosimetric implications. Radiother Oncol. 2012;103(2):270–4.CrossRefPubMed Song S, Yenice KM, Kopec M, Liauw SL. Image-guided radiotherapy using surgical clips as fiducial markers after prostatectomy: a report of total setup error, required PTV expansion, and dosimetric implications. Radiother Oncol. 2012;103(2):270–4.CrossRefPubMed
10.
go back to reference Graf R, Boehmer D, Budach V, Wust P. Interfraction rotation of the prostate as evaluated by kilovoltage X-ray fiducial marker imaging in intensity-modulated radiotherapy of localized prostate cancer. Med Dosim. 2012;37(4):396–400.CrossRefPubMed Graf R, Boehmer D, Budach V, Wust P. Interfraction rotation of the prostate as evaluated by kilovoltage X-ray fiducial marker imaging in intensity-modulated radiotherapy of localized prostate cancer. Med Dosim. 2012;37(4):396–400.CrossRefPubMed
11.
go back to reference Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53(5):1337–49.CrossRefPubMed Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53(5):1337–49.CrossRefPubMed
12.
go back to reference Welsh JS, Patel RR, Ritter MA, Harari PM, Mackie TR, Mehta MP. Helical tomotherapy: an innovative technology and approach to radiation therapy. Technol Cancer Res Treat. 2002;1(4):311–6.CrossRefPubMed Welsh JS, Patel RR, Ritter MA, Harari PM, Mackie TR, Mehta MP. Helical tomotherapy: an innovative technology and approach to radiation therapy. Technol Cancer Res Treat. 2002;1(4):311–6.CrossRefPubMed
13.
go back to reference Moseley DJ, White EA, Wiltshire KL, Rosewall T, Sharpe MB, Siewerdsen JH, Bissonnette JP, Gospodarowicz M, Warde P, Catton CN, et al. Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int J Radiat Oncol Biol Phys. 2007;67(3):942–53.CrossRefPubMedPubMedCentral Moseley DJ, White EA, Wiltshire KL, Rosewall T, Sharpe MB, Siewerdsen JH, Bissonnette JP, Gospodarowicz M, Warde P, Catton CN, et al. Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int J Radiat Oncol Biol Phys. 2007;67(3):942–53.CrossRefPubMedPubMedCentral
15.
go back to reference Chan MF, Cohen GN, Deasy JO. Qualitative evaluation of fiducial markers for radiotherapy imaging. Technol Cancer Res Treat. 2015;14(3):298–304.CrossRefPubMed Chan MF, Cohen GN, Deasy JO. Qualitative evaluation of fiducial markers for radiotherapy imaging. Technol Cancer Res Treat. 2015;14(3):298–304.CrossRefPubMed
16.
go back to reference Sharpe MB, Moseley DJ, Purdie TG, Islam M, Siewerdsen JH, Jaffray DA. The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear accelerator. Med Phys. 2006;33(1):136–44.CrossRefPubMed Sharpe MB, Moseley DJ, Purdie TG, Islam M, Siewerdsen JH, Jaffray DA. The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear accelerator. Med Phys. 2006;33(1):136–44.CrossRefPubMed
17.
go back to reference Bissonnette JP, Balter PA, Dong L, Langen KM, Lovelock DM, Miften M, Moseley DJ, Pouliot J, Sonke JJ, Yoo S. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med Phys. 2012;39(4):1946–63.CrossRefPubMed Bissonnette JP, Balter PA, Dong L, Langen KM, Lovelock DM, Miften M, Moseley DJ, Pouliot J, Sonke JJ, Yoo S. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med Phys. 2012;39(4):1946–63.CrossRefPubMed
18.
go back to reference van Herk M, Remeijer P, Lebesque JV. Inclusion of geometric uncertainties in treatment plan evaluation. Int J Radiat Oncol Biol Phys. 2002;52(5):1407–22.CrossRefPubMed van Herk M, Remeijer P, Lebesque JV. Inclusion of geometric uncertainties in treatment plan evaluation. Int J Radiat Oncol Biol Phys. 2002;52(5):1407–22.CrossRefPubMed
19.
20.
go back to reference El-Gayed AA, Bel A, Vijlbrief R, Bartelink H, Lebesque JV. Time trend of patient setup deviations during pelvic irradiation using electronic portal imaging. Radiother Oncol. 1993;26(2):162–71.CrossRefPubMed El-Gayed AA, Bel A, Vijlbrief R, Bartelink H, Lebesque JV. Time trend of patient setup deviations during pelvic irradiation using electronic portal imaging. Radiother Oncol. 1993;26(2):162–71.CrossRefPubMed
21.
go back to reference Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys. 1999;43(1):57–66.CrossRefPubMed Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys. 1999;43(1):57–66.CrossRefPubMed
22.
go back to reference Khoo EL, Schick K, Plank AW, Poulsen M, Wong WW, Middleton M, Martin JM. Prostate contouring variation: can it be fixed? Int J Radiat Oncol Biol Phys. 2012;82(5):1923–9.CrossRefPubMed Khoo EL, Schick K, Plank AW, Poulsen M, Wong WW, Middleton M, Martin JM. Prostate contouring variation: can it be fixed? Int J Radiat Oncol Biol Phys. 2012;82(5):1923–9.CrossRefPubMed
23.
go back to reference Dirix P, Joniau S, Van den Bergh L, Isebaert S, Oyen R, Deroose CM, Lerut E, Haustermans K. The role of elective pelvic radiotherapy in clinically node-negative prostate cancer: a systematic review. Radiother Oncol. 2014;110(1):45–54.CrossRefPubMed Dirix P, Joniau S, Van den Bergh L, Isebaert S, Oyen R, Deroose CM, Lerut E, Haustermans K. The role of elective pelvic radiotherapy in clinically node-negative prostate cancer: a systematic review. Radiother Oncol. 2014;110(1):45–54.CrossRefPubMed
24.
go back to reference Siewerdsen JH, Jaffray DA. Cone-beam computed tomography with a flat-panel imager: effects of image lag. Med Phys. 1999;26(12):2635–47.CrossRefPubMed Siewerdsen JH, Jaffray DA. Cone-beam computed tomography with a flat-panel imager: effects of image lag. Med Phys. 1999;26(12):2635–47.CrossRefPubMed
25.
go back to reference Groh BA, Siewerdsen JH, Drake DG, Wong JW, Jaffray DA. A performance comparison of flat-panel imager-based MV and kV cone-beam CT. Med Phys. 2002;29(6):967–75.CrossRefPubMed Groh BA, Siewerdsen JH, Drake DG, Wong JW, Jaffray DA. A performance comparison of flat-panel imager-based MV and kV cone-beam CT. Med Phys. 2002;29(6):967–75.CrossRefPubMed
26.
go back to reference Morrow NV, Lawton CA, Qi XS, Li XA. Impact of computed tomography image quality on image-guided radiation therapy based on soft tissue registration. Int J Radiat Oncol Biol Phys. 2012;82(5):e733–8.CrossRefPubMed Morrow NV, Lawton CA, Qi XS, Li XA. Impact of computed tomography image quality on image-guided radiation therapy based on soft tissue registration. Int J Radiat Oncol Biol Phys. 2012;82(5):e733–8.CrossRefPubMed
27.
go back to reference Bylund KC, Bayouth JE, Smith MC, Hass AC, Bhatia SK, Buatti JM. Analysis of interfraction prostate motion using megavoltage cone beam computed tomography. Int J Radiat Oncol Biol Phys. 2008;72(3):949–56.CrossRefPubMed Bylund KC, Bayouth JE, Smith MC, Hass AC, Bhatia SK, Buatti JM. Analysis of interfraction prostate motion using megavoltage cone beam computed tomography. Int J Radiat Oncol Biol Phys. 2008;72(3):949–56.CrossRefPubMed
28.
go back to reference Owen R, Kron T, Foroudi F, Milner A, Cox J, Duchesne G, Cleeve L, Zhu L, Cramb J, Sparks L, et al. Comparison of CT on rails with electronic portal imaging for positioning of prostate cancer patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys. 2009;74(3):906–12.CrossRefPubMed Owen R, Kron T, Foroudi F, Milner A, Cox J, Duchesne G, Cleeve L, Zhu L, Cramb J, Sparks L, et al. Comparison of CT on rails with electronic portal imaging for positioning of prostate cancer patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys. 2009;74(3):906–12.CrossRefPubMed
29.
go back to reference Hirose K, Aoki M, Sato M, Akimoto H, Hashimoto Y, Imai A, Kamimura N, Kawaguchi H, Hatayama Y, Fujioka I, et al. The retrospective analysis of the relationship between prescribed dose and risk factor for seed migration in iodine-125 prostate brachytherapy. Jpn J Radiol. 2016;34(11):718–23.CrossRefPubMed Hirose K, Aoki M, Sato M, Akimoto H, Hashimoto Y, Imai A, Kamimura N, Kawaguchi H, Hatayama Y, Fujioka I, et al. The retrospective analysis of the relationship between prescribed dose and risk factor for seed migration in iodine-125 prostate brachytherapy. Jpn J Radiol. 2016;34(11):718–23.CrossRefPubMed
30.
go back to reference Hirose K, Aoki M, Sato M, Akimoto H, Hashimoto Y, Imai A, Kamimura N, Kawaguchi H, Hatayama Y, Fujioka I, et al. Analysis of the relationship between prescribed dose and dosimetric advantage of real-time intraoperatively built custom-linked seeds in iodine-125 prostate brachytherapy. Radiat Oncol. 2017;12(1):192.CrossRefPubMedPubMedCentral Hirose K, Aoki M, Sato M, Akimoto H, Hashimoto Y, Imai A, Kamimura N, Kawaguchi H, Hatayama Y, Fujioka I, et al. Analysis of the relationship between prescribed dose and dosimetric advantage of real-time intraoperatively built custom-linked seeds in iodine-125 prostate brachytherapy. Radiat Oncol. 2017;12(1):192.CrossRefPubMedPubMedCentral
31.
go back to reference Handsfield LL, Yue NJ, Zhou J, Chen T, Goyal S. Determination of optimal fiducial marker across image-guided radiation therapy (IGRT) modalities: visibility and artifact analysis of gold, carbon, and polymer fiducial markers. J Appl Clin Med Phys. 2012;13(5):3976.CrossRefPubMed Handsfield LL, Yue NJ, Zhou J, Chen T, Goyal S. Determination of optimal fiducial marker across image-guided radiation therapy (IGRT) modalities: visibility and artifact analysis of gold, carbon, and polymer fiducial markers. J Appl Clin Med Phys. 2012;13(5):3976.CrossRefPubMed
32.
go back to reference Sbai A, Thariat J, Tachfouti N, Pan Q, Lagrange JL. Intraprostatic calcifications as natural fiducial markers in image-guided radiotherapy for prostate cancer. Cancer Radiother. 2014;18(8):740–4.CrossRefPubMed Sbai A, Thariat J, Tachfouti N, Pan Q, Lagrange JL. Intraprostatic calcifications as natural fiducial markers in image-guided radiotherapy for prostate cancer. Cancer Radiother. 2014;18(8):740–4.CrossRefPubMed
33.
go back to reference Shi W, Li JG, Zlotecki RA, Yeung A, Newlin H, Palta J, Liu C, Chvetsov AV, Olivier K. Evaluation of kV cone-beam ct performance for prostate IGRT: a comparison of automatic grey-value alignment to implanted fiducial-marker alignment. Am J Clin Oncol. 2011;34(1):16–21.CrossRefPubMed Shi W, Li JG, Zlotecki RA, Yeung A, Newlin H, Palta J, Liu C, Chvetsov AV, Olivier K. Evaluation of kV cone-beam ct performance for prostate IGRT: a comparison of automatic grey-value alignment to implanted fiducial-marker alignment. Am J Clin Oncol. 2011;34(1):16–21.CrossRefPubMed
34.
go back to reference Lutgendorf-Caucig C, Fotina I, Stock M, Potter R, Goldner G, Georg D. Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol. 2011;98(2):154–61.CrossRefPubMed Lutgendorf-Caucig C, Fotina I, Stock M, Potter R, Goldner G, Georg D. Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol. 2011;98(2):154–61.CrossRefPubMed
35.
go back to reference Oehler C, Lang S, Dimmerling P, Bolesch C, Kloeck S, Tini A, Glanzmann C, Najafi Y, Studer G, Zwahlen DR. PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers. Radiat Oncol. 2014;9:229.CrossRefPubMedPubMedCentral Oehler C, Lang S, Dimmerling P, Bolesch C, Kloeck S, Tini A, Glanzmann C, Najafi Y, Studer G, Zwahlen DR. PTV margin definition in hypofractionated IGRT of localized prostate cancer using cone beam CT and orthogonal image pairs with fiducial markers. Radiat Oncol. 2014;9:229.CrossRefPubMedPubMedCentral
36.
go back to reference Kim J, Hammoud R, Pradhan D, Zhong H, Jin RY, Movsas B, Chetty IJ. Prostate localization on daily cone-beam computed tomography images: accuracy assessment of similarity metrics. Int J Radiat Oncol Biol Phys. 2010;77(4):1257–65.CrossRefPubMed Kim J, Hammoud R, Pradhan D, Zhong H, Jin RY, Movsas B, Chetty IJ. Prostate localization on daily cone-beam computed tomography images: accuracy assessment of similarity metrics. Int J Radiat Oncol Biol Phys. 2010;77(4):1257–65.CrossRefPubMed
37.
go back to reference Barney BM, Lee RJ, Handrahan D, Welsh KT, Cook JT, Sause WT. Image-guided radiotherapy (IGRT) for prostate cancer comparing kV imaging of fiducial markers with cone beam computed tomography (CBCT). Int J Radiat Oncol Biol Phys. 2011;80(1):301–5.CrossRefPubMed Barney BM, Lee RJ, Handrahan D, Welsh KT, Cook JT, Sause WT. Image-guided radiotherapy (IGRT) for prostate cancer comparing kV imaging of fiducial markers with cone beam computed tomography (CBCT). Int J Radiat Oncol Biol Phys. 2011;80(1):301–5.CrossRefPubMed
38.
go back to reference Onozato Y, Kadoya N, Fujita Y, Arai K, Dobashi S, Takeda K, Kishi K, Umezawa R, Matsushita H, Jingu K. Evaluation of on-board kV cone beam computed tomography-based dose calculation with deformable image registration using Hounsfield unit modifications. Int J Radiat Oncol Biol Phys. 2014;89(2):416–23.CrossRefPubMed Onozato Y, Kadoya N, Fujita Y, Arai K, Dobashi S, Takeda K, Kishi K, Umezawa R, Matsushita H, Jingu K. Evaluation of on-board kV cone beam computed tomography-based dose calculation with deformable image registration using Hounsfield unit modifications. Int J Radiat Oncol Biol Phys. 2014;89(2):416–23.CrossRefPubMed
39.
go back to reference Beltran C, Herman MG, Davis BJ. Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys. 2008;70(1):289–95.CrossRefPubMed Beltran C, Herman MG, Davis BJ. Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys. 2008;70(1):289–95.CrossRefPubMed
Metadata
Title
The potential failure risk of the cone-beam computed tomography-based planning target volume margin definition for prostate image-guided radiotherapy based on a prospective single-institutional hybrid analysis
Authors
Katsumi Hirose
Mariko Sato
Yoshiomi Hatayama
Hideo Kawaguchi
Fumio Komai
Makoto Sohma
Hideki Obara
Masashi Suzuki
Mitsuki Tanaka
Ichitaro Fujioka
Koji Ichise
Yoshihiro Takai
Masahiko Aoki
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1043-9

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue