Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Finer leaf resolution and steeper beam edges using a virtual isocentre in concurrence to PTV-shaped collimators in standard distance – a planning study

Authors: Klaus Bratengeier, Barbara Herzog, Sonja Wegener, Kostyantyn Holubyev

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Purpose

Investigation of a reduced source to target distance to improve organ at risk sparing during stereotactic irradiation (STX).

Methods

The authors present a planning study with perfectly target-volume adapted collimator compared with multi-leaf collimator (MLC) at reduced source to virtual isocentre distance (SVID) in contrast to normal source to isocentre distance (SID) for stereotactic applications. The role of MLC leaf width and 20–80% penumbra was examined concerning the healthy tissue sparing. Several prescription schemes and target diameters are considered.

Results

Paddick’s gradient index (GI) as well as comparison of the mean doses to spherical shells at several distances to the target is evaluated. Both emphasize the same results: the healthy tissue sparing in the high dose area around the planning target volume (PTV) is improved at reduced SVID ≤ 70 cm. The effect can be attributed more to steeper penumbra than to finer leaf resolution. Comparing circular collimators at different SVID just as MLC-shaped collimators, always the GI was reduced. Even MLC-shaped collimator at SVID 70 cm had better healthy tissue sparing than an optimal shaped circular collimator at SID 100 cm.
Regarding penumbra changes due to varying SVID, the results of the planning study are underlined by film dosimetry measurements with Agility™ MLC.

Conclusion

Penumbra requires more attention in comparing studies, especially studies using different planning systems. Reduced SVID probably allows usage of conventional MLC for STX-like irradiations.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bortfeld T, Oelfke U, Nill S. What is the optimum leaf width of a multileaf collimator? Med Phys. 2000;27:2494–502.CrossRefPubMed Bortfeld T, Oelfke U, Nill S. What is the optimum leaf width of a multileaf collimator? Med Phys. 2000;27:2494–502.CrossRefPubMed
2.
go back to reference Ohtakara K, Hayashi S, Tanaka H, Hoshi H. Dosimetric comparison of 2.5 mm vs. 3.0 mm leaf width micro-multileaf collimator-based treatment systems for intracranial stereotactic radiosurgery using dynamic conformal arcs: implications for treatment planning. Jpn J Radiol. 2011;29:630–8.CrossRefPubMed Ohtakara K, Hayashi S, Tanaka H, Hoshi H. Dosimetric comparison of 2.5 mm vs. 3.0 mm leaf width micro-multileaf collimator-based treatment systems for intracranial stereotactic radiosurgery using dynamic conformal arcs: implications for treatment planning. Jpn J Radiol. 2011;29:630–8.CrossRefPubMed
3.
go back to reference Monk JE, Perks JR, Doughty D, Plowman PN. Comparison of a micro-multileaf collimator with a 5-mm-leaf-width collimator for intracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57:1443–9.CrossRefPubMed Monk JE, Perks JR, Doughty D, Plowman PN. Comparison of a micro-multileaf collimator with a 5-mm-leaf-width collimator for intracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57:1443–9.CrossRefPubMed
4.
go back to reference Tanyi JA, Kato CM, Chen Y, Chen Z, Fuss M. Impact of the high-definition multileaf collimator on linear accelerator-based intracranial stereotactic radiosurgery. Br J Radiol. 2011;84:629–38.CrossRefPubMedPubMedCentral Tanyi JA, Kato CM, Chen Y, Chen Z, Fuss M. Impact of the high-definition multileaf collimator on linear accelerator-based intracranial stereotactic radiosurgery. Br J Radiol. 2011;84:629–38.CrossRefPubMedPubMedCentral
5.
go back to reference Dvorak P, Georg D, Bogner J, Kroupa B, Dieckmann K, Potter R. Impact of IMRT and leaf width on stereotactic body radiotherapy of liver and lung lesions. Int J Radiat Oncol Biol Phys. 2005;61:1572–81.CrossRefPubMed Dvorak P, Georg D, Bogner J, Kroupa B, Dieckmann K, Potter R. Impact of IMRT and leaf width on stereotactic body radiotherapy of liver and lung lesions. Int J Radiat Oncol Biol Phys. 2005;61:1572–81.CrossRefPubMed
6.
go back to reference Jin JY, Yin FF, Ryu S, Ajlouni M, Kim JH. Dosimetric study using different leaf-width MLCs for treatment planning of dynamic conformal arcs and intensity-modulated radiosurgery. Med Phys. 2005;32:405–11.CrossRefPubMed Jin JY, Yin FF, Ryu S, Ajlouni M, Kim JH. Dosimetric study using different leaf-width MLCs for treatment planning of dynamic conformal arcs and intensity-modulated radiosurgery. Med Phys. 2005;32:405–11.CrossRefPubMed
7.
go back to reference Dhabaan A, Elder E, Schreibmann E, Crocker I, Curran WJ, Oyesiku NM, Shu HK, Fox T. Dosimetric performance of the new high-definition multileaf collimator for intracranial stereotactic radiosurgery. J Appl Clin Med Phys. 2010;11:3040.CrossRefPubMed Dhabaan A, Elder E, Schreibmann E, Crocker I, Curran WJ, Oyesiku NM, Shu HK, Fox T. Dosimetric performance of the new high-definition multileaf collimator for intracranial stereotactic radiosurgery. J Appl Clin Med Phys. 2010;11:3040.CrossRefPubMed
8.
go back to reference O’Malley L, Pignol JP, Beachey DJ, Keller BM, Presutti J, Sharpe M. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery. Phys Med Biol. 2006;51:2537–48.CrossRefPubMed O’Malley L, Pignol JP, Beachey DJ, Keller BM, Presutti J, Sharpe M. Improvement of radiological penumbra using intermediate energy photons (IEP) for stereotactic radiosurgery. Phys Med Biol. 2006;51:2537–48.CrossRefPubMed
9.
go back to reference Thomas SJ. Factors affecting penumbral shape and 3D dose distributions in stereotactic radiotherapy. Phys Med Biol. 1994;39:761–71.CrossRefPubMed Thomas SJ. Factors affecting penumbral shape and 3D dose distributions in stereotactic radiotherapy. Phys Med Biol. 1994;39:761–71.CrossRefPubMed
10.
go back to reference Bratengeier K, Seubert B, Holubyev K, Schachner H. Considerations on IMRT for quasi-isotropic non-coplanar irradiation. Phys Med Biol. 2012;57:7303–15.CrossRefPubMed Bratengeier K, Seubert B, Holubyev K, Schachner H. Considerations on IMRT for quasi-isotropic non-coplanar irradiation. Phys Med Biol. 2012;57:7303–15.CrossRefPubMed
11.
go back to reference Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg. 2000;93 Suppl 3:219–22.PubMed Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg. 2000;93 Suppl 3:219–22.PubMed
12.
go back to reference Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 2006;105 Suppl:194–201.PubMed Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 2006;105 Suppl:194–201.PubMed
13.
go back to reference ICRU, “Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT): Contents,” J ICRU 10, NP (2010). ICRU, “Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT): Contents,” J ICRU 10, NP (2010).
14.
go back to reference Torrens M, Chung C, Chung HT, Hanssens P, Jaffray D, Kemeny A, Larson D, Levivier M, Lindquist C, Lippitz B, Novotny Jr J, Paddick I, Prasad D, Yu CP. Standardization of terminology in stereotactic radiosurgery: Report from the Standardization Committee of the International Leksell Gamma Knife Society: special topic. J Neurosurg. 2014;121 Suppl:2–15.PubMed Torrens M, Chung C, Chung HT, Hanssens P, Jaffray D, Kemeny A, Larson D, Levivier M, Lindquist C, Lippitz B, Novotny Jr J, Paddick I, Prasad D, Yu CP. Standardization of terminology in stereotactic radiosurgery: Report from the Standardization Committee of the International Leksell Gamma Knife Society: special topic. J Neurosurg. 2014;121 Suppl:2–15.PubMed
15.
go back to reference Prabhakar R, Rath GK, Haresh KP, Manoharan N, Laviraj MA, Rajendran M, Julka PK. A study on the tumor volume computation between different 3D treatment planning systems in radiotherapy. J Cancer Res Ther. 2011;7:168–73.CrossRefPubMed Prabhakar R, Rath GK, Haresh KP, Manoharan N, Laviraj MA, Rajendran M, Julka PK. A study on the tumor volume computation between different 3D treatment planning systems in radiotherapy. J Cancer Res Ther. 2011;7:168–73.CrossRefPubMed
16.
go back to reference Adams EJ, Cosgrove VP, Shepherd SF, Warrington AP, Bedford JL, Mubata CD, Bidmead AM, Brada M. Comparison of a multi-leaf collimator with conformal blocks for the delivery of stereotactically guided conformal radiotherapy. Radiother Oncol. 1999;51:205–9.CrossRefPubMed Adams EJ, Cosgrove VP, Shepherd SF, Warrington AP, Bedford JL, Mubata CD, Bidmead AM, Brada M. Comparison of a multi-leaf collimator with conformal blocks for the delivery of stereotactically guided conformal radiotherapy. Radiother Oncol. 1999;51:205–9.CrossRefPubMed
17.
go back to reference Wilson B, Otto K, Gete E. A simple and robust trajectory-based stereotactic radiosurgery treatment. Med Phys. 2017;44:240–8.CrossRefPubMed Wilson B, Otto K, Gete E. A simple and robust trajectory-based stereotactic radiosurgery treatment. Med Phys. 2017;44:240–8.CrossRefPubMed
18.
go back to reference Thomas EM, Popple RA, Markert JM, Fiveash JB. In reply: volumetric arc therapy (RapidArc) vs Gamma Knife radiosurgery for multiple brain metastases. Neurosurgery. 2015;76:E353–4.CrossRefPubMed Thomas EM, Popple RA, Markert JM, Fiveash JB. In reply: volumetric arc therapy (RapidArc) vs Gamma Knife radiosurgery for multiple brain metastases. Neurosurgery. 2015;76:E353–4.CrossRefPubMed
19.
go back to reference Kocher M, Wittig A, Piroth MD, Treuer H, Seegenschmiedt H, Ruge M, Grosu AL, Guckenberger M. Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol. 2014;190:521–32.CrossRefPubMed Kocher M, Wittig A, Piroth MD, Treuer H, Seegenschmiedt H, Ruge M, Grosu AL, Guckenberger M. Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol. 2014;190:521–32.CrossRefPubMed
20.
go back to reference Fenner J, Gwilliam M, Mehrem R, Bird A, Walton L. Analytical description of dose profile behaviour in Gamma Knife radiosurgery. Phys Med Biol. 2008;53:2035–49.CrossRefPubMed Fenner J, Gwilliam M, Mehrem R, Bird A, Walton L. Analytical description of dose profile behaviour in Gamma Knife radiosurgery. Phys Med Biol. 2008;53:2035–49.CrossRefPubMed
21.
go back to reference Micke A, Lewis DF, Yu X. Multichannel film dosimetry with nonuniformity correction. Med Phys. 2011;38:2523–34.CrossRefPubMed Micke A, Lewis DF, Yu X. Multichannel film dosimetry with nonuniformity correction. Med Phys. 2011;38:2523–34.CrossRefPubMed
Metadata
Title
Finer leaf resolution and steeper beam edges using a virtual isocentre in concurrence to PTV-shaped collimators in standard distance – a planning study
Authors
Klaus Bratengeier
Barbara Herzog
Sonja Wegener
Kostyantyn Holubyev
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0826-8

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue