Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2018

Open Access 01-12-2018 | Research

Sagittal plane assessment of spino-pelvic complex in a Central European population with adolescent idiopathic scoliosis: a case control study

Authors: Máté Burkus, Ádám Tibor Schlégl, Ian O’Sullivan, István Márkus, Csaba Vermes, Miklós Tunyogi-Csapó

Published in: Scoliosis and Spinal Disorders | Issue 1/2018

Login to get access

Abstract

Background

Scoliosis is a complex three-dimensional deformity. While the frontal profile is well understood, increasing attention has turned to balance in the sagittal plane. The present study evaluated changes in sagittal spino-pelvic parameters in a large Hungarian population with adolescent idiopathic scoliosis.

Methods

EOS 2D/3D images of 458 scoliotic and 69 control cases were analyzed. After performing 3D reconstructions, the sagittal parameters were assessed as a whole and by curve type using independent sample t test and linear regression analysis.

Results

Patients with scoliosis had significantly decreased thoracic kyphosis (p < 0.001) with values T1–T12, 34.1 ± 17.1o vs. 43.4 ± 12.7o in control; T4–T12, 27.1 ± 18.8o vs. 37.7 ± 15.1o in control; and T5–T12, 24.9 ± 15.8o vs. 32.9 ± 15.0o in control. Changes in thoracic kyphosis correlated with magnitude of the Cobb angle (p < 0.001). No significant change was found in lumbar lordosis and the pelvic parameters. After substratification according to the Lenke classification and individually evaluating subgroups, results were similar with a significant decrease in only the thoracic kyphosis. A strong correlation was seen between sacral slope, pelvic incidence, and lumbar lordosis, and between pelvic version and thoracic kyphosis in control and scoliotic groups, whereas pelvic incidence was also seen to be correlated with thoracic kyphosis in scoliosis patients.

Conclusion

Adolescent idiopathic scoliosis patients showed a significant decrease in thoracic kyphosis, and the magnitude of the decrease was directly related to the Cobb angle. Changes in pelvic incidence were minimal but were also significantly correlated with thoracic changes. Changes were similar though not identical to those seen in other Caucasian studies and differed from those in other ethnicities. Scoliotic curves and their effect on pelvic balance must still be regarded as individual to each patient, necessitating individual assessment, although changes perhaps can be predicted by patient ethnicity.
Literature
1.
go back to reference Berthonnaud E, Dimnet J, Roussouly P, Labelle H. Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J Spinal Disord Tech. 2005;18:40–7.CrossRefPubMed Berthonnaud E, Dimnet J, Roussouly P, Labelle H. Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J Spinal Disord Tech. 2005;18:40–7.CrossRefPubMed
4.
go back to reference Boulay C, Tardieu C, Hecquet J, Benaim C, Mouilleseaux B, Marty C, et al. Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J. 2006;15:415–22.CrossRefPubMed Boulay C, Tardieu C, Hecquet J, Benaim C, Mouilleseaux B, Marty C, et al. Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J. 2006;15:415–22.CrossRefPubMed
5.
go back to reference Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P. Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am. 2005;87:260–7.CrossRefPubMed Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P. Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am. 2005;87:260–7.CrossRefPubMed
6.
go back to reference Roussouly P, Gollogly S, Berthonnaud E, Dimnet J. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine. 2005;30:346–53.CrossRefPubMed Roussouly P, Gollogly S, Berthonnaud E, Dimnet J. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine. 2005;30:346–53.CrossRefPubMed
7.
go back to reference Zhu Z, Xu L, Zhu F, Jiang L, Wang Z, Liu Z, et al. Sagittal alignment of spine and pelvis in asymptomatic adults: norms in Chinese populations. Spine. 2014;39:1–6.CrossRef Zhu Z, Xu L, Zhu F, Jiang L, Wang Z, Liu Z, et al. Sagittal alignment of spine and pelvis in asymptomatic adults: norms in Chinese populations. Spine. 2014;39:1–6.CrossRef
8.
go back to reference Kobayashi T, Atsuta Y, Matsuno T, Takeda N. A longitudinal study of congruent sagittal spinal alignment in an adult cohort. Spine. 2004;29:671–6.CrossRefPubMed Kobayashi T, Atsuta Y, Matsuno T, Takeda N. A longitudinal study of congruent sagittal spinal alignment in an adult cohort. Spine. 2004;29:671–6.CrossRefPubMed
9.
go back to reference Mac-Thiong JM, Labelle H, Charlebois M, Huot MP, de Guise JA. Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type. Spine. 2003;28:1404–9.PubMed Mac-Thiong JM, Labelle H, Charlebois M, Huot MP, de Guise JA. Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type. Spine. 2003;28:1404–9.PubMed
10.
go back to reference Upasani VV, Tis J, Bastrom T, Pawelek J, Marks M, Lonner B, et al. Analysis of sagittal alignment in thoracic and thoracolumbar curves in adolescent idiopathic scoliosis: how do these two curve types differ? Spine. 2007;32:1355–9.CrossRefPubMed Upasani VV, Tis J, Bastrom T, Pawelek J, Marks M, Lonner B, et al. Analysis of sagittal alignment in thoracic and thoracolumbar curves in adolescent idiopathic scoliosis: how do these two curve types differ? Spine. 2007;32:1355–9.CrossRefPubMed
11.
go back to reference de Jonge T, Dubousset JF, Illés T. Sagittal plane correction in idiopathic scoliosis. Spine. 2002;27:754–60.CrossRefPubMed de Jonge T, Dubousset JF, Illés T. Sagittal plane correction in idiopathic scoliosis. Spine. 2002;27:754–60.CrossRefPubMed
12.
go back to reference Legaye J, Duval-Beaupère G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7:99–103.CrossRefPubMedPubMedCentral Legaye J, Duval-Beaupère G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7:99–103.CrossRefPubMedPubMedCentral
13.
go back to reference Lonner BS, Auerbach JD, Sponseller P, Rajadhyaksha AD, Newton PO. Variations in pelvic and other sagittal spinal parameters as a function of race in adolescent idiopathic scoliosis. Spine. 2010;35:374–7.CrossRef Lonner BS, Auerbach JD, Sponseller P, Rajadhyaksha AD, Newton PO. Variations in pelvic and other sagittal spinal parameters as a function of race in adolescent idiopathic scoliosis. Spine. 2010;35:374–7.CrossRef
14.
go back to reference Barrey C, Jund J, Noseda O, Roussouly P. Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J. 2007;16:1459–67.CrossRefPubMedPubMedCentral Barrey C, Jund J, Noseda O, Roussouly P. Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J. 2007;16:1459–67.CrossRefPubMedPubMedCentral
15.
go back to reference Labelle H, Roussouly P, Berthonnaud E, Transfeldt E, O'Brien M, Chopin D, et al. Spondylolisthesis, pelvic incidence, and spinopelvic balance: a correlation study. Spine. 2004;29:2049–54.CrossRefPubMed Labelle H, Roussouly P, Berthonnaud E, Transfeldt E, O'Brien M, Chopin D, et al. Spondylolisthesis, pelvic incidence, and spinopelvic balance: a correlation study. Spine. 2004;29:2049–54.CrossRefPubMed
16.
go back to reference Mac-Thiong JM, Berthonnaud E, Dimar JR, Betz RR, Labelle H. Sagittal alignment of the spine and pelvis during growth. Spine. 2004;29:1642–7.CrossRefPubMed Mac-Thiong JM, Berthonnaud E, Dimar JR, Betz RR, Labelle H. Sagittal alignment of the spine and pelvis during growth. Spine. 2004;29:1642–7.CrossRefPubMed
18.
go back to reference Szuper K, Schlégl Á, Leidecker E, Vermes C, Somoskeöy S, Than P. Three-dimensional quantitative analysis of the proximal femur and the pelvis in children and adolescents using an upright biplanar slot-scanning X-ray system. Pediatr Radiol. 2015;45:411–21.CrossRefPubMed Szuper K, Schlégl Á, Leidecker E, Vermes C, Somoskeöy S, Than P. Three-dimensional quantitative analysis of the proximal femur and the pelvis in children and adolescents using an upright biplanar slot-scanning X-ray system. Pediatr Radiol. 2015;45:411–21.CrossRefPubMed
19.
go back to reference Vrtovec T, Janssen MM, Likar B, Castelein RM, Viergever MA, Pernuš F. A review of methods for evaluating the quantitative parameters of sagittal pelvic alignment. Spine J. 2012;12:433–46.CrossRefPubMed Vrtovec T, Janssen MM, Likar B, Castelein RM, Viergever MA, Pernuš F. A review of methods for evaluating the quantitative parameters of sagittal pelvic alignment. Spine J. 2012;12:433–46.CrossRefPubMed
21.
go back to reference Deschênes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron MC, et al. Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine. 2010;35:989–94.CrossRefPubMed Deschênes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron MC, et al. Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine. 2010;35:989–94.CrossRefPubMed
22.
go back to reference Schlégl Á, Szuper K, Somoskeöy S, Than P. Three dimensional radiological imaging of normal lower-limb alignment in children. Int Orthop. 2015;39:2073–80.CrossRefPubMed Schlégl Á, Szuper K, Somoskeöy S, Than P. Three dimensional radiological imaging of normal lower-limb alignment in children. Int Orthop. 2015;39:2073–80.CrossRefPubMed
23.
go back to reference Schlégl Á, O’Sullivan I, Varga P, Than P, Vermes C. Determination and correlation of lower limb anatomical parameters and bone age during skeletal growth (based on 1005 cases). J Orthop Res. 2017;35:1431–41.CrossRefPubMed Schlégl Á, O’Sullivan I, Varga P, Than P, Vermes C. Determination and correlation of lower limb anatomical parameters and bone age during skeletal growth (based on 1005 cases). J Orthop Res. 2017;35:1431–41.CrossRefPubMed
24.
go back to reference Winer BJ. Statistical principles in experimental design. 1st ed. New York: McGraw Hill; 1971. p. 283–93. Winer BJ. Statistical principles in experimental design. 1st ed. New York: McGraw Hill; 1971. p. 283–93.
25.
go back to reference Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001;83:1169–81.CrossRefPubMed Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001;83:1169–81.CrossRefPubMed
26.
go back to reference Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB, et al. Adolescent idiopathic scoliosis. Nat Rev Dis Primers. 2015;1:15030.CrossRefPubMed Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB, et al. Adolescent idiopathic scoliosis. Nat Rev Dis Primers. 2015;1:15030.CrossRefPubMed
27.
go back to reference Yong Q, Zhen L, Zezhang Z, Bangping Q, Feng Z, Tao W, et al. Comparison of sagittal spinopelvic alignment in Chinese adolescents with and without idiopathic thoracic scoliosis. Spine. 2012;37:714–20.CrossRef Yong Q, Zhen L, Zezhang Z, Bangping Q, Feng Z, Tao W, et al. Comparison of sagittal spinopelvic alignment in Chinese adolescents with and without idiopathic thoracic scoliosis. Spine. 2012;37:714–20.CrossRef
28.
go back to reference Mac-Thiong JM, Labelle H, Berthonnaud E, Betz RR, Roussouly P. Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J. 2007;16:227–34.CrossRefPubMed Mac-Thiong JM, Labelle H, Berthonnaud E, Betz RR, Roussouly P. Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J. 2007;16:227–34.CrossRefPubMed
29.
go back to reference Hu P, Yu M, Liu X, Zhu B, Liu Z. Analysis of the relationship between coronal and sagittal deformities in adolescent idiopathic scoliosis. Eur Spine J. 2016;25:409–16.CrossRefPubMed Hu P, Yu M, Liu X, Zhu B, Liu Z. Analysis of the relationship between coronal and sagittal deformities in adolescent idiopathic scoliosis. Eur Spine J. 2016;25:409–16.CrossRefPubMed
30.
go back to reference Mac-Thiong JM, Roussouly P, Berthonnaud E, Guigui P. Sagittal parameters of global spinal balance: normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine. 2010;35:1193–8.CrossRef Mac-Thiong JM, Roussouly P, Berthonnaud E, Guigui P. Sagittal parameters of global spinal balance: normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine. 2010;35:1193–8.CrossRef
31.
go back to reference Weinberg DS, Morris WZ, Gebhart JJ, Liu RW. Pelvic incidence: an anatomic investigation of 880 cadaveric specimens. Eur Spine J 2016;25:3589–3595. Weinberg DS, Morris WZ, Gebhart JJ, Liu RW. Pelvic incidence: an anatomic investigation of 880 cadaveric specimens. Eur Spine J 2016;25:3589–3595.
32.
go back to reference Zárate-Kalfópulos B, Romero-Vargas S, Otero-Cámara E, Correa VC, Reyes-Sánchez A. Differences in pelvic parameters among Mexican, Caucasian, and Asian populations. J Neurosurg Spine. 2012;16:516–9.CrossRefPubMed Zárate-Kalfópulos B, Romero-Vargas S, Otero-Cámara E, Correa VC, Reyes-Sánchez A. Differences in pelvic parameters among Mexican, Caucasian, and Asian populations. J Neurosurg Spine. 2012;16:516–9.CrossRefPubMed
33.
go back to reference Bakouny Z, Assi A, Yared F, Bizdikian AJ, Otayek J, Nacouzi R, et al. Normative spino-pelvic sagittal alignment of Lebanese asymptomatic adults: comparisons with different ethnicities. Orthop Traumatol Surg Res. 2017. Bakouny Z, Assi A, Yared F, Bizdikian AJ, Otayek J, Nacouzi R, et al. Normative spino-pelvic sagittal alignment of Lebanese asymptomatic adults: comparisons with different ethnicities. Orthop Traumatol Surg Res. 2017.
Metadata
Title
Sagittal plane assessment of spino-pelvic complex in a Central European population with adolescent idiopathic scoliosis: a case control study
Authors
Máté Burkus
Ádám Tibor Schlégl
Ian O’Sullivan
István Márkus
Csaba Vermes
Miklós Tunyogi-Csapó
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2018
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/s13013-018-0156-0

Other articles of this Issue 1/2018

Scoliosis and Spinal Disorders 1/2018 Go to the issue