Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

A topology-based method to mitigate the dosimetric uncertainty caused by the positional variation of the boost volume in breast conservative radiotherapy

Authors: Peng-Yi Lee, Chih-Yuan Lin, Shang-Wen Chen, Chun-Ru Chien, Chun-Nan Chu, Hsiu-Ting Hsu, Ji-An Liang, Ying-Jun Lin, An-Cheng Shiau

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

To improve local control rate in patients with breast cancer receiving adjuvant radiotherapy after breast conservative surgery, additional boost dose to the tumor bed could be delivered simultaneously via the simultaneous integrated boost (SIB) modulated technique. However, the position of tumor bed kept changing during the treatment course as the treatment position was aligned to bony anatomy. This study aimed to analyze the positional uncertainties between bony anatomy and tumor bed, and a topology-based approach was derived to stratify patients with high variation in tumor bed localization.

Methods

Sixty patients with early-stage breast cancer or ductal carcinoma in situ were enrolled. All received adjuvant whole breast radiotherapy with or without local boost via SIB technique. The delineation of tumor bed was defined by incorporating the anatomy of seroma, adjacent surgical clips, and any architectural distortion on computed tomography simulation. A total of 1740 on-board images were retrospectively analyzed. Positional uncertainty of tumor bed was assessed by four components: namely systematic error (SE), and random error (RE), through anterior-posterior (AP), cranial-caudal (CC), left-right (LR) directions and couch rotation (CR). Age, tumor location, and body-mass factors including volume of breast, volume of tumor bed, breast thickness, and body mass index (BMI) were analyzed for their predictive role. The appropriate margin to accommodate the positional uncertainty of the boost volume was assessed, and the new plans with this margin for the tumor bed was designed as the high risk planning target volume (PTV-H) were created retrospectively to evaluate the impact on organs at risk.

Results

In univariate analysis, a larger breast thickness, larger breast volume, higher BMI, and different tumor locations correlated with a greater positional uncertainty of tumor bed. However, BMI was the only factor associated with displacements of surgical clips in the multivariate analysis and patients with higher BMI were stratified as high variation group. When image guidance was aligned to bony structures, the SE and RE of clip displacement were consistently larger in the high variation group. The corresponding PTV-H margins for the high- and low-variation groups were 7, 10, 10 mm and 4, 9, 6 mm in AP, CC, LR directions, respectively. The heart dose between the two plans was not significantly different, whereas the dosimetric parameters for the ipsilateral lung were generally higher in the new plans.

Conclusions

In patients with breast cancer receiving adjuvant radiotherapy, a higher BMI is associated with a greater positional uncertainty of the boost tumor volume. More generous margin should be considered and it can be safely applied through proper design of beam arrangement with advanced treatment techniques.
Literature
1.
go back to reference Van Dongen JA, Voogd AC, Fentiman IS, Legrand C, Sylvester RJ, Tong D, et al. Long-term results of a randomized trial comparing breast-conserving therapy with mastectomy: european organization for research and treatment of cancer 10801 trial. J Natl Cancer Inst. 2000;92:1143–50.CrossRefPubMed Van Dongen JA, Voogd AC, Fentiman IS, Legrand C, Sylvester RJ, Tong D, et al. Long-term results of a randomized trial comparing breast-conserving therapy with mastectomy: european organization for research and treatment of cancer 10801 trial. J Natl Cancer Inst. 2000;92:1143–50.CrossRefPubMed
2.
go back to reference Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366:2087–106.CrossRefPubMed Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366:2087–106.CrossRefPubMed
3.
go back to reference Bartelink H, Horiot J-C, Poortmans PM, Struikmans H, Van den Bogaert W, Fourquet A, et al. Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881-10882 trial. J Clin Oncol. 2007;25:3259–65.CrossRefPubMed Bartelink H, Horiot J-C, Poortmans PM, Struikmans H, Van den Bogaert W, Fourquet A, et al. Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881-10882 trial. J Clin Oncol. 2007;25:3259–65.CrossRefPubMed
4.
go back to reference Coon AB, Dickler A, Kirk MC, Liao Y, Shah AP, Strauss JB, et al. Tomotherapy and multifield intensity-modulated radiotherapy planning reduce cardiac doses in left-sided breast cancer patients with unfavorable cardiac anatomy. Int J Radiat Oncol Biol Phys. 2010;78:104–10.CrossRefPubMed Coon AB, Dickler A, Kirk MC, Liao Y, Shah AP, Strauss JB, et al. Tomotherapy and multifield intensity-modulated radiotherapy planning reduce cardiac doses in left-sided breast cancer patients with unfavorable cardiac anatomy. Int J Radiat Oncol Biol Phys. 2010;78:104–10.CrossRefPubMed
5.
go back to reference Schubert LK, Gondi V, Sengbusch E, Westerly DC, Soisson ET, Paliwal BR, et al. Dosimetric comparison of left-sided whole breast irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT, helical tomotherapy, and topotherapy. Radiother Oncol. 2011;100:241–6.CrossRefPubMed Schubert LK, Gondi V, Sengbusch E, Westerly DC, Soisson ET, Paliwal BR, et al. Dosimetric comparison of left-sided whole breast irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT, helical tomotherapy, and topotherapy. Radiother Oncol. 2011;100:241–6.CrossRefPubMed
6.
go back to reference Jagsi R, Moran J, Marsh R, Masi K, Griffith KA, Pierce LJ. Evaluation of four techniques using intensitymodulated radiation therapy for comprehensive locoregional irradiation of breast cancer. Int J Radiat Oncol Biol Phys. 2010;78:1594–603.CrossRefPubMedPubMedCentral Jagsi R, Moran J, Marsh R, Masi K, Griffith KA, Pierce LJ. Evaluation of four techniques using intensitymodulated radiation therapy for comprehensive locoregional irradiation of breast cancer. Int J Radiat Oncol Biol Phys. 2010;78:1594–603.CrossRefPubMedPubMedCentral
7.
go back to reference Goddu SM, Chaudhari S, Mamalui-Hunter M, Pechenaya OL, Pratt D, Mutic S, et al. Helical tomotherapy planning for left-sided breast cancer patients with positive lymph nodes: comparison to conventional multiport breast technique. Int J Radiat Oncol Biol Phys. 2009;73:1243–51.CrossRefPubMed Goddu SM, Chaudhari S, Mamalui-Hunter M, Pechenaya OL, Pratt D, Mutic S, et al. Helical tomotherapy planning for left-sided breast cancer patients with positive lymph nodes: comparison to conventional multiport breast technique. Int J Radiat Oncol Biol Phys. 2009;73:1243–51.CrossRefPubMed
8.
go back to reference Popescu CC, Olivotto IA, Beckham WA, Ansbacher W, Zavgorodni S, Shaffer R, et al. Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes. Int J Radiat Oncol Biol Phys. 2010;76:287–95.CrossRefPubMed Popescu CC, Olivotto IA, Beckham WA, Ansbacher W, Zavgorodni S, Shaffer R, et al. Volumetric modulated arc therapy improves dosimetry and reduces treatment time compared to conventional intensity-modulated radiotherapy for locoregional radiotherapy of left-sided breast cancer and internal mammary nodes. Int J Radiat Oncol Biol Phys. 2010;76:287–95.CrossRefPubMed
9.
go back to reference Trovo M, Polesel J, Biasutti C, Sartor G, Roncadin M, Trovo GM. Fiducial markers for image-guided partial breast irradiation. Radiol Med. 2013;118:1212–9.CrossRefPubMed Trovo M, Polesel J, Biasutti C, Sartor G, Roncadin M, Trovo GM. Fiducial markers for image-guided partial breast irradiation. Radiol Med. 2013;118:1212–9.CrossRefPubMed
10.
go back to reference Yue NJ, Haffty BG, Kearney T, Kirstein L, Chen SGoyal S. Tracking the dynamic seroma cavity using fiducial markers in patients treated with accelerated partial breast irradiation using 3D conformal radiotherapy. Med Phys. 2013;40:021717.CrossRefPubMed Yue NJ, Haffty BG, Kearney T, Kirstein L, Chen SGoyal S. Tracking the dynamic seroma cavity using fiducial markers in patients treated with accelerated partial breast irradiation using 3D conformal radiotherapy. Med Phys. 2013;40:021717.CrossRefPubMed
11.
go back to reference Ippolito E, Trodella L, Silipigni S, D’Angelillo RM, Di Donato A, Fiore M, et al. Estimating the value of surgical clips for target volume delineation in external beam partial breast radiotherapy. Clin Oncol. 2014;26:677–83.CrossRef Ippolito E, Trodella L, Silipigni S, D’Angelillo RM, Di Donato A, Fiore M, et al. Estimating the value of surgical clips for target volume delineation in external beam partial breast radiotherapy. Clin Oncol. 2014;26:677–83.CrossRef
12.
go back to reference Sung SY, Lee JH, Lee JH, Kim SH, Kwak YK, Lee SW, et al. Displacement of surgical clips during postoperative radiotherapy in breast cancer patients Who received breast-conserving surgery. J Breast Cancer. 2016;19:417–22.CrossRefPubMedPubMedCentral Sung SY, Lee JH, Lee JH, Kim SH, Kwak YK, Lee SW, et al. Displacement of surgical clips during postoperative radiotherapy in breast cancer patients Who received breast-conserving surgery. J Breast Cancer. 2016;19:417–22.CrossRefPubMedPubMedCentral
13.
go back to reference Tanaka H, Hayashi S, Hoshi H. Determination of the optimal method for the field-in-field technique in breast tangential radiotherapy. J Radiat Res. 2014;55:769–73.CrossRefPubMedPubMedCentral Tanaka H, Hayashi S, Hoshi H. Determination of the optimal method for the field-in-field technique in breast tangential radiotherapy. J Radiat Res. 2014;55:769–73.CrossRefPubMedPubMedCentral
16.
go back to reference Van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47:1121–35.CrossRefPubMed Van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys. 2000;47:1121–35.CrossRefPubMed
17.
go back to reference Park CK, Pritz J, Zhang GG, Forster KM, Harris EE. Validating fiducial markers for image-guided radiation therapy for accelerated partial breast irradiation in early-stage breast cancer. Int J Radiat Oncol Biol Phys. 2012;82:425–31.CrossRef Park CK, Pritz J, Zhang GG, Forster KM, Harris EE. Validating fiducial markers for image-guided radiation therapy for accelerated partial breast irradiation in early-stage breast cancer. Int J Radiat Oncol Biol Phys. 2012;82:425–31.CrossRef
18.
go back to reference Chung MJ, Lee GJ, Suh YJ, Lee HC, Lee SW, Jeong S, et al. Setup error and effectiveness of weekly image-guided radiation therapy of TomoDirect for early breast cancer. Cancer Res Treat. 2015;47:774–80.CrossRefPubMedPubMedCentral Chung MJ, Lee GJ, Suh YJ, Lee HC, Lee SW, Jeong S, et al. Setup error and effectiveness of weekly image-guided radiation therapy of TomoDirect for early breast cancer. Cancer Res Treat. 2015;47:774–80.CrossRefPubMedPubMedCentral
19.
go back to reference Surveillance, Epidemiology, and End Results Program. 2006-2012. Surveillance, Epidemiology, and End Results Program. 2006-2012.
20.
go back to reference Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98.CrossRefPubMed Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98.CrossRefPubMed
21.
go back to reference Darby SC, McGale P, Taylor CW, Peto R. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol. 2005;6:557–65.CrossRefPubMed Darby SC, McGale P, Taylor CW, Peto R. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol. 2005;6:557–65.CrossRefPubMed
22.
go back to reference Donovan EM, Brooks C, Mitchell RA, Mukesh M, Coles CE, Evans PM, et al. The effect of image guidance on dose distributions in breast boost radiotherapy. Clin Oncol (R Coll Radiol). 2014;26:671–6.CrossRef Donovan EM, Brooks C, Mitchell RA, Mukesh M, Coles CE, Evans PM, et al. The effect of image guidance on dose distributions in breast boost radiotherapy. Clin Oncol (R Coll Radiol). 2014;26:671–6.CrossRef
23.
go back to reference Lutz CM, Poulsen PR, Fledelius W, Offersen BV, Thomsen MS. Setup error and motion during deep inspiration breath-hold breast radiotherapy measured with continuous portal imaging. Acta Oncol. 2016;55:193–200.CrossRefPubMed Lutz CM, Poulsen PR, Fledelius W, Offersen BV, Thomsen MS. Setup error and motion during deep inspiration breath-hold breast radiotherapy measured with continuous portal imaging. Acta Oncol. 2016;55:193–200.CrossRefPubMed
24.
go back to reference Thomsen MS, Harrov U, Fledelius W, Poulsen PR. Inter- and intra-fraction geometric errors in daily image-guided radiotherapy of free-breathing breast cancer patients measured with continuous portal imaging. Acta Oncol. 2014;53:802–8.CrossRefPubMed Thomsen MS, Harrov U, Fledelius W, Poulsen PR. Inter- and intra-fraction geometric errors in daily image-guided radiotherapy of free-breathing breast cancer patients measured with continuous portal imaging. Acta Oncol. 2014;53:802–8.CrossRefPubMed
Metadata
Title
A topology-based method to mitigate the dosimetric uncertainty caused by the positional variation of the boost volume in breast conservative radiotherapy
Authors
Peng-Yi Lee
Chih-Yuan Lin
Shang-Wen Chen
Chun-Ru Chien
Chun-Nan Chu
Hsiu-Ting Hsu
Ji-An Liang
Ying-Jun Lin
An-Cheng Shiau
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0801-4

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue