Skip to main content
Top
Published in: Radiation Oncology 1/2016

Open Access 01-12-2016 | Research

Distribution of prostate nodes: a PET/CT-derived anatomic atlas of prostate cancer patients before and after surgical treatment

Authors: Nina-Sophie Hegemann, Vera Wenter, Sonja Spath, Nadia Kusumo, Minglun Li, Peter Bartenstein, Wolfgang P. Fendler, Christian Stief, Claus Belka, Ute Ganswindt

Published in: Radiation Oncology | Issue 1/2016

Login to get access

Abstract

Background

In order to define adequate radiation portals in nodal positive prostate cancer a detailed knowledge of the anatomic lymph-node distribution is mandatory. We therefore systematically analyzed the localization of Choline PET/CT positive lymph nodes and compared it to the RTOG recommendation of pelvic CTV, as well as to previous work, the SPECT sentinel lymph node atlas.

Methods

Thirty-two patients being mostly high risk patients with a PSA of 12.5 ng/ml (median) received PET/CT before any treatment. Eighty-seven patients received PET/CT for staging due to biochemical failure with a median PSA of 3.12 ng/ml. Each single PET-positive lymph node was manually contoured in a “virtual” patient dataset to achieve a 3-D visualization, resulting in an atlas of the cumulative PET positive lymph node distribution. Further the PET-positive lymph node location in each patient was assessed with regard to the existence of a potential geographic miss (i.e. PET-positive lymph nodes that would not have been treated adequately by the RTOG consensus on CTV definition of pelvic lymph nodes).

Results

Seventy-eight and 209 PET positive lymph nodes were detected in patients with no prior treatment and in postoperative patients, respectively. The most common sites of PET positive lymph nodes in patients with no prior treatment were external iliac (32.1 %), followed by common iliac (23.1 %) and para-aortic (19.2 %). In postoperative patients the most common sites of PET positive lymph nodes were common iliac (24.9 %), followed by external iliac (23.0 %) and para-aortic (20.1 %). In patients with no prior treatment there were 34 (43.6 %) and in postoperative patients there were 77 (36.8 %) of all detected lymph nodes that would not have been treated adequately using the RTOG CTV. We compared the distribution of lymph nodes gained by Choline PET/CT to the preexisting SPECT sentinel lymph node atlas and saw an overall good congruence.

Conclusions

Choline PET/CT and SPECT sentinel lymph node atlas are comparable to each other. More than one-third of the PET positive lymph nodes in patients with no prior treatment and in postoperative patients would not have been treated adequately using the RTOG CTV. To reduce geographical miss, image based definition of an individual target volume is necessary.
Literature
1.
go back to reference Ganswindt U, Paulsen F, Corvin S, Eichhorn K, Glocker S, Hundt I, et al. Intensity modulated radiotherapy for high risk prostate cancer based on sentinel node SPECT imaging for target volume definition. BMC Cancer. 2005;5:91.CrossRefPubMedPubMedCentral Ganswindt U, Paulsen F, Corvin S, Eichhorn K, Glocker S, Hundt I, et al. Intensity modulated radiotherapy for high risk prostate cancer based on sentinel node SPECT imaging for target volume definition. BMC Cancer. 2005;5:91.CrossRefPubMedPubMedCentral
2.
go back to reference Ganswindt U, Paulsen F, Corvin S, Hundt I, Alber M, Frey B, et al. Optimized coverage of high-risk adjuvant lymph node areas in prostate cancer using a sentinel node-based, intensity-modulated radiation therapy technique. Int J Radiat Oncol Biol Phys. 2007;67:347–55.CrossRefPubMed Ganswindt U, Paulsen F, Corvin S, Hundt I, Alber M, Frey B, et al. Optimized coverage of high-risk adjuvant lymph node areas in prostate cancer using a sentinel node-based, intensity-modulated radiation therapy technique. Int J Radiat Oncol Biol Phys. 2007;67:347–55.CrossRefPubMed
3.
go back to reference Ganswindt U, Schilling D, Muller AC, Bares R, Bartenstein P, Belka C. Distribution of prostate sentinel nodes: a SPECT-derived anatomic atlas. Int J Radiat Oncol Biol Phys. 2011;79:1364–72.CrossRefPubMed Ganswindt U, Schilling D, Muller AC, Bares R, Bartenstein P, Belka C. Distribution of prostate sentinel nodes: a SPECT-derived anatomic atlas. Int J Radiat Oncol Biol Phys. 2011;79:1364–72.CrossRefPubMed
4.
go back to reference Umbehr MH, Müntener M, Hany T, Sulser T, Bachmann LM. The Role of 11C-Choline and 18 F-Fluorocholine Positron Emission Tomography (PET) and PET/CT in Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol. 2013;64:106–17.CrossRefPubMed Umbehr MH, Müntener M, Hany T, Sulser T, Bachmann LM. The Role of 11C-Choline and 18 F-Fluorocholine Positron Emission Tomography (PET) and PET/CT in Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol. 2013;64:106–17.CrossRefPubMed
5.
go back to reference Lawton CA, Michalski J, El-Naqa I, Buyyounouski MK, Lee WR, Menard C, et al. RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2009;74:383–7.CrossRefPubMedPubMedCentral Lawton CA, Michalski J, El-Naqa I, Buyyounouski MK, Lee WR, Menard C, et al. RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2009;74:383–7.CrossRefPubMedPubMedCentral
6.
go back to reference D’Amico AV, Whittington R, Malkowicz SB, Weinstein M, Tomaszewski JE, Schultz D, et al. Predicting prostate specific antigen outcome preoperatively in the prostate specific antigen era. J Urol. 2001;166:2185–8.CrossRefPubMed D’Amico AV, Whittington R, Malkowicz SB, Weinstein M, Tomaszewski JE, Schultz D, et al. Predicting prostate specific antigen outcome preoperatively in the prostate specific antigen era. J Urol. 2001;166:2185–8.CrossRefPubMed
7.
go back to reference Martinez-Monge R, Fernandes PS, Gupta N, Gahbauer R. Cross-sectional nodal atlas: a tool for the definition of clinical target volumes in three-dimensional radiation therapy planning. Radiology. 1999;211:815–28.CrossRefPubMed Martinez-Monge R, Fernandes PS, Gupta N, Gahbauer R. Cross-sectional nodal atlas: a tool for the definition of clinical target volumes in three-dimensional radiation therapy planning. Radiology. 1999;211:815–28.CrossRefPubMed
8.
go back to reference Castellucci P, Fanti S. Prostate cancer: Identifying sites of recurrence with choline-PET-CT imaging. Nat Rev Urol. 2015;12:134–5.CrossRefPubMed Castellucci P, Fanti S. Prostate cancer: Identifying sites of recurrence with choline-PET-CT imaging. Nat Rev Urol. 2015;12:134–5.CrossRefPubMed
9.
go back to reference Heidenreich A, Varga Z, Von Knobloch R. Extended pelvic lymphadenectomy in patients undergoing radical prostatectomy: high incidence of lymph node metastasis. J Urol. 2002;167:1681–6.CrossRefPubMed Heidenreich A, Varga Z, Von Knobloch R. Extended pelvic lymphadenectomy in patients undergoing radical prostatectomy: high incidence of lymph node metastasis. J Urol. 2002;167:1681–6.CrossRefPubMed
10.
go back to reference Joniau S, Van den Bergh L, Lerut E, Deroose CM, Haustermans K, Oyen R, et al. Mapping of Pelvic Lymph Node Metastases in Prostate Cancer. Eur Urol. 2013;63:450–8.CrossRefPubMed Joniau S, Van den Bergh L, Lerut E, Deroose CM, Haustermans K, Oyen R, et al. Mapping of Pelvic Lymph Node Metastases in Prostate Cancer. Eur Urol. 2013;63:450–8.CrossRefPubMed
11.
go back to reference Meijer HJM, Fortuin AS, van Lin ENJT, Debats OA, Alfred Witjes J, Kaanders JHAM, et al. Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients. Radiother Oncol. 2013;106:59–63.CrossRefPubMed Meijer HJM, Fortuin AS, van Lin ENJT, Debats OA, Alfred Witjes J, Kaanders JHAM, et al. Geographical distribution of lymph node metastases on MR lymphography in prostate cancer patients. Radiother Oncol. 2013;106:59–63.CrossRefPubMed
12.
go back to reference Meijer HJM, Debats OA, Th. van Lin ENJ, van Vulpen M, Witjes JA, Oyen WJG, et al. Individualized image-based lymph node irradiation for prostate cancer. Nat Rev Urol. 2013;10:376–85.CrossRefPubMed Meijer HJM, Debats OA, Th. van Lin ENJ, van Vulpen M, Witjes JA, Oyen WJG, et al. Individualized image-based lymph node irradiation for prostate cancer. Nat Rev Urol. 2013;10:376–85.CrossRefPubMed
13.
go back to reference Tilki D, Reich O, Graser A, Hacker M, Silchinger J, Becker AJ, et al. 18 F-Fluoroethylcholine PET/CT Identifies Lymph Node Metastasis in Patients with Prostate-Specific Antigen Failure After Radical Prostatectomy but Underestimates Its Extent. Eur Urol. 2013;63:792–6.CrossRefPubMed Tilki D, Reich O, Graser A, Hacker M, Silchinger J, Becker AJ, et al. 18 F-Fluoroethylcholine PET/CT Identifies Lymph Node Metastasis in Patients with Prostate-Specific Antigen Failure After Radical Prostatectomy but Underestimates Its Extent. Eur Urol. 2013;63:792–6.CrossRefPubMed
14.
go back to reference Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:197–209.CrossRefPubMedPubMedCentral Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:197–209.CrossRefPubMedPubMedCentral
Metadata
Title
Distribution of prostate nodes: a PET/CT-derived anatomic atlas of prostate cancer patients before and after surgical treatment
Authors
Nina-Sophie Hegemann
Vera Wenter
Sonja Spath
Nadia Kusumo
Minglun Li
Peter Bartenstein
Wolfgang P. Fendler
Christian Stief
Claus Belka
Ute Ganswindt
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2016
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-016-0615-9

Other articles of this Issue 1/2016

Radiation Oncology 1/2016 Go to the issue