Skip to main content
Top
Published in: Scoliosis and Spinal Disorders 1/2018

Open Access 01-12-2018 | Research

Evaluation of functional and structural leg length discrepancy in patients with adolescent idiopathic scoliosis using the EOS imaging system: a prospective comparative study

Authors: Tatsuhiro Sekiya, Yoichi Aota, Katsutaka Yamada, Kanichiro Kaneko, Manabu Ide, Tomoyuki Saito

Published in: Scoliosis and Spinal Disorders | Issue 1/2018

Login to get access

Abstract

Background

To our knowledge, no studies have reported the exact structural leg length discrepancies (LLDs) in patients with adolescent idiopathic scoliosis (AIS). Therefore, this study aimed to evaluate the differences between functional and structural LLDs and to examine the correlations between LLDs and spinopelvic parameters in patients with AIS using an EOS imaging system, which permits the three-dimensional reconstruction of spinal and lower-limb bony structures.

Methods

Eighty-two consecutive patients with AIS underwent whole-body EOS radiography in a standing position between August 2014 and March 2016. Functional LLD, lumbar Cobb angle, thoracic curve Cobb angle, coronal balance, and pelvic obliquity were measured using two-dimensional EOS radiography. Structural LLDs were measured using three-dimensional EOS-reconstructed images. The comparison between LLDs was assessed using paired t test. Pearson’s correlation coefficient (r) was used to determine potential correlations between the LLDs and spinopelvic alignment parameters.

Results

Functional LLDs were significantly larger than structural LLDs (5.6 ± 5.0 vs. 0.2 ± 3.6 mm, respectively; p < 0.001). Both functional and structural LLDs were significantly correlated with pelvic obliquity (r = 0.69 and r = 0.51, respectively; p < 0.001 for both). Functional LLD, but not structural LLD, was correlated with lumbar Cobb angle (r = 0.44, p < 0.001; r = 0.17, p = 0.12, respectively). In addition, functional and structural LLDs were not correlated with thoracic Cobb angle (r = 0.09 and r = − 0.05, respectively; p ≥ 0.68 for both).

Conclusions

Although patients with AIS often have functional LLDs, structural LLDs tend to be smaller. The correlation between functional LLDs and the lumbar Cobb angle indicates that functional LLDs compensate for the lumbar curve. Thus, the difference between functional and structural LLDs indicates a compensatory mechanism involving extension and flexion of the lower limbs.
Literature
1.
go back to reference Perdriolle R, Vidal J. Morphology of scoliosis: three-dimensional evolution. Orthopedics. 1987;10:909–5.PubMed Perdriolle R, Vidal J. Morphology of scoliosis: three-dimensional evolution. Orthopedics. 1987;10:909–5.PubMed
2.
go back to reference Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W. 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys. 2009;31:681–7.CrossRefPubMed Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W. 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys. 2009;31:681–7.CrossRefPubMed
3.
go back to reference Raso VJ, Lou E, Hill DL, Mahood J, Moreau MJ, Durdle NG. Trunk distortion in adolescent idiopathic scoliosis. J Pediatr Orthop. 1998;18:222–6.PubMed Raso VJ, Lou E, Hill DL, Mahood J, Moreau MJ, Durdle NG. Trunk distortion in adolescent idiopathic scoliosis. J Pediatr Orthop. 1998;18:222–6.PubMed
5.
go back to reference Sabharwal S, Zhao C, McKeon JJ, McClemens E, Edgar M, Behrens F. Computed radiographic measurement of limb-length discrepancy. Full-length standing anteroposterior radiograph compared with scanogram. J Bone Joint Surg Am. 2006;10:2243–51. Sabharwal S, Zhao C, McKeon JJ, McClemens E, Edgar M, Behrens F. Computed radiographic measurement of limb-length discrepancy. Full-length standing anteroposterior radiograph compared with scanogram. J Bone Joint Surg Am. 2006;10:2243–51.
6.
go back to reference Terry MA, Winell JJ, Green DW, Schneider R, Peterson M, Marx RG, et al. Measurement variance in limb length discrepancy: clinical and radiographic assessment of interobserver and intraobserver variability. J Pediatr Orthop. 2005;25:197–201.CrossRefPubMed Terry MA, Winell JJ, Green DW, Schneider R, Peterson M, Marx RG, et al. Measurement variance in limb length discrepancy: clinical and radiographic assessment of interobserver and intraobserver variability. J Pediatr Orthop. 2005;25:197–201.CrossRefPubMed
7.
go back to reference Dubousset J, Charpak G, Dorion I, Skalli W, Lavaste F, Deguise J, et al. A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med. 2005;189:287–97. discussion 297-300. [Article in French]PubMed Dubousset J, Charpak G, Dorion I, Skalli W, Lavaste F, Deguise J, et al. A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med. 2005;189:287–97. discussion 297-300. [Article in French]PubMed
8.
go back to reference Gheno R, Nectoux E, Herbaux B, Baldisserotto M, Glock L, Cotten A, et al. Three-dimensional measurements of the lower extremity in children and adolescents using a low-dose biplanar X-ray device. Eur Radiol. 2012;22:765–71.CrossRefPubMed Gheno R, Nectoux E, Herbaux B, Baldisserotto M, Glock L, Cotten A, et al. Three-dimensional measurements of the lower extremity in children and adolescents using a low-dose biplanar X-ray device. Eur Radiol. 2012;22:765–71.CrossRefPubMed
9.
go back to reference O’Brien MF, Kuklo TR, Blanke KM, Lenke LG. The spinal deformity study group radiographic measurement manual. Memphis, TN: Medtronic Sofamor Danek USA, Inc.; 2004. O’Brien MF, Kuklo TR, Blanke KM, Lenke LG. The spinal deformity study group radiographic measurement manual. Memphis, TN: Medtronic Sofamor Danek USA, Inc.; 2004.
10.
go back to reference Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001;83-A:1169–81.CrossRefPubMed Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, et al. Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am. 2001;83-A:1169–81.CrossRefPubMed
11.
go back to reference Chaibi Y, Cresson T, Aubert B, Hausselle J, Neyret P, Hauger O, et al. Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin. 2012;15:457–66.CrossRefPubMed Chaibi Y, Cresson T, Aubert B, Hausselle J, Neyret P, Hauger O, et al. Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin. 2012;15:457–66.CrossRefPubMed
12.
go back to reference Guenoun B, Zadegan F, Aim F, Hannouche D, Nizard R. Reliability of a new method for lower-extremity measurements based on stereoradiographic three-dimensional reconstruction. Orthop Traumatol Surg Res. 2012;98:506–13.CrossRefPubMed Guenoun B, Zadegan F, Aim F, Hannouche D, Nizard R. Reliability of a new method for lower-extremity measurements based on stereoradiographic three-dimensional reconstruction. Orthop Traumatol Surg Res. 2012;98:506–13.CrossRefPubMed
13.
go back to reference Escott BG, Ravi B, Weathermon AC, Acharya J, Gordon CL, Babyn PS, et al. EOS low-dose radiography: a reliable and accurate upright assessment of lower-limb lengths. J Bone Joint Surg Am. 2012;95:e1831–7. Escott BG, Ravi B, Weathermon AC, Acharya J, Gordon CL, Babyn PS, et al. EOS low-dose radiography: a reliable and accurate upright assessment of lower-limb lengths. J Bone Joint Surg Am. 2012;95:e1831–7.
14.
go back to reference Garner MR, Dow M, Bixby E, Mintz DN, Widmann RF, Dodwell ER. Evaluating length: the use of low-dose biplanar radiography (EOS) and tantalum bead implantation. J Pediatr Orthop. 2016;36:e6–9.CrossRefPubMed Garner MR, Dow M, Bixby E, Mintz DN, Widmann RF, Dodwell ER. Evaluating length: the use of low-dose biplanar radiography (EOS) and tantalum bead implantation. J Pediatr Orthop. 2016;36:e6–9.CrossRefPubMed
15.
go back to reference Boulay C, Tardieu C, Bénaim C, Hecquet J, Marty C, Prat-Pradal D, et al. Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives. J Anat. 2006;208:21–3.CrossRefPubMedPubMedCentral Boulay C, Tardieu C, Bénaim C, Hecquet J, Marty C, Prat-Pradal D, et al. Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives. J Anat. 2006;208:21–3.CrossRefPubMedPubMedCentral
16.
go back to reference Qiu XS, Zhang JJ, Yang SW, Lv F, Wang ZW, Chiew J, et al. Anatomical study of the pelvis in patients with adolescent idiopathic scoliosis. J Anat. 2012;220:173–8.CrossRefPubMed Qiu XS, Zhang JJ, Yang SW, Lv F, Wang ZW, Chiew J, et al. Anatomical study of the pelvis in patients with adolescent idiopathic scoliosis. J Anat. 2012;220:173–8.CrossRefPubMed
17.
go back to reference Jones KB, Sponseller PD, Hobbs W, Pyeritz RE. Leg-length discrepancy and scoliosis in Marfan syndrome. J Pediatr Orthop. 2002;22:807–12.PubMed Jones KB, Sponseller PD, Hobbs W, Pyeritz RE. Leg-length discrepancy and scoliosis in Marfan syndrome. J Pediatr Orthop. 2002;22:807–12.PubMed
18.
go back to reference Papaioannou T, Stokes I, Kenwright J. Scoliosis associated with limb-length inequality. J Bone Joint Surg Am. 1982;64:59–62.CrossRefPubMed Papaioannou T, Stokes I, Kenwright J. Scoliosis associated with limb-length inequality. J Bone Joint Surg Am. 1982;64:59–62.CrossRefPubMed
20.
go back to reference Pasha S, Aubin CE, Sangole AP, Labelle H, Parent S, Mac-Thiong JM. Three-dimensional spinopelvic relative alignment in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2014;39:564–70.CrossRef Pasha S, Aubin CE, Sangole AP, Labelle H, Parent S, Mac-Thiong JM. Three-dimensional spinopelvic relative alignment in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2014;39:564–70.CrossRef
Metadata
Title
Evaluation of functional and structural leg length discrepancy in patients with adolescent idiopathic scoliosis using the EOS imaging system: a prospective comparative study
Authors
Tatsuhiro Sekiya
Yoichi Aota
Katsutaka Yamada
Kanichiro Kaneko
Manabu Ide
Tomoyuki Saito
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Scoliosis and Spinal Disorders / Issue 1/2018
Electronic ISSN: 2397-1789
DOI
https://doi.org/10.1186/s13013-018-0152-4

Other articles of this Issue 1/2018

Scoliosis and Spinal Disorders 1/2018 Go to the issue