Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Preoperative intensity-modulated radiotherapy with a simultaneous integrated boost combined with Capecitabine in locally advanced rectal cancer: short-term results of a multicentric study

Authors: Marco Lupattelli, Fabio Matrone, Maria Antonietta Gambacorta, Mattia Osti, Gabriella Macchia, Elisa Palazzari, Luca Nicosia, Federico Navarria, Giuditta Chiloiro, Vincenzo Valentini, Cynthia Aristei, Antonino De Paoli

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Preoperative radiotherapy (RT) in combination with fluoropyrimidine-based chemotherapy (CT) is the standard of care in patients with locally advanced, T3-T4 N0–2, rectal cancer (LARC). Given the correlation between RT dose-tumor response and the prognostic role of the tumor regression grade (TRG), treatment intensification represents an area of active investigation. The aim of the study was to analyze the role of RT dose-intensification in the preoperative treatment of LARC in terms of feasibility, efficacy and toxicity.

Methods

We retrospectively analyzed patients with LARC treated with intensity-modulated radiotherapy (IMRT) and simultaneous integrated boost (SIB) at five Italian radiation oncology centers. Concurrent Capecitabine was administered. Treatment response was evaluated in terms of disease down-staging and TRG. Acute toxicity was evaluated according to the CTC-AE 4.0 scale.

Results

A total of 76 patients were identified for this analysis. A dose of 45 Gy was prescribed to the entire mesorectum and pelvic lymph nodes with a median SIB dose of 54 Gy (range 52.5–57.5) to the tumor and corresponding mesorectum. Overall, 74/76 (97.4%) patients completed the planned RT, whereas 64/76 (84.2%) patients completed the prescribed CT. Eight (10.5%) patients developed grade 3–4 acute toxicity. Overall, 72/76 patients underwent surgery. The tumor and nodal down-staging was documented in 51 (70.8%) and 43 (67%) patients, respectively. Twenty (27.8%) patients obtained a pathologic complete response. Surgical morbidity was reported in 13/72 patients (18.1%).

Conclusions

Although retrospective in design, this study indicates that IMRT-SIB with a dose range of 52.5–57.5 Gy (median 54 Gy) and concomitant Capecitabine appears feasible, well tolerated and effective in terms of disease down-staging and pathological complete response. Long-term toxicity and the impact on disease control and patient survival will be evaluated with a longer follow-up time.

Trial registration

NA
Literature
1.
go back to reference Valentini V, Glimelius B, Haustermans K, et al. EURECCA consensus conference highlights about rectal cancer clinical management: the radiation oncologist's expert review. Radiother Oncol. 2014;110(1):195–8.CrossRefPubMed Valentini V, Glimelius B, Haustermans K, et al. EURECCA consensus conference highlights about rectal cancer clinical management: the radiation oncologist's expert review. Radiother Oncol. 2014;110(1):195–8.CrossRefPubMed
2.
go back to reference Maas M, Nelemans PJ, Valentini V, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11(9):835–44.CrossRefPubMed Maas M, Nelemans PJ, Valentini V, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11(9):835–44.CrossRefPubMed
3.
go back to reference O’Connell MJ, Colangelo LH, et al. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: surgical end points from National Surgical Adjuvant Breast and bowel project trial R-04. J Clin Oncol. 2014;32:1927–34.CrossRefPubMedPubMedCentral O’Connell MJ, Colangelo LH, et al. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: surgical end points from National Surgical Adjuvant Breast and bowel project trial R-04. J Clin Oncol. 2014;32:1927–34.CrossRefPubMedPubMedCentral
4.
go back to reference Rodel C, Liersch T, Becker H, et al. Preoperative chemoradiotherapy and postoperative chemotherapy with fluorouracil and oxaliplatin versus fluorouracil alone in locally advanced rectal cancer: initial results of the German CAO/ARO/AIO-04 randomised phase 3 trial. Lancet Oncol. 2012;13:679–87.CrossRefPubMed Rodel C, Liersch T, Becker H, et al. Preoperative chemoradiotherapy and postoperative chemotherapy with fluorouracil and oxaliplatin versus fluorouracil alone in locally advanced rectal cancer: initial results of the German CAO/ARO/AIO-04 randomised phase 3 trial. Lancet Oncol. 2012;13:679–87.CrossRefPubMed
5.
go back to reference Gerard JP, Azria D, Gourgou-Bourgade S, et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J Clin Oncol. 2010;28:1638–44.CrossRefPubMed Gerard JP, Azria D, Gourgou-Bourgade S, et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: results of the phase III trial ACCORD 12/0405-Prodige 2. J Clin Oncol. 2010;28:1638–44.CrossRefPubMed
6.
go back to reference Aschele C, Cionini L, Lonardi S, et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J Clin Oncol. 2011;29:2773–80.CrossRefPubMed Aschele C, Cionini L, Lonardi S, et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J Clin Oncol. 2011;29:2773–80.CrossRefPubMed
7.
go back to reference Schmoll H-J, Haustermans K, Price TJ, et al. Preoperative chemoradiotherapy and postoperative chemotherapy with capecitabine and oxaliplatin versus capecitabine alone in locally advanced rectal cancer: first results of the PETACC-6 randomized phase III trial. J Clin Oncol. 2013;31:3531.CrossRef Schmoll H-J, Haustermans K, Price TJ, et al. Preoperative chemoradiotherapy and postoperative chemotherapy with capecitabine and oxaliplatin versus capecitabine alone in locally advanced rectal cancer: first results of the PETACC-6 randomized phase III trial. J Clin Oncol. 2013;31:3531.CrossRef
8.
go back to reference Burbach JP, den Harder AM, Intven M, van Vulpen M, Verkooijen HM, Reerink O. Impact of radiotherapy boost on pathological complete response in patients with locally advanced rectal cancer: a systematic review and meta-analysis. Radiother Oncol. 2014;113(1):1–9.CrossRefPubMed Burbach JP, den Harder AM, Intven M, van Vulpen M, Verkooijen HM, Reerink O. Impact of radiotherapy boost on pathological complete response in patients with locally advanced rectal cancer: a systematic review and meta-analysis. Radiother Oncol. 2014;113(1):1–9.CrossRefPubMed
9.
go back to reference Appelt AL, Pløen J, Vogelius IR, Bentzen SM, Jakobsen A. Radiation dose-response model for locally advanced rectal cancer after preoperative chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2013;85(1):74–80.CrossRefPubMed Appelt AL, Pløen J, Vogelius IR, Bentzen SM, Jakobsen A. Radiation dose-response model for locally advanced rectal cancer after preoperative chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2013;85(1):74–80.CrossRefPubMed
10.
go back to reference Suwinski R, Taylor JM, Withers HR. Rapid growth of microscopic rectal cancer as a determinant of response to preoperative radiation therapy. Int J Radiat Oncol Biol Phys. 1998;42(5):943–51.CrossRefPubMed Suwinski R, Taylor JM, Withers HR. Rapid growth of microscopic rectal cancer as a determinant of response to preoperative radiation therapy. Int J Radiat Oncol Biol Phys. 1998;42(5):943–51.CrossRefPubMed
11.
go back to reference Myerson RJ, Valentini V, Birnbaum EH, et al. A phase I/II trial of three-dimensionally planned concurrent boost radiotherapy and protracted venous infusion of 5-FU chemotherapy for locally advanced rectal carcinoma. Int J Radiat Oncol Biol Phys. 2001;50(5):1299–308.CrossRefPubMed Myerson RJ, Valentini V, Birnbaum EH, et al. A phase I/II trial of three-dimensionally planned concurrent boost radiotherapy and protracted venous infusion of 5-FU chemotherapy for locally advanced rectal carcinoma. Int J Radiat Oncol Biol Phys. 2001;50(5):1299–308.CrossRefPubMed
12.
go back to reference Krishnam S, Janjan NA, Skibber JM, et al. Phase II study of capecitabine (Xeloda) and concomitant boost radiotherapy in patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2006;66(3):762–71.CrossRef Krishnam S, Janjan NA, Skibber JM, et al. Phase II study of capecitabine (Xeloda) and concomitant boost radiotherapy in patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2006;66(3):762–71.CrossRef
13.
go back to reference Valentini V, De Paoli A, Barba MC, et al. Capecitabine-based preoperative chemo-radiotherapy in rectal cancer intensified by RT dose or Oxaliplatin: the INTERACT trial. Radiother Oncol. 2014; 111, Supplement 1, S:181. Valentini V, De Paoli A, Barba MC, et al. Capecitabine-based preoperative chemo-radiotherapy in rectal cancer intensified by RT dose or Oxaliplatin: the INTERACT trial. Radiother Oncol. 2014; 111, Supplement 1, S:181.
14.
go back to reference Teoh S, Muirhead R. Rectal radiotherapy- intensity-modulated radiotherapy delivery, delineation and doses. Clin Oncol (R Coll Radiol). 2016;28(2):93–102.CrossRef Teoh S, Muirhead R. Rectal radiotherapy- intensity-modulated radiotherapy delivery, delineation and doses. Clin Oncol (R Coll Radiol). 2016;28(2):93–102.CrossRef
15.
go back to reference Engels B, Platteaux N, Van den Begin R, et al. Preoperative intensity-modulated and image-guided radiotherapy with a simultaneous integrated boost in locally advanced rectal cancer: report on late toxicity and outcome. Radiother Oncol. 2014;110(1):155–9.CrossRefPubMed Engels B, Platteaux N, Van den Begin R, et al. Preoperative intensity-modulated and image-guided radiotherapy with a simultaneous integrated boost in locally advanced rectal cancer: report on late toxicity and outcome. Radiother Oncol. 2014;110(1):155–9.CrossRefPubMed
16.
go back to reference Cilla S, Caravatta L, Picardi V, et al. Volumetric modulated arc therapy with simultaneous integrated boost for locally advanced rectal cancer. Clin Oncol (R Coll Radiol). 2012;24(4):261–8.CrossRef Cilla S, Caravatta L, Picardi V, et al. Volumetric modulated arc therapy with simultaneous integrated boost for locally advanced rectal cancer. Clin Oncol (R Coll Radiol). 2012;24(4):261–8.CrossRef
17.
go back to reference MERCURY. Study group: extramural depth of tumor invasion at thin-section MR in patients with rectal cancer: results of the Mercury study. Radiology. 2007;243:132–9.CrossRef MERCURY. Study group: extramural depth of tumor invasion at thin-section MR in patients with rectal cancer: results of the Mercury study. Radiology. 2007;243:132–9.CrossRef
18.
go back to reference Mandard AM, Dalibard F, Mandard JC, et al. Pathological assessment of tumour regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathological correlations Cancer. 1994;73:2680–6. Mandard AM, Dalibard F, Mandard JC, et al. Pathological assessment of tumour regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathological correlations Cancer. 1994;73:2680–6.
19.
go back to reference Arbea L, Ramos LI, Martínez-Monge R, Moreno M, Aristu J. Intensity-modulated radiation therapy (IMRT) vs. 3D conformal radiotherapy (3DCRT) in locally advanced rectal cancer (LARC): dosimetric comparison and clinical implications. Radiat Oncol. 2010;5:17.CrossRefPubMedPubMedCentral Arbea L, Ramos LI, Martínez-Monge R, Moreno M, Aristu J. Intensity-modulated radiation therapy (IMRT) vs. 3D conformal radiotherapy (3DCRT) in locally advanced rectal cancer (LARC): dosimetric comparison and clinical implications. Radiat Oncol. 2010;5:17.CrossRefPubMedPubMedCentral
20.
go back to reference Richetti A, Fogliata A, Clivio A, et al. Neo-adjuvant chemo-radiation of rectal cancer with volumetric modulated arc therapy: summary of technical and dosimetric features and early clinical experience. Radiat Oncol. 2010;5:14.CrossRefPubMedPubMedCentral Richetti A, Fogliata A, Clivio A, et al. Neo-adjuvant chemo-radiation of rectal cancer with volumetric modulated arc therapy: summary of technical and dosimetric features and early clinical experience. Radiat Oncol. 2010;5:14.CrossRefPubMedPubMedCentral
21.
go back to reference Mok H, Crane CH, Palmer MB, et al. Intensity modulated radiation therapy (IMRT): differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma. Radiat Oncol. 2011;6:63.CrossRefPubMedPubMedCentral Mok H, Crane CH, Palmer MB, et al. Intensity modulated radiation therapy (IMRT): differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma. Radiat Oncol. 2011;6:63.CrossRefPubMedPubMedCentral
22.
go back to reference Liu M, Liu B, Wang H, et al. Dosimetric comparative study of 3 different postoperative radiotherapy techniques (3D-CRT, IMRT, and RapidArc) for II-III stage rectal cancer. Medicine (Baltimore). 2015;94(1):e372.CrossRef Liu M, Liu B, Wang H, et al. Dosimetric comparative study of 3 different postoperative radiotherapy techniques (3D-CRT, IMRT, and RapidArc) for II-III stage rectal cancer. Medicine (Baltimore). 2015;94(1):e372.CrossRef
23.
go back to reference Duthoy W, De Gersem W, Vergote K, et al. Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int J Radiat Oncol Biol Phys. 2004;60(3):794–806.CrossRefPubMed Duthoy W, De Gersem W, Vergote K, et al. Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int J Radiat Oncol Biol Phys. 2004;60(3):794–806.CrossRefPubMed
24.
go back to reference De Ridder M, Tournel K, Van Nieuwenhove Y, et al. Phase II study of preoperative helical tomotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2008;70(3):728–34.CrossRefPubMed De Ridder M, Tournel K, Van Nieuwenhove Y, et al. Phase II study of preoperative helical tomotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2008;70(3):728–34.CrossRefPubMed
25.
go back to reference Li JL, Ji JF, Cai Y, et al. Preoperative concomitant boost intensity-modulated radiotherapy with oral capecitabine in locally advanced mid-low rectal cancer: a phase II trial. Radiother Oncol. 2012;102(1):4–9.CrossRefPubMed Li JL, Ji JF, Cai Y, et al. Preoperative concomitant boost intensity-modulated radiotherapy with oral capecitabine in locally advanced mid-low rectal cancer: a phase II trial. Radiother Oncol. 2012;102(1):4–9.CrossRefPubMed
26.
go back to reference Hernando-Requejo O, Lopez M, Cubillo A, et al. Complete pathological responses in locally advanced rectal cancer after preoperative IMRT and integrated-boost chemoradiation. Strahlenther Onkol. 2014;190(6):515–20.CrossRefPubMed Hernando-Requejo O, Lopez M, Cubillo A, et al. Complete pathological responses in locally advanced rectal cancer after preoperative IMRT and integrated-boost chemoradiation. Strahlenther Onkol. 2014;190(6):515–20.CrossRefPubMed
27.
go back to reference Zhu J, Liu F, Gu W, et al. Concomitant boost IMRT-based neoadjuvant chemoradiotherapy for clinical stage II/III rectal adenocarcinoma: results of a phase II study. Radiat Oncol. 2014;9:70.CrossRefPubMedPubMedCentral Zhu J, Liu F, Gu W, et al. Concomitant boost IMRT-based neoadjuvant chemoradiotherapy for clinical stage II/III rectal adenocarcinoma: results of a phase II study. Radiat Oncol. 2014;9:70.CrossRefPubMedPubMedCentral
28.
go back to reference Wang L, Li ZY, Li ZW, et al. Efficacy and safety of neoadjuvant intensity-modulated radiotherapy with concurrent capecitabine for locally advanced rectal cancer. Dis Colon rectum 2015; 58(2):186-92. Wang L, Li ZY, Li ZW, et al. Efficacy and safety of neoadjuvant intensity-modulated radiotherapy with concurrent capecitabine for locally advanced rectal cancer. Dis Colon rectum 2015; 58(2):186-92.
29.
go back to reference Arbea L, Martínez-Monge R, Díaz-González JA, et al. Four-week neoadjuvant intensity-modulated radiation therapy with concurrent capecitabine and oxaliplatin in locally advanced rectal cancer patients: a validation phase II trial. Int J Radiat Oncol Biol Phys. 2012;83(2):587–93.CrossRefPubMed Arbea L, Martínez-Monge R, Díaz-González JA, et al. Four-week neoadjuvant intensity-modulated radiation therapy with concurrent capecitabine and oxaliplatin in locally advanced rectal cancer patients: a validation phase II trial. Int J Radiat Oncol Biol Phys. 2012;83(2):587–93.CrossRefPubMed
30.
go back to reference Samuelian JM, Callister MD, Ashman JB, Young-Fadok TM, Borad MJ, Gunderson LL. Reduced acute bowel toxicity in patients treated with intensity-modulated radiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82(5):1981–7.CrossRefPubMed Samuelian JM, Callister MD, Ashman JB, Young-Fadok TM, Borad MJ, Gunderson LL. Reduced acute bowel toxicity in patients treated with intensity-modulated radiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82(5):1981–7.CrossRefPubMed
Metadata
Title
Preoperative intensity-modulated radiotherapy with a simultaneous integrated boost combined with Capecitabine in locally advanced rectal cancer: short-term results of a multicentric study
Authors
Marco Lupattelli
Fabio Matrone
Maria Antonietta Gambacorta
Mattia Osti
Gabriella Macchia
Elisa Palazzari
Luca Nicosia
Federico Navarria
Giuditta Chiloiro
Vincenzo Valentini
Cynthia Aristei
Antonino De Paoli
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0870-4

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue