Skip to main content
Top
Published in: Radiation Oncology 1/2015

Open Access 01-12-2015 | Research

Gradient-based delineation of the primary GTV on FLT PET in squamous cell cancer of the thoracic esophagus and impact on radiotherapy planning

Authors: Guifang Zhang, Dali Han, Changsheng Ma, Jie Lu, Tao Sun, Tonghai Liu, Jian Zhu, Jingwei Zhou, Yong Yin

Published in: Radiation Oncology | Issue 1/2015

Login to get access

Abstract

Background

To validate a gradient-based segmentation method for gross tumor volume(GTV) delineation on 8F-fluorothymidine (FLT)positron emission tomography (PET)/ computer tomography (CT) in esophageal squamous cell cancer through pathologic specimen, in comparison with standardized uptake values (SUV) threshold-based methods and CT. The corresponding impact of this GTV delineation method on treatment planning was evaluated.

Methods and materials

Ten patients with esophageal squamous cell cancer were enrolled. Before radical surgery, all patients underwent FLT-PET/CT. GTVs were delineated by using four methods. GTVGRAD, GTV1.4 and GTV30%max were segmented on FLT PET using a gradient-based method, a fixed threshold of 1.4 SUV and 30% of SUVmax, respectively. GTVCT was based on CT data alone. The maximum longitudinal tumor length of each segmented GTV was compared with the measured tumor length of the pathologic gross tumor length (LPath). GTVGRAD, GTV1.4 and GTV30%max were compared with GTVCT by overlap index. Two radiotherapy plannings (planGRAD) and (planCT) were designed for each patient based on GTVGRAD and GTVCT. The dose-volume parameters for target volume and normal tissues, CI and HI of planGRAD and planCT were compared.

Results

The mean ± standard deviation of LPath was 6.47 ± 2.70 cm. The mean ± standard deviation of LGRAD,L1.4, L30%max and LCT were 6.22 ± 2.61, 6.23 ± 2.80, 5.95 ± 2.50,7.17 ± 2.28 cm, respectively. The Pearson correlation coefficients between LPath and each segmentation method were 0.989, 0.920, 0.920 and 0.862, respectively. The overlap indices of GTVGRAD, GTV1.4, GTV30%max when compared with GTVCT were 0.75 ± 0.12, 0.71 ± 0.12, 0.57 ± 0.10, respectively. The V5, V10, V20, V30 and mean dose of total-lung,V30 and mean dose of heart of planGRAD were significantly lower than planCT.

Conclusions

The gradient-based method provided the closest estimation of target length. The radiotherapy plannings based on the gradient-based segmentation method reduced the irradiated volume of lung, heart in comparison to CT.
Literature
1.
go back to reference Hatt M, Visvikis D, Albarghach NM, Tixier F, Pradier O, Cheze-le Rest C. Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumor delineation methodology. Eur J Nucl Med Mol Imaging. 2011;38:1191–202.CrossRefPubMed Hatt M, Visvikis D, Albarghach NM, Tixier F, Pradier O, Cheze-le Rest C. Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumor delineation methodology. Eur J Nucl Med Mol Imaging. 2011;38:1191–202.CrossRefPubMed
2.
go back to reference Janssen MH, Ollers MC, Riedl RG, van den Bogaard J, Buijsen J, van Stiphout RG, et al. Accurate prediction of pathological rectal tumor response after two weeks of preoperative radiochemotherapy using 18F-fluorodeoxyglucose-positron emission tomography-computed tomography imaging. Int J Radiat Oncol Biol Phys. 2010;77:392–9.CrossRefPubMed Janssen MH, Ollers MC, Riedl RG, van den Bogaard J, Buijsen J, van Stiphout RG, et al. Accurate prediction of pathological rectal tumor response after two weeks of preoperative radiochemotherapy using 18F-fluorodeoxyglucose-positron emission tomography-computed tomography imaging. Int J Radiat Oncol Biol Phys. 2010;77:392–9.CrossRefPubMed
3.
go back to reference Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P, et al. In vivo validationof 3′deoxy-3′-[18F] fluorothymidine ([18F]FLT) as a proliferation imaging tracer in humans: correlation of [18F]FLT uptake by positron emission tomography with Ki-67 immunohisto- chemistry and flow cytometry in human lung tumors. Clin Cancer Res. 2002;8:3315–32.PubMed Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P, et al. In vivo validationof 3′deoxy-3′-[18F] fluorothymidine ([18F]FLT) as a proliferation imaging tracer in humans: correlation of [18F]FLT uptake by positron emission tomography with Ki-67 immunohisto- chemistry and flow cytometry in human lung tumors. Clin Cancer Res. 2002;8:3315–32.PubMed
4.
go back to reference Buck AK, Hetzel M, Schirrmeister H, Halter G, Möller P, Kratochwil C, et al. Clinical relevance of imaging proliferative activity in lung nodules. Eur J NuclMed Mol Imaging. 2005;32:525–33.CrossRef Buck AK, Hetzel M, Schirrmeister H, Halter G, Möller P, Kratochwil C, et al. Clinical relevance of imaging proliferative activity in lung nodules. Eur J NuclMed Mol Imaging. 2005;32:525–33.CrossRef
5.
go back to reference Yap CS, Czernin J, Fishbein MC, Cameron RB, Schiepers C, Phelps ME, et al. Evaluation of thoracic tumors with18F-Fluorothymidine and18F-Fluorodeoxyglucose-positron emissiontomography. Chest. 2006;129:393–401.CrossRefPubMed Yap CS, Czernin J, Fishbein MC, Cameron RB, Schiepers C, Phelps ME, et al. Evaluation of thoracic tumors with18F-Fluorothymidine and18F-Fluorodeoxyglucose-positron emissiontomography. Chest. 2006;129:393–401.CrossRefPubMed
6.
go back to reference Dittmann H, Dohmen BM, Paulsen F, Eichhorn K, Eschmann SM, Horger M, et al. 18F-FLT PET for diagnosis and staging of thoracic tumours. Eur J NuclMed Mol Imaging. 2003;30:1407–12.CrossRef Dittmann H, Dohmen BM, Paulsen F, Eichhorn K, Eschmann SM, Horger M, et al. 18F-FLT PET for diagnosis and staging of thoracic tumours. Eur J NuclMed Mol Imaging. 2003;30:1407–12.CrossRef
7.
go back to reference Han D, Yu J, Yu Y, Zhang G, Zhong X, Lu J, et al. Compasion of 18F-fluorthymidine and 18F-fluorodeoxy -glucose PET/CT in delineating gross tumor by optimal volume by optimal threshold in patients with squamous carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys. 2010;76:1235–41.CrossRefPubMed Han D, Yu J, Yu Y, Zhang G, Zhong X, Lu J, et al. Compasion of 18F-fluorthymidine and 18F-fluorodeoxy -glucose PET/CT in delineating gross tumor by optimal volume by optimal threshold in patients with squamous carcinoma of thoracic esophagus. Int J Radiat Oncol Biol Phys. 2010;76:1235–41.CrossRefPubMed
8.
go back to reference Cobben DC, van der Laan BF, Maas B, Vaalburg W, Suurmeijer AJ, Hoekstra HJ, et al. 18F-FLT PET for visualizationof laryngeal cancer: comparisonwith18F-FDG PET. J Nucl Med. 2004;45:226–31.PubMed Cobben DC, van der Laan BF, Maas B, Vaalburg W, Suurmeijer AJ, Hoekstra HJ, et al. 18F-FLT PET for visualizationof laryngeal cancer: comparisonwith18F-FDG PET. J Nucl Med. 2004;45:226–31.PubMed
9.
go back to reference Smyczek-Gargya B, Fersis N, Dittmann H, Vogel U, Reischl G, Machulla HJ, et al. PET with [18F]fluorothymidine for imaging of primary breastcancer:a pilot study. Eur J Nucl Med Mol Imaging. 2004;31:720–4.CrossRefPubMed Smyczek-Gargya B, Fersis N, Dittmann H, Vogel U, Reischl G, Machulla HJ, et al. PET with [18F]fluorothymidine for imaging of primary breastcancer:a pilot study. Eur J Nucl Med Mol Imaging. 2004;31:720–4.CrossRefPubMed
10.
go back to reference Van Westreenen HL, Cobben DC, Jager PL, van Dullemen HM, Wesseling J, Elsinga PH, et al. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med. 2005;46:400–4.PubMed Van Westreenen HL, Cobben DC, Jager PL, van Dullemen HM, Wesseling J, Elsinga PH, et al. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med. 2005;46:400–4.PubMed
11.
go back to reference Hanna GG, Carson KJ, Lynch T, McAleese J, Cosgrove VP, Eakin RL, et al. 18F-fluorodeoxy glucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist? Int J Radiat Oncol Biol Phys. 2010;78:1040–51.CrossRefPubMed Hanna GG, Carson KJ, Lynch T, McAleese J, Cosgrove VP, Eakin RL, et al. 18F-fluorodeoxy glucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist? Int J Radiat Oncol Biol Phys. 2010;78:1040–51.CrossRefPubMed
12.
go back to reference Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;69:1282–9.CrossRefPubMed Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;69:1282–9.CrossRefPubMed
13.
go back to reference Grills IS, Yan D, Black QC, Wong CY, Martinez AA, Kestin LL. Clinical implications of defining the gross tumor volume with combination of CT and18FDG-positron emission tomography in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2007;67:709–19.CrossRefPubMed Grills IS, Yan D, Black QC, Wong CY, Martinez AA, Kestin LL. Clinical implications of defining the gross tumor volume with combination of CT and18FDG-positron emission tomography in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2007;67:709–19.CrossRefPubMed
14.
go back to reference Deniaud-Alexandre E, Touboul E, Lerouge D, et al. Impact of computed tomography and18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy innon-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2005;63:1432–41.CrossRefPubMed Deniaud-Alexandre E, Touboul E, Lerouge D, et al. Impact of computed tomography and18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy innon-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2005;63:1432–41.CrossRefPubMed
15.
go back to reference Geets X, Lee JA, Bol A, Lonneux M. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging. 2007;34:1427–38.CrossRefPubMed Geets X, Lee JA, Bol A, Lonneux M. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging. 2007;34:1427–38.CrossRefPubMed
16.
go back to reference Werner-Wasik M, Nelson AD, Choi W, Arai Y, Faulhaber PF, Kang P, et al. What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int J Radiat Oncol Biol Phys. 2012;82:1164–71.CrossRefPubMed Werner-Wasik M, Nelson AD, Choi W, Arai Y, Faulhaber PF, Kang P, et al. What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int J Radiat Oncol Biol Phys. 2012;82:1164–71.CrossRefPubMed
17.
go back to reference Fogh S, Karancke J, Nelson AS, McCue P, Axelrod R, Werner-Wasik W. Pathologic Correlation of PET-CT Based Auto-contouring for Radiation Planning in Lung Cancer. World Conference on Lung Cancer Meeting. 2009. Fogh S, Karancke J, Nelson AS, McCue P, Axelrod R, Werner-Wasik W. Pathologic Correlation of PET-CT Based Auto-contouring for Radiation Planning in Lung Cancer. World Conference on Lung Cancer Meeting. 2009.
18.
go back to reference Tsuji SY, Hwang A, Weinberg V, Yom SS, Quivey JM, Xia P. Dosimetric evaluation of automatic segmentation for adaptive IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2010;77:707–14.CrossRefPubMed Tsuji SY, Hwang A, Weinberg V, Yom SS, Quivey JM, Xia P. Dosimetric evaluation of automatic segmentation for adaptive IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2010;77:707–14.CrossRefPubMed
19.
go back to reference Wu Q, Mohan R, Morris M, Lauve A, Schmidt-Ullrich R. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol Biol Phys. 2003;56:573–85.CrossRefPubMed Wu Q, Mohan R, Morris M, Lauve A, Schmidt-Ullrich R. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol Biol Phys. 2003;56:573–85.CrossRefPubMed
20.
go back to reference Baltas D, Kolotas C, Geramani K, Mould RF, Ioannidis G, Kekchidi M, et al. A conformal index (COIN) to evaluate implant quality and dose specification in brachytherapy. Int J Radiat Oncol Biol Phys. 1998;40:515–24.CrossRefPubMed Baltas D, Kolotas C, Geramani K, Mould RF, Ioannidis G, Kekchidi M, et al. A conformal index (COIN) to evaluate implant quality and dose specification in brachytherapy. Int J Radiat Oncol Biol Phys. 1998;40:515–24.CrossRefPubMed
21.
go back to reference MacManus M, Nestle U, Rosenzweig KE, Carrio I, Messa C, Belohlavek O, et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006-2007. Radiother Oncol. 2009;91:85–94.CrossRefPubMed MacManus M, Nestle U, Rosenzweig KE, Carrio I, Messa C, Belohlavek O, et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006-2007. Radiother Oncol. 2009;91:85–94.CrossRefPubMed
22.
go back to reference Yu W, Fu XL, Zhang YJ, Xiang JQ, Shen L, Jiang GL, et al. GTV spatial conformity between different delineation methods by 18FDG PET/CT and pathology in esophageal cancer. Radiother Oncol. 2009;93:441–6.CrossRefPubMed Yu W, Fu XL, Zhang YJ, Xiang JQ, Shen L, Jiang GL, et al. GTV spatial conformity between different delineation methods by 18FDG PET/CT and pathology in esophageal cancer. Radiother Oncol. 2009;93:441–6.CrossRefPubMed
23.
go back to reference Zhong XJ, Yu JM, Zhang BJ, Mu D, Zhang W, Li D, et al. Using 18F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys. 2009;73:136–41.CrossRefPubMed Zhong XJ, Yu JM, Zhang BJ, Mu D, Zhang W, Li D, et al. Using 18F-fluorodeoxyglucose positron emission tomography to estimate the length of gross tumor in patients with squamous cell carcinoma of the esophagus. Int J Radiat Oncol Biol Phys. 2009;73:136–41.CrossRefPubMed
24.
go back to reference Shen G, Nelson D, Adler L. PET tumor segmentation: comparison of gradient-based algorithm to constant threshold algorithm. Med Phys. 2007;34:2395.CrossRef Shen G, Nelson D, Adler L. PET tumor segmentation: comparison of gradient-based algorithm to constant threshold algorithm. Med Phys. 2007;34:2395.CrossRef
25.
go back to reference Konski A, Doss M, Milestone B, Haluszka O, Hanlon A, Freedman G, et al. The integration of 18-fluorodeoxyglucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys. 2005;61:1123–8.CrossRefPubMed Konski A, Doss M, Milestone B, Haluszka O, Hanlon A, Freedman G, et al. The integration of 18-fluorodeoxyglucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys. 2005;61:1123–8.CrossRefPubMed
26.
go back to reference Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med. 2003;44:1426–31.PubMed Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med. 2003;44:1426–31.PubMed
27.
go back to reference Ma GW, Rong TH, Long H, Fu JH, Lin P, Huang ZF, et al. Shrinkage of resected specimens of esophageal carcinoma. Chin J Cancer. 2004;23:193–5. Ma GW, Rong TH, Long H, Fu JH, Lin P, Huang ZF, et al. Shrinkage of resected specimens of esophageal carcinoma. Chin J Cancer. 2004;23:193–5.
Metadata
Title
Gradient-based delineation of the primary GTV on FLT PET in squamous cell cancer of the thoracic esophagus and impact on radiotherapy planning
Authors
Guifang Zhang
Dali Han
Changsheng Ma
Jie Lu
Tao Sun
Tonghai Liu
Jian Zhu
Jingwei Zhou
Yong Yin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2015
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-014-0304-5

Other articles of this Issue 1/2015

Radiation Oncology 1/2015 Go to the issue