Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

A new tissue segmentation method to calculate 3D dose in small animal radiation therapy

Authors: C. Noblet, G. Delpon, S. Supiot, V. Potiron, F. Paris, S. Chiavassa

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

In pre-clinical animal experiments, radiation delivery is usually delivered with kV photon beams, in contrast to the MV beams used in clinical irradiation, because of the small size of the animals. At this medium energy range, however, the contribution of the photoelectric effect to absorbed dose is significant. Accurate dose calculation therefore requires a more detailed tissue definition because both density (ρ) and elemental composition (Zeff) affect the dose distribution. Moreover, when applied to cone beam CT (CBCT) acquisitions, the stoichiometric calibration of HU becomes inefficient as it is designed for highly collimated fan beam CT acquisitions. In this study, we propose an automatic tissue segmentation method of CBCT imaging that assigns both density (ρ) and elemental composition (Zeff) in small animal dose calculation.

Methods

The method is based on the relationship found between CBCT number and ρ*Zeff product computed from known materials. Monte Carlo calculations were performed to evaluate the impact of ρZeff variation on the absorbed dose in tissues. These results led to the creation of a tissue database composed of artificial tissues interpolated from tissue values published by the ICRU. The ρZeff method was validated by measuring transmitted doses through tissue substitute cylinders and a mouse with EBT3 film. Measurements were compared to the results of the Monte Carlo calculations.

Results

The study of the impact of ρZeff variation over the range of materials, from ρZeff = 2 g.cm− 3 (lung) to 27 g.cm− 3 (cortical bone) led to the creation of 125 artificial tissues. For tissue substitute cylinders, the use of ρZeff method led to maximal and average relative differences between the Monte Carlo results and the EBT3 measurements of 3.6% and 1.6%. Equivalent comparison for the mouse gave maximal and average relative differences of 4.4% and 1.2%, inside the 80% isodose area. Gamma analysis led to a 94.9% success rate in the 10% isodose area with 4% and 0.3 mm criteria in dose and distance.

Conclusions

Our new tissue segmentation method was developed for 40kVp CBCT images. Both density and elemental composition are assigned to each voxel by using a relationship between HU and the product ρZeff. The method, validated by comparing measurements and calculations, enables more accurate small animal dose distribution calculated on low energy CBCT images.
Literature
1.
go back to reference Verhaegen F, Granton P, Tryggestad E. Small animal radiotherapy research platforms. Phys Med Biol. 2011;56:R55–83.CrossRefPubMed Verhaegen F, Granton P, Tryggestad E. Small animal radiotherapy research platforms. Phys Med Biol. 2011;56:R55–83.CrossRefPubMed
2.
go back to reference Koontz BF, Verhaegen F, De Ruysscher D. Tumour and normal tissue radiobiology in mouse models: how close are mice to mini-humans? Br J Radiol. 2016;26:20160441. Koontz BF, Verhaegen F, De Ruysscher D. Tumour and normal tissue radiobiology in mouse models: how close are mice to mini-humans? Br J Radiol. 2016;26:20160441.
3.
go back to reference Chow JCL, Leung MKK, Lindsay PE, Jaffray DA. Dosimetric variation due to photon beam energy in the small-animal irradiation: a Monte Carlo study. Med Phys. 2010;37:5322–9.CrossRefPubMed Chow JCL, Leung MKK, Lindsay PE, Jaffray DA. Dosimetric variation due to photon beam energy in the small-animal irradiation: a Monte Carlo study. Med Phys. 2010;37:5322–9.CrossRefPubMed
4.
5.
go back to reference Noblet C, Chiavassa S, Paris F, Suhard J, Lisbona A, Delpon G. Impact of tissue assignment for preclinical radiotherapy: a dose-volume histogram analysis. Radiother Oncol. 2014;111:S68.CrossRef Noblet C, Chiavassa S, Paris F, Suhard J, Lisbona A, Delpon G. Impact of tissue assignment for preclinical radiotherapy: a dose-volume histogram analysis. Radiother Oncol. 2014;111:S68.CrossRef
6.
go back to reference Vanderstraeten B, Chin PW, Fix M, Leal A, Mora G, Reynaert N, Seco J, Soukup M, Spezi E, De Neve W, Thierens H. Conversion of CT numbers into tissue parameters for monte carlo dose calculations: a multi-centre study. Phys Med Biol. 2007;52:539–62.CrossRefPubMed Vanderstraeten B, Chin PW, Fix M, Leal A, Mora G, Reynaert N, Seco J, Soukup M, Spezi E, De Neve W, Thierens H. Conversion of CT numbers into tissue parameters for monte carlo dose calculations: a multi-centre study. Phys Med Biol. 2007;52:539–62.CrossRefPubMed
7.
go back to reference Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol. 1996;41:111–24.CrossRefPubMed Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys Med Biol. 1996;41:111–24.CrossRefPubMed
8.
go back to reference Jackson DF, Hawkes DJ. X-ray attenuation coefficients of elements and mixtures. Phys Rep. 1981;70(3):169–233.CrossRef Jackson DF, Hawkes DJ. X-ray attenuation coefficients of elements and mixtures. Phys Rep. 1981;70(3):169–233.CrossRef
9.
go back to reference Yohannes I, Kolditz D, Langner O, Kalender WA. A formulation of tissue- and water-equivalent materials using the stoichiometric analysis method for CT-number calibration in radiotherapy treatment planning. Phys Med Biol. 2012;57:1173–90.CrossRefPubMed Yohannes I, Kolditz D, Langner O, Kalender WA. A formulation of tissue- and water-equivalent materials using the stoichiometric analysis method for CT-number calibration in radiotherapy treatment planning. Phys Med Biol. 2012;57:1173–90.CrossRefPubMed
10.
go back to reference Noblet C, Chiavassa S, Smekens F, Sarrut D, Passal V, Suhard J, Lisbona A, Paris F, Delpon G. Validation of fast Monte Carlo dose calculation in small animal radiotherapy with EBT3 radiochromic films. Phys Med Biol. 2016;61:3521–35.CrossRefPubMed Noblet C, Chiavassa S, Smekens F, Sarrut D, Passal V, Suhard J, Lisbona A, Paris F, Delpon G. Validation of fast Monte Carlo dose calculation in small animal radiotherapy with EBT3 radiochromic films. Phys Med Biol. 2016;61:3521–35.CrossRefPubMed
11.
go back to reference Smekens F, Létang JM, Noblet C, Chiavassa S, Delpon G, Freud N, Rit S, Sarrut D. Split exponential track length estimator for Monte-Carlo simulations of small-animal radiation therapy Phys. Med Biol. 2014;59:7703–15.CrossRef Smekens F, Létang JM, Noblet C, Chiavassa S, Delpon G, Freud N, Rit S, Sarrut D. Split exponential track length estimator for Monte-Carlo simulations of small-animal radiation therapy Phys. Med Biol. 2014;59:7703–15.CrossRef
12.
go back to reference International Commission on Radiation Units and Measurements (ICRU). Report 44. Tissue substitutes in radiation dosimetry. Washington: International Commission on Radiation Units and Measurements; 1989. International Commission on Radiation Units and Measurements (ICRU). Report 44. Tissue substitutes in radiation dosimetry. Washington: International Commission on Radiation Units and Measurements; 1989.
13.
go back to reference International Commission on Radiation Units and Measurements (ICRU). Report 46. Photon, electron, proton and neutron interaction data for body tissues. Washington: International Commission on Radiation Units and Measurements; 1992. International Commission on Radiation Units and Measurements (ICRU). Report 46. Photon, electron, proton and neutron interaction data for body tissues. Washington: International Commission on Radiation Units and Measurements; 1992.
14.
go back to reference Andreo P, Burns DT, Hohlfield K, Huq MS, Kanai T, Laitano F, Smyth V, Vynckier S. Absorbed dose determination in external beam radiotherapy, an international code of practice for dosimetry based on standards of absorbed dose to water technical report series no 398. Vienna: IAEA; 2000. Andreo P, Burns DT, Hohlfield K, Huq MS, Kanai T, Laitano F, Smyth V, Vynckier S. Absorbed dose determination in external beam radiotherapy, an international code of practice for dosimetry based on standards of absorbed dose to water technical report series no 398. Vienna: IAEA; 2000.
15.
go back to reference Perichon N, Rapp B, Denoziere M, Daures J, Ostrowsky A, Bordy JM. Comparison between absorbed dose to water standards established by water calorimetry at the LNE-LNHB and by application of international air-kerma based protocols for kilovoltage medium energy x-rays. Phys Med Biol. 2013;58:2787–806.CrossRefPubMed Perichon N, Rapp B, Denoziere M, Daures J, Ostrowsky A, Bordy JM. Comparison between absorbed dose to water standards established by water calorimetry at the LNE-LNHB and by application of international air-kerma based protocols for kilovoltage medium energy x-rays. Phys Med Biol. 2013;58:2787–806.CrossRefPubMed
16.
go back to reference Rapp B, Perichon N, Denoziere M, Daures J. Ostrowsky a and Bordy J M. The LNE-LNHB water calorimeter for primary measurement of absorbed dose at low depth in water: application to medium-energy x-rays Phys Med Biol. 2013;58:2769–86.PubMed Rapp B, Perichon N, Denoziere M, Daures J. Ostrowsky a and Bordy J M. The LNE-LNHB water calorimeter for primary measurement of absorbed dose at low depth in water: application to medium-energy x-rays Phys Med Biol. 2013;58:2769–86.PubMed
17.
go back to reference Micke A, Lewis DF, Yu X. Multichannel film dosimetry with nonuniformity correction. Med Phys. 2011;38:2523–34.CrossRefPubMed Micke A, Lewis DF, Yu X. Multichannel film dosimetry with nonuniformity correction. Med Phys. 2011;38:2523–34.CrossRefPubMed
18.
go back to reference van Hoof S, Granton P, Landry G, Podesta M, Verhaegen F. Evaluation of a novel triple-channel radiochromic film analysis procedure using EBT2. Phys Med Biol. 2012;57:4353–68.CrossRefPubMed van Hoof S, Granton P, Landry G, Podesta M, Verhaegen F. Evaluation of a novel triple-channel radiochromic film analysis procedure using EBT2. Phys Med Biol. 2012;57:4353–68.CrossRefPubMed
19.
go back to reference Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25:656–61.CrossRefPubMed Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25:656–61.CrossRefPubMed
20.
go back to reference Verhaegen F, Devic S. Sensitivity study for CT image use in Monte Carlo treatment planning. Phys Med Biol. 2005;50:937–46.CrossRefPubMed Verhaegen F, Devic S. Sensitivity study for CT image use in Monte Carlo treatment planning. Phys Med Biol. 2005;50:937–46.CrossRefPubMed
21.
go back to reference Zhou H, Keall PJ, Graves EE. A bone composition model for monte carlo x-ray transport simulations. Med Phys. 2008;36:1008–18.CrossRef Zhou H, Keall PJ, Graves EE. A bone composition model for monte carlo x-ray transport simulations. Med Phys. 2008;36:1008–18.CrossRef
22.
go back to reference De Marzi L, Lesven C, Ferrand R, Sage J, Boulé T, Mazal A. Calibration of CT Hounsfield units for proton therapy treatment planning: use of kilovoltage and megavoltage images and comparison of parameterized methods. Phys Med Biol. 2013;58:4255–76.CrossRefPubMed De Marzi L, Lesven C, Ferrand R, Sage J, Boulé T, Mazal A. Calibration of CT Hounsfield units for proton therapy treatment planning: use of kilovoltage and megavoltage images and comparison of parameterized methods. Phys Med Biol. 2013;58:4255–76.CrossRefPubMed
23.
go back to reference Yang M, Zhu XR, Park PC, Titt U, Mohan R, Virshup G, Clayton JE, Dong L. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration. Phys Med Biol. 2012;57:4095–115.CrossRefPubMedPubMedCentral Yang M, Zhu XR, Park PC, Titt U, Mohan R, Virshup G, Clayton JE, Dong L. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration. Phys Med Biol. 2012;57:4095–115.CrossRefPubMedPubMedCentral
24.
go back to reference Vaniqui A, Schyns LEJR, Almeida IP, van der Heyden B, van Hoof SJ, Verhaegen F. The impact of dual energy CT imaging on dose calculations for pre-clinical studies. Radiat Oncol. 2017;12:181.CrossRefPubMedPubMedCentral Vaniqui A, Schyns LEJR, Almeida IP, van der Heyden B, van Hoof SJ, Verhaegen F. The impact of dual energy CT imaging on dose calculations for pre-clinical studies. Radiat Oncol. 2017;12:181.CrossRefPubMedPubMedCentral
Metadata
Title
A new tissue segmentation method to calculate 3D dose in small animal radiation therapy
Authors
C. Noblet
G. Delpon
S. Supiot
V. Potiron
F. Paris
S. Chiavassa
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-0971-8

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue