Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Characteristics of non-coplanar IMRT in the presence of target-embedded organs at risk

Authors: Klaus Bratengeier, Kostyantyn Holubyev

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

The aim is to analyze characteristics and to study the potentials of non-coplanar intensity modulated radiation therapy (IMRT) techniques. The planning study applies to generalized organ at risk (OAR) – planning target volume (PTV) geometries.

Methods

The authors focus on OARs embedded in the PTV. The OAR shapes are spherically symmetric (A), cylindrical (B), and bended (C). Several IMRT techniques are used for the planning study: a) non-coplanar quasi-isotropic; b) two sets of equidistant coplanar beams, half of beams incident in a plane perpendicular to the principal plane; c) coplanar equidistant (reference); d) coplanar plus one orthogonal beam. The number of beam directions varies from 9 to 16. The orientation of the beam sets is systematically changed; dose distributions resulting from optimal fluence are explored. A selection of plans is optimized with direct machine parameter optimization (DMPO) allowing 120 and 64 segments. The overall plan quality, PTV coverage, and OAR sparing are evaluated.

Results

For all fluence based techniques in cases A and C, plan quality increased considerably if more irradiation directions were used. For the cylindrically symmetric case B, however, only a weak beam number dependence was observed for the best beam set orientation, for which non-coplanar directions could be found where OAR- and PTV-projections did not overlap. IMRT plans using quasi-isotropical distributed non-coplanar beams showed stable results for all topologies A, B, C, as long as 16 beams were chosen; also the most unfavorable beam arrangement created results of similar quality as the optimally oriented coplanar configuration. For smaller number of beams or application in the trunk, a coplanar technique with additional orthogonal beam could be recommended. Techniques using 120 segments created by DMPO could qualitatively reproduce the fluence based results. However, for a reduced number of segments the beam number dependence declined or even reversed for the used planning system and the plan quality degraded substantially.

Conclusions

Topologies with targets encompassing sensitive OAR require sufficient number of beams of 15 or more. For the subgroup of topologies where beam incidences are possible which cover the whole PTV without direct OAR irradiation, the quality dependence on the number of beams is much less pronounced above 9 beams. However, these special non-coplanar beam directions have to be found. On the basis of this work the non-coplanar IMRT techniques can be chosen for further clinical planning studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brahme A, Roos JE, Lax I. Solution of an integral equation encountered in rotation therapy. Phys Med Biol. 1982;27:1221–9.CrossRefPubMed Brahme A, Roos JE, Lax I. Solution of an integral equation encountered in rotation therapy. Phys Med Biol. 1982;27:1221–9.CrossRefPubMed
2.
3.
go back to reference Bortfeld T, Burkelbach J, Boesecke R, Schlegel W. Methods of image reconstruction from projections applied to conformation radiotherapy. Phys Med Biol. 1990;35:1423–34.CrossRefPubMed Bortfeld T, Burkelbach J, Boesecke R, Schlegel W. Methods of image reconstruction from projections applied to conformation radiotherapy. Phys Med Biol. 1990;35:1423–34.CrossRefPubMed
4.
go back to reference Kak AC, M S: Principles of Computerized Tomographic Imaging. New York: IEEE Press; 1999/1988 Kak AC, M S: Principles of Computerized Tomographic Imaging. New York: IEEE Press; 1999/1988
5.
go back to reference Bratengeier K, Seubert B, Holubyev K, Schachner H. Considerations on IMRT for quasi-isotropic non-coplanar irradiation. Phys Med Biol. 2012;57:7303–15.CrossRefPubMed Bratengeier K, Seubert B, Holubyev K, Schachner H. Considerations on IMRT for quasi-isotropic non-coplanar irradiation. Phys Med Biol. 2012;57:7303–15.CrossRefPubMed
6.
go back to reference Breedveld S, Storchi PR, Voet PW, Heijmen BJ. iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans. Med Phys. 2012;39:951–63.CrossRefPubMed Breedveld S, Storchi PR, Voet PW, Heijmen BJ. iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans. Med Phys. 2012;39:951–63.CrossRefPubMed
7.
go back to reference Bangert M, Ziegenhein P, Oelfke U. Characterizing the combinatorial beam angle selection problem. Phys Med Biol. 2012;57:6707–23.CrossRefPubMed Bangert M, Ziegenhein P, Oelfke U. Characterizing the combinatorial beam angle selection problem. Phys Med Biol. 2012;57:6707–23.CrossRefPubMed
8.
go back to reference Rossi L, Breedveld S, Heijmen BJ, Voet PW, Lanconelli N, Aluwini S. On the beam direction search space in computerized non-coplanar beam angle optimization for IMRT-prostate SBRT. Phys Med Biol. 2012;57:5441–58.CrossRefPubMed Rossi L, Breedveld S, Heijmen BJ, Voet PW, Lanconelli N, Aluwini S. On the beam direction search space in computerized non-coplanar beam angle optimization for IMRT-prostate SBRT. Phys Med Biol. 2012;57:5441–58.CrossRefPubMed
9.
go back to reference Schreibmann E, Xing L. Feasibility study of beam orientation class-solutions for prostate IMRT. Med Phys. 2004;31:2863–70.CrossRefPubMed Schreibmann E, Xing L. Feasibility study of beam orientation class-solutions for prostate IMRT. Med Phys. 2004;31:2863–70.CrossRefPubMed
10.
go back to reference Buzug TM. Computed tomography - from photon statistics to modern cone-beam CT. Berlin, Heidelberg: Springer; 2008. Buzug TM. Computed tomography - from photon statistics to modern cone-beam CT. Berlin, Heidelberg: Springer; 2008.
11.
go back to reference Lin W-T. Computationally efficient cone beam CT reconstruction algorithm using circle-and-line orbit. In: Medical imaging physics of medical imaging. 1999. p. 933. Lin W-T. Computationally efficient cone beam CT reconstruction algorithm using circle-and-line orbit. In: Medical imaging physics of medical imaging. 1999. p. 933.
12.
go back to reference Bratengeier K, Meyer J, Flentje M. Pre-segmented 2-Step IMRT with subsequent direct machine parameter optimisation - a planning study. Radiat Oncol. 2008;3:38.CrossRefPubMedPubMedCentral Bratengeier K, Meyer J, Flentje M. Pre-segmented 2-Step IMRT with subsequent direct machine parameter optimisation - a planning study. Radiat Oncol. 2008;3:38.CrossRefPubMedPubMedCentral
13.
go back to reference Bohsung J, Gillis S, Arrans R, Bakai A, De Wagter C, Knoos T, et al. IMRT treatment planning:- a comparative inter-system and inter-centre planning exercise of the ESTRO QUASIMODO group. Radiother Oncol. 2005;76:354–61.CrossRefPubMed Bohsung J, Gillis S, Arrans R, Bakai A, De Wagter C, Knoos T, et al. IMRT treatment planning:- a comparative inter-system and inter-centre planning exercise of the ESTRO QUASIMODO group. Radiother Oncol. 2005;76:354–61.CrossRefPubMed
14.
go back to reference van’t Riet A, Mak AC, Moerland MA, Elders LH, van der Zee W. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Radiat Oncol Biol Phys. 1997;37:731–6.CrossRef van’t Riet A, Mak AC, Moerland MA, Elders LH, van der Zee W. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Radiat Oncol Biol Phys. 1997;37:731–6.CrossRef
15.
16.
go back to reference Webb S. Optimisation of conformal radiotherapy dose distributions by simulated annealing [published erratum appears in Phys Med Biol 1990 Feb;35(2):297]. Phys Med Biol. 1989;34:1349–70.CrossRefPubMed Webb S. Optimisation of conformal radiotherapy dose distributions by simulated annealing [published erratum appears in Phys Med Biol 1990 Feb;35(2):297]. Phys Med Biol. 1989;34:1349–70.CrossRefPubMed
17.
go back to reference Holmes T, Mackie TR. A filtered backprojection dose calculation method for inverse treatment planning. Med Phys. 1994;21:303–13.CrossRefPubMed Holmes T, Mackie TR. A filtered backprojection dose calculation method for inverse treatment planning. Med Phys. 1994;21:303–13.CrossRefPubMed
18.
go back to reference Popple RA, Brezovich IA, Fiveash JB. Beam geometry selection using sequential beam addition. Med Phys. 2014;41:051713.CrossRefPubMed Popple RA, Brezovich IA, Fiveash JB. Beam geometry selection using sequential beam addition. Med Phys. 2014;41:051713.CrossRefPubMed
19.
go back to reference Wang X, Zhang X, Dong L, Liu H, Gillin M, Ahamad A, et al. Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma. Int J Radiat Oncol Biol Phys. 2005;63:594–601.CrossRefPubMed Wang X, Zhang X, Dong L, Liu H, Gillin M, Ahamad A, et al. Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma. Int J Radiat Oncol Biol Phys. 2005;63:594–601.CrossRefPubMed
20.
go back to reference Dong P, Lee P, Ruan D, Long T, Romeijn E, Yang Y, et al. 4pi non-coplanar liver SBRT: a novel delivery technique. Int J Radiat Oncol Biol Phys. 2013;85:1360–6.CrossRefPubMed Dong P, Lee P, Ruan D, Long T, Romeijn E, Yang Y, et al. 4pi non-coplanar liver SBRT: a novel delivery technique. Int J Radiat Oncol Biol Phys. 2013;85:1360–6.CrossRefPubMed
21.
go back to reference Meedt G, Alber M, Nusslin F. Non-coplanar beam direction optimization for intensity-modulated radiotherapy. Phys Med Biol. 2003;48:2999–3019.CrossRefPubMed Meedt G, Alber M, Nusslin F. Non-coplanar beam direction optimization for intensity-modulated radiotherapy. Phys Med Biol. 2003;48:2999–3019.CrossRefPubMed
22.
go back to reference Aleman DM, Romeijn HE, Dempsey JF. A response surface approach to beam orientation optimization in intensity-modulated radiation therapy treatment planning. INFORMS J Comput. 2009;21:62–76.CrossRef Aleman DM, Romeijn HE, Dempsey JF. A response surface approach to beam orientation optimization in intensity-modulated radiation therapy treatment planning. INFORMS J Comput. 2009;21:62–76.CrossRef
23.
go back to reference Craft D. Local beam angle optimization with linear programming and gradient search. Phys Med Biol. 2007;52:N127–35.CrossRefPubMed Craft D. Local beam angle optimization with linear programming and gradient search. Phys Med Biol. 2007;52:N127–35.CrossRefPubMed
Metadata
Title
Characteristics of non-coplanar IMRT in the presence of target-embedded organs at risk
Authors
Klaus Bratengeier
Kostyantyn Holubyev
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0494-5

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue