Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Determining optimal planning target volume and image guidance policy for post-prostatectomy intensity modulated radiotherapy

Authors: Linda J. Bell, Jennifer Cox, Thomas Eade, Marianne Rinks, Alan Herschtal, Andrew Kneebone

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

There is limited information available on the optimal Planning Target Volume (PTV) expansions and image guidance for post-prostatectomy intensity modulated radiotherapy (PP-IMRT). As the prostate bed does not move in a uniform manner, there is a rationale for anisotropic PTV margins with matching to soft tissue. The aim of this study is to find the combination of PTV expansion and image guidance policy for PP-IMRT that provides the best balance of target coverage whilst minimising dose to the organs at risk.

Methods

The Cone Beam CT (CBCT) images (n = 377) of 40 patients who received PP-IMRT with daily online alignment to bony anatomy (BA) were reviewed. Six different PTV expansions were assessed: 3 published PTV expansions (0.5 cm uniform, 1 cm uniform, and 1 + 0.5 cm posterior) and 3 further anisotropic PTV expansions (Northern Sydney Cancer Centre (NSCC), van Herk, and smaller anisotropic). Each was assessed for size, bladder and rectum coverage and geographic miss. Each CBCT was rematched using a superior soft tissue (SST) and averaged soft tissue (AST) match. Potential geographic miss was assessed using all PTV expansions except the van Herk margin.

Results

The 0.5 cm uniform expansion yielded the smallest PTV (median volume = 222.3 cc) and the 1 cm uniform expansion yielded the largest (361.7 cc). The Van Herk expansion includes the largest amount of bladder (28.0 %) and rectum (36.0 %) and the 0.5 cm uniform expansion the smallest (17.1 % bladder; 10.2 % rectum). The van Herk PTV expansion had the least geographic miss with BA matching (4.2 %) and the 0.5 cm uniform margin (28.4 %) the greatest. BA matching resulted in the highest geographic miss rate for all PTVs, followed by SST matching and AST matching. Changing from BA to an AST match decreases potential geographic miss by half to two thirds, depending on the PTV expansion, to <10 % for all PTV expansions. When using the smaller anisotropic PTV expansion, AST matching would reduce the geographic miss rate from 21.0 % with BA matching down to 5.6 %.

Conclusions

Our results suggest the optimal PTV expansion and image guidance policy for PP-IMRT is daily average soft tissue matching using CBCT scans with a small anisotropic PTV expansion of 0.5 cm in all directions apart from a 1 cm expansion in the anterior-posterior direction in the upper prostate bed. Care must be taken to ensure adequate training of Radiation Therapists to perform soft tissue matching with CBCT scans.
Literature
1.
go back to reference Ost P, De Meerleer G, De Gersem W, Impens A, De Neve W. Analysis of Prostate Bed Motion Using Daily Cone-Beam Computed Tomography During Postprostatectomy Radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79:188–94.PubMedCrossRef Ost P, De Meerleer G, De Gersem W, Impens A, De Neve W. Analysis of Prostate Bed Motion Using Daily Cone-Beam Computed Tomography During Postprostatectomy Radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79:188–94.PubMedCrossRef
2.
go back to reference Simpson DR, Einck JP, Nath SK, Sethi RA, Wang JZ, Mundt AJ, et al. Comparison of daily cone-beam computed tomography and kilovoltage planar imaging for target localization in prostate cancer patients following radical prostatectomy. Practical Radiation Oncology. 2011;1:156–62.PubMedCrossRef Simpson DR, Einck JP, Nath SK, Sethi RA, Wang JZ, Mundt AJ, et al. Comparison of daily cone-beam computed tomography and kilovoltage planar imaging for target localization in prostate cancer patients following radical prostatectomy. Practical Radiation Oncology. 2011;1:156–62.PubMedCrossRef
3.
go back to reference Bell LJ, Cox J, Eade T, Rinks M, Kneebone A. Prostate bed motion may cause geographic miss in post-prostatectomy image-guided intensity-modulated radiotherapy. J Med Imaging Radiat Oncol. 2013;57:725–32.PubMedCrossRef Bell LJ, Cox J, Eade T, Rinks M, Kneebone A. Prostate bed motion may cause geographic miss in post-prostatectomy image-guided intensity-modulated radiotherapy. J Med Imaging Radiat Oncol. 2013;57:725–32.PubMedCrossRef
4.
go back to reference Bell LJ, Cox J, Eade T, Rinks M, Kneebone A. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy. Med Dosim. 2014;39:235–41.PubMedCrossRef Bell LJ, Cox J, Eade T, Rinks M, Kneebone A. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy. Med Dosim. 2014;39:235–41.PubMedCrossRef
5.
go back to reference Bell LJ, Cox J, Eade T, Rinks M, Kneebone A. The impact of rectal and bladder variability on target coverage during post-prostatectomy intensity modulated radiotherapy. Radiother Oncol. 2014;110:245–50.PubMedCrossRef Bell LJ, Cox J, Eade T, Rinks M, Kneebone A. The impact of rectal and bladder variability on target coverage during post-prostatectomy intensity modulated radiotherapy. Radiother Oncol. 2014;110:245–50.PubMedCrossRef
6.
go back to reference Poortmans P, Bossi A, Vandeputte K, Bosset M, Miralbell R, Maingon P, et al. Guidelines for target volume definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC Radiation Oncology Group. Radiother Oncol. 2007;84:121–7.PubMedCrossRef Poortmans P, Bossi A, Vandeputte K, Bosset M, Miralbell R, Maingon P, et al. Guidelines for target volume definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC Radiation Oncology Group. Radiother Oncol. 2007;84:121–7.PubMedCrossRef
7.
go back to reference Sidhom MA, Kneebone AB, Lehman M, Wiltshire KL, Millar JL, Mukherjee RK, et al. Post-prostatectomy radiation therapy: Consensus guidelines of the Australian and New Zealand Radiation Oncology Genito-Urinary Group. Radiother Oncol. 2008;88:10–9.PubMedCrossRef Sidhom MA, Kneebone AB, Lehman M, Wiltshire KL, Millar JL, Mukherjee RK, et al. Post-prostatectomy radiation therapy: Consensus guidelines of the Australian and New Zealand Radiation Oncology Genito-Urinary Group. Radiother Oncol. 2008;88:10–9.PubMedCrossRef
8.
go back to reference Wiltshire KL, Brock KK, Haider MA, Zwahlen D, Kong V, Chan E, et al. Anatomic Boundaries of the Clinical Target Volume (Prostate Bed) After Radical Prostatectomy. Int J Radiat Oncol Biol Phys. 2007;69:1090–9.PubMedCrossRef Wiltshire KL, Brock KK, Haider MA, Zwahlen D, Kong V, Chan E, et al. Anatomic Boundaries of the Clinical Target Volume (Prostate Bed) After Radical Prostatectomy. Int J Radiat Oncol Biol Phys. 2007;69:1090–9.PubMedCrossRef
9.
go back to reference van Herk M, Remeijer P, Lebesque JV. Inclusion of geometric uncertainties in treatment plan evaluation. Int J Radiat Oncol Biol Phys. 2002;52:1407–22.PubMedCrossRef van Herk M, Remeijer P, Lebesque JV. Inclusion of geometric uncertainties in treatment plan evaluation. Int J Radiat Oncol Biol Phys. 2002;52:1407–22.PubMedCrossRef
10.
go back to reference Chen J, Lee RJ, Handrahan D, Sause WT. Intensity-Modulated Radiotherapy Using Implanted Fiducial Markers With Daily Portal Imaging: Assessment of Prostate Organ Motion. Int J Radiat Oncol Biol Phys. 2007;68:912–9.PubMedCrossRef Chen J, Lee RJ, Handrahan D, Sause WT. Intensity-Modulated Radiotherapy Using Implanted Fiducial Markers With Daily Portal Imaging: Assessment of Prostate Organ Motion. Int J Radiat Oncol Biol Phys. 2007;68:912–9.PubMedCrossRef
11.
go back to reference Korreman S, Rasch C, McNair H, Verellen D, Oelfke U, Maingon P, et al. The European Society of Therapeutic Radiology and Oncology–European Institute of Radiotherapy (ESTRO–EIR) report on 3D CT-based in-room image guidance systems: A practical and technical review and guide. Radiother Oncol. 2010;94:129–44.PubMedCrossRef Korreman S, Rasch C, McNair H, Verellen D, Oelfke U, Maingon P, et al. The European Society of Therapeutic Radiology and Oncology–European Institute of Radiotherapy (ESTRO–EIR) report on 3D CT-based in-room image guidance systems: A practical and technical review and guide. Radiother Oncol. 2010;94:129–44.PubMedCrossRef
12.
go back to reference Klayton T, Price R, Buyyounouski MK, Sobczak M, Greenberg R, Li J, et al. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment. Int J Radiat Oncol Biol Phys. 2012;84:130–6.PubMedCentralPubMedCrossRef Klayton T, Price R, Buyyounouski MK, Sobczak M, Greenberg R, Li J, et al. Prostate Bed Motion During Intensity-Modulated Radiotherapy Treatment. Int J Radiat Oncol Biol Phys. 2012;84:130–6.PubMedCentralPubMedCrossRef
13.
go back to reference Sahota K, Bell L, Cox J, Atyeo J. Improving the identification of male pelvic structures in post-prostatectomy patients on cone-beam CT: a region of interest atlas study. J Radiother Pract. 2013;12:180–6.CrossRef Sahota K, Bell L, Cox J, Atyeo J. Improving the identification of male pelvic structures in post-prostatectomy patients on cone-beam CT: a region of interest atlas study. J Radiother Pract. 2013;12:180–6.CrossRef
14.
go back to reference Bell LJ, Cox J, Eade T, Rinks M, Kneebone A. Definition and visualisation of regions of interest in post-prostatectomy image-guided intensity modulated radiotherapy. J Med Radiat Sci. 2014;61:166–75.PubMedCentralCrossRef Bell LJ, Cox J, Eade T, Rinks M, Kneebone A. Definition and visualisation of regions of interest in post-prostatectomy image-guided intensity modulated radiotherapy. J Med Radiat Sci. 2014;61:166–75.PubMedCentralCrossRef
15.
go back to reference Varian Medical Systems. Customer Technical Bulletin OB-885. OBI Dose Tables for kV Single and kV CBCT Images. 2012. Varian Medical Systems. Customer Technical Bulletin OB-885. OBI Dose Tables for kV Single and kV CBCT Images. 2012.
Metadata
Title
Determining optimal planning target volume and image guidance policy for post-prostatectomy intensity modulated radiotherapy
Authors
Linda J. Bell
Jennifer Cox
Thomas Eade
Marianne Rinks
Alan Herschtal
Andrew Kneebone
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-015-0467-8

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue