Skip to main content
Top
Published in: Implementation Science 1/2017

Open Access 01-12-2017 | Debate

Architectural frameworks: defining the structures for implementing learning health systems

Authors: Lysanne Lessard, Wojtek Michalowski, Michael Fung-Kee-Fung, Lori Jones, Agnes Grudniewicz

Published in: Implementation Science | Issue 1/2017

Login to get access

Abstract

Background

The vision of transforming health systems into learning health systems (LHSs) that rapidly and continuously transform knowledge into improved health outcomes at lower cost is generating increased interest in government agencies, health organizations, and health research communities. While existing initiatives demonstrate that different approaches can succeed in making the LHS vision a reality, they are too varied in their goals, focus, and scale to be reproduced without undue effort. Indeed, the structures necessary to effectively design and implement LHSs on a larger scale are lacking. In this paper, we propose the use of architectural frameworks to develop LHSs that adhere to a recognized vision while being adapted to their specific organizational context. Architectural frameworks are high-level descriptions of an organization as a system; they capture the structure of its main components at varied levels, the interrelationships among these components, and the principles that guide their evolution. Because these frameworks support the analysis of LHSs and allow their outcomes to be simulated, they act as pre-implementation decision-support tools that identify potential barriers and enablers of system development. They thus increase the chances of successful LHS deployment.

Discussion

We present an architectural framework for LHSs that incorporates five dimensions—goals, scientific, social, technical, and ethical—commonly found in the LHS literature. The proposed architectural framework is comprised of six decision layers that model these dimensions. The performance layer models goals, the scientific layer models the scientific dimension, the organizational layer models the social dimension, the data layer and information technology layer model the technical dimension, and the ethics and security layer models the ethical dimension. We describe the types of decisions that must be made within each layer and identify methods to support decision-making.

Conclusion

In this paper, we outline a high-level architectural framework grounded in conceptual and empirical LHS literature. Applying this architectural framework can guide the development and implementation of new LHSs and the evolution of existing ones, as it allows for clear and critical understanding of the types of decisions that underlie LHS operations. Further research is required to assess and refine its generalizability and methods.
Literature
2.
go back to reference Friedman C, Rigby M. Conceptualising and creating a global learning health system. Int J Med Inform. 2012;82(4):e63–71.CrossRefPubMed Friedman C, Rigby M. Conceptualising and creating a global learning health system. Int J Med Inform. 2012;82(4):e63–71.CrossRefPubMed
3.
go back to reference Friedman C, Rubin J, Brown J, Buntin M, Corn M, Etheredge L, et al. Toward a science of learning systems: a research agenda for the high-functioning Learning Health System. J Am Med Inform A. 2015;22(1):43–50. Friedman C, Rubin J, Brown J, Buntin M, Corn M, Etheredge L, et al. Toward a science of learning systems: a research agenda for the high-functioning Learning Health System. J Am Med Inform A. 2015;22(1):43–50.
4.
go back to reference Delaney BC, Curcin V, Andreasson A, Arvanitis TN, Bastiaens H, Corrigan D, et al. Translational medicine and patient safety in Europe: TRANSFoRm—architecture for the learning health system in Europe. Biomed Res Int. 2015;961526. doi: 10.1155/2015/961526. Delaney BC, Curcin V, Andreasson A, Arvanitis TN, Bastiaens H, Corrigan D, et al. Translational medicine and patient safety in Europe: TRANSFoRm—architecture for the learning health system in Europe. Biomed Res Int. 2015;961526. doi: 10.​1155/​2015/​961526.
5.
go back to reference Lambin P, Zindler J, Vanneste B, van de Voorde L, Jacobs M, Eekers D, et al. Modern clinical research: how rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine. Acta Oncol. 2015;54(9):1289–300.CrossRefPubMed Lambin P, Zindler J, Vanneste B, van de Voorde L, Jacobs M, Eekers D, et al. Modern clinical research: how rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine. Acta Oncol. 2015;54(9):1289–300.CrossRefPubMed
6.
go back to reference Abernethy AP. Demonstrating the learning health system through practical use cases. Pediatrics. 2014;134(1):171–2.CrossRefPubMed Abernethy AP. Demonstrating the learning health system through practical use cases. Pediatrics. 2014;134(1):171–2.CrossRefPubMed
7.
go back to reference Friedman CP, Wong AK, Blumenthal D. Achieving a nationwide learning health system. Sci Trans Med. 2010;2(57):1–3.CrossRef Friedman CP, Wong AK, Blumenthal D. Achieving a nationwide learning health system. Sci Trans Med. 2010;2(57):1–3.CrossRef
8.
go back to reference Abernethy AP. “Learning health care” for patients and populations. Med J Aust. 2011;194(11):564.PubMed Abernethy AP. “Learning health care” for patients and populations. Med J Aust. 2011;194(11):564.PubMed
10.
go back to reference Etheredge L. Rapid learning: a breakthrough agenda. Health Aff. 2014;33(7):1155–62.CrossRef Etheredge L. Rapid learning: a breakthrough agenda. Health Aff. 2014;33(7):1155–62.CrossRef
11.
go back to reference Flynn AJ, Patton J, Platt J. Tell it like it seems: challenges identifying potential requirements of a learning health system. HICSS. 2015;2015:3158–67. Flynn AJ, Patton J, Platt J. Tell it like it seems: challenges identifying potential requirements of a learning health system. HICSS. 2015;2015:3158–67.
12.
go back to reference Grossman C, Goolsby WA, Olsen L, McGinnis JM, editors. Engineering a learning healthcare system: a look at the future. Washington, DC: National Academies Press; 2011. Grossman C, Goolsby WA, Olsen L, McGinnis JM, editors. Engineering a learning healthcare system: a look at the future. Washington, DC: National Academies Press; 2011.
13.
go back to reference Jaaron AAM, Backhouse CJ. Operationalising “double-loop” learning in service organisations: a systems approach for creating knowledge. Syst Pract Action Res. 2016. doi:10.1007/s11213-016-9397-0. Jaaron AAM, Backhouse CJ. Operationalising “double-loop” learning in service organisations: a systems approach for creating knowledge. Syst Pract Action Res. 2016. doi:10.​1007/​s11213-016-9397-0.
14.
go back to reference Ratnapalan S, Uleryk E. Organizational learning in health care organizations. Systems. 2014;2:24–33.CrossRef Ratnapalan S, Uleryk E. Organizational learning in health care organizations. Systems. 2014;2:24–33.CrossRef
16.
go back to reference Elson SL, Hiatt RA, Anton-Culver H, Howell LP, Naeim A, Parker BA, et al. The Athena Breast Health Network: developing a rapid learning system in breast cancer prevention, screening, treatment, and care. Breast Cancer Res Treat. 2013;140(2):417–25.CrossRefPubMed Elson SL, Hiatt RA, Anton-Culver H, Howell LP, Naeim A, Parker BA, et al. The Athena Breast Health Network: developing a rapid learning system in breast cancer prevention, screening, treatment, and care. Breast Cancer Res Treat. 2013;140(2):417–25.CrossRefPubMed
17.
go back to reference Schilsky RL, Michels DL, Kearbey AH, Yu PP, Hudis CA. Building a rapid learning health care system for oncology: the regulatory framework of CancerLinQ. J Clin Oncol. 2014;32(22):2373–9.CrossRefPubMed Schilsky RL, Michels DL, Kearbey AH, Yu PP, Hudis CA. Building a rapid learning health care system for oncology: the regulatory framework of CancerLinQ. J Clin Oncol. 2014;32(22):2373–9.CrossRefPubMed
18.
go back to reference Forrest CB, Crandall WV, Bailey LC, Zhang P, Joffe MM, Colletti RB, et al. Effectiveness of anti-TNFa for Crohn Disease: research in a pediatric learning health system. Pediatrics. 2014;134(1):37–44. Forrest CB, Crandall WV, Bailey LC, Zhang P, Joffe MM, Colletti RB, et al. Effectiveness of anti-TNFa for Crohn Disease: research in a pediatric learning health system. Pediatrics. 2014;134(1):37–44.
19.
go back to reference Bhandari R, Feinstein AB, Huestis S, Krane E, Dunn A, Cohen L, et al. Pediatric-Collaborative Health Outcomes Information Registry (Peds-CHOIR): a learning health system to guide pediatric pain research and treatment. Pain. 2016;157(9):2033–44.CrossRefPubMed Bhandari R, Feinstein AB, Huestis S, Krane E, Dunn A, Cohen L, et al. Pediatric-Collaborative Health Outcomes Information Registry (Peds-CHOIR): a learning health system to guide pediatric pain research and treatment. Pain. 2016;157(9):2033–44.CrossRefPubMed
20.
go back to reference Forrest C, Margolis P, Bailey L, Marsolo K, Del Beccaro M, Finkelstein J, et al. PEDSnet: a national pediatric learning health system. J Am Med Inform Assoc. 2014;21(4):602–6.CrossRefPubMedPubMedCentral Forrest C, Margolis P, Bailey L, Marsolo K, Del Beccaro M, Finkelstein J, et al. PEDSnet: a national pediatric learning health system. J Am Med Inform Assoc. 2014;21(4):602–6.CrossRefPubMedPubMedCentral
21.
go back to reference Amin W, Tsui F, Borromeo C, Chuang CH, Espino JU, Ford D, et al. PaTH: towards a learning health system in the Mid-Atlantic region. J Am Med Inform Assoc. 2014;21(4):633–6.CrossRefPubMedPubMedCentral Amin W, Tsui F, Borromeo C, Chuang CH, Espino JU, Ford D, et al. PaTH: towards a learning health system in the Mid-Atlantic region. J Am Med Inform Assoc. 2014;21(4):633–6.CrossRefPubMedPubMedCentral
22.
go back to reference Fung-Kee-Fung M, Maziak DE, Pantarotto JR, Smylie J, Taylor L, Timlin T, et al. Lung cancer diagnosis transformation: aligning the people, processes, and technology sides of the learning system. J Clin Oncol. 2016;34(Suppl 7S):50.CrossRef Fung-Kee-Fung M, Maziak DE, Pantarotto JR, Smylie J, Taylor L, Timlin T, et al. Lung cancer diagnosis transformation: aligning the people, processes, and technology sides of the learning system. J Clin Oncol. 2016;34(Suppl 7S):50.CrossRef
24.
go back to reference Estrin D, Sim I. Open mHealth architecture: an engine for health care innovation. Science. 2010;330:759–60.CrossRefPubMed Estrin D, Sim I. Open mHealth architecture: an engine for health care innovation. Science. 2010;330:759–60.CrossRefPubMed
25.
go back to reference Sowa JF, Zachman JA. Extending and formalizing the framework for information systems architecture. IBM Syst J. 1992;31(3):590–616.CrossRef Sowa JF, Zachman JA. Extending and formalizing the framework for information systems architecture. IBM Syst J. 1992;31(3):590–616.CrossRef
27.
go back to reference Foy R, Sales A, Wensing M, Aarons GA, Flottorp S, Kent B, et al. Implementation science: a reappraisal of our journal mission and scope. Implement Sci. 2015;10(51). doi: 10.1186/s13012-015-0240-2. Foy R, Sales A, Wensing M, Aarons GA, Flottorp S, Kent B, et al. Implementation science: a reappraisal of our journal mission and scope. Implement Sci. 2015;10(51). doi: 10.​1186/​s13012-015-0240-2.
28.
go back to reference Jonkers H, Lankhorst MM, ter Doest HWL, Arbab F, Bosma H, Wieringa RJ. Enterprise architecture: management tool and blueprint for the organisation. Inf Syst Front. 2006;8(2):63–6.CrossRef Jonkers H, Lankhorst MM, ter Doest HWL, Arbab F, Bosma H, Wieringa RJ. Enterprise architecture: management tool and blueprint for the organisation. Inf Syst Front. 2006;8(2):63–6.CrossRef
29.
go back to reference Chen D, Doumeingts G, Vernadat F. Architectures for enterprise integration and interoperability: past, present and future. Comput Ind. 2008;59(7):647–59.CrossRef Chen D, Doumeingts G, Vernadat F. Architectures for enterprise integration and interoperability: past, present and future. Comput Ind. 2008;59(7):647–59.CrossRef
32.
go back to reference Saha P. A synergistic assessment of the Federal Enterprise Architecture Framework against GERAM (ISO15704:2000). In: Saha P, editor. Handbook of Enterprise Systems Architecture in Practice. Hershey: IGI Global; 2007. p. 1–17.CrossRef Saha P. A synergistic assessment of the Federal Enterprise Architecture Framework against GERAM (ISO15704:2000). In: Saha P, editor. Handbook of Enterprise Systems Architecture in Practice. Hershey: IGI Global; 2007. p. 1–17.CrossRef
34.
go back to reference Olsen L, Aisner D, McGinnis JM, editors. The learning healthcare system: workshop summary (IOM roundtable on evidence-based medicine). Washington, D.C.: The National Academies Press; 2007. Olsen L, Aisner D, McGinnis JM, editors. The learning healthcare system: workshop summary (IOM roundtable on evidence-based medicine). Washington, D.C.: The National Academies Press; 2007.
35.
go back to reference Grossman C, Powers B, McGinnis JM, editors. Digital infrastructure for the learning health system: the foundation for continuous improvement in health and health care; workshop series summary. Washington, D.C.: The National Academies Press; 2011. Grossman C, Powers B, McGinnis JM, editors. Digital infrastructure for the learning health system: the foundation for continuous improvement in health and health care; workshop series summary. Washington, D.C.: The National Academies Press; 2011.
36.
go back to reference Mandl KD, Kohane IS, McFadden D, Weber GM, Natter M, Mandel J, et al. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): architecture. J Am Med Inform Assoc. 2014;21(4):615–20.CrossRefPubMedPubMedCentral Mandl KD, Kohane IS, McFadden D, Weber GM, Natter M, Mandel J, et al. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): architecture. J Am Med Inform Assoc. 2014;21(4):615–20.CrossRefPubMedPubMedCentral
37.
go back to reference Margolis PA, Peterson LE, Seid M. Collaborative Chronic Care Networks (C3Ns) to transform chronic illness care. Pediatrics. 2013;131 Suppl 4:S219–23.CrossRefPubMedPubMedCentral Margolis PA, Peterson LE, Seid M. Collaborative Chronic Care Networks (C3Ns) to transform chronic illness care. Pediatrics. 2013;131 Suppl 4:S219–23.CrossRefPubMedPubMedCentral
38.
go back to reference Forrest CB, Margolis PA, Seid M, Colletti RB. PEDSnet: how a prototype pediatric learning health system is being expanded into a national network. Health Aff. 2014;33(7):1171–7.CrossRef Forrest CB, Margolis PA, Seid M, Colletti RB. PEDSnet: how a prototype pediatric learning health system is being expanded into a national network. Health Aff. 2014;33(7):1171–7.CrossRef
39.
go back to reference Faden RR, Kass NE, Goodman SN, Pronovost P, Tunis S, Beauchamp TL. An ethics framework for a learning health care system: a departure from traditional research ethics and clinical ethics. Ethical Oversight of Learning Health Care Systems, Hastings Center Report Special Report. 2013;43(1):S16-S28. Faden RR, Kass NE, Goodman SN, Pronovost P, Tunis S, Beauchamp TL. An ethics framework for a learning health care system: a departure from traditional research ethics and clinical ethics. Ethical Oversight of Learning Health Care Systems, Hastings Center Report Special Report. 2013;43(1):S16-S28.
40.
go back to reference Bernstein JA, Friedman CP, Jacobson P, Rubin JC. Ensuring public health’s future in a national-scale learning health system. Am J Prev Med. 2015;48(4):480–7.CrossRefPubMed Bernstein JA, Friedman CP, Jacobson P, Rubin JC. Ensuring public health’s future in a national-scale learning health system. Am J Prev Med. 2015;48(4):480–7.CrossRefPubMed
41.
go back to reference Olsen L, Saunders R, McGinnis JM, editors. Patients charting the course: citizen engagement and the learning health system; workshop summary. Washington, D.C.: National Academies Press; 2011. Olsen L, Saunders R, McGinnis JM, editors. Patients charting the course: citizen engagement and the learning health system; workshop summary. Washington, D.C.: National Academies Press; 2011.
42.
go back to reference Lowes L, Noritz G, Newmeyer A, Embi P, Yin H, Smoyer W, et al. ‘Learn from every patient’: implementation and early results of a learning health system. Dev Med Child Neurol. 2016; doi:10.1111/dmcn.13227. Lowes L, Noritz G, Newmeyer A, Embi P, Yin H, Smoyer W, et al. ‘Learn from every patient’: implementation and early results of a learning health system. Dev Med Child Neurol. 2016; doi:10.​1111/​dmcn.​13227.
43.
go back to reference Grannis S. Innovative approaches to information assymetry. In: Grossman C, Powers B, McGinnis JM, editors. Digital infrastructure for the learning health system: The foundation for continuous improvement in health and health care; workshop series summary. Washington, DC: The National Academies Press; 2011. p. 119–24. Grannis S. Innovative approaches to information assymetry. In: Grossman C, Powers B, McGinnis JM, editors. Digital infrastructure for the learning health system: The foundation for continuous improvement in health and health care; workshop series summary. Washington, DC: The National Academies Press; 2011. p. 119–24.
44.
go back to reference Ainsworth J, Buchan I. Combining health data uses to ignite health system learning. Methods Inf Med. 2015;54:479–788.CrossRefPubMed Ainsworth J, Buchan I. Combining health data uses to ignite health system learning. Methods Inf Med. 2015;54:479–788.CrossRefPubMed
45.
go back to reference Maro JC, Platt R, Holmes JH, Strom BL, Hennessy S, Lazarus R, et al. Design of a national distributed health data network. Ann Intern Med. 2009;151:341–4.CrossRefPubMed Maro JC, Platt R, Holmes JH, Strom BL, Hennessy S, Lazarus R, et al. Design of a national distributed health data network. Ann Intern Med. 2009;151:341–4.CrossRefPubMed
46.
go back to reference Wallace P, Shah N, Dennen T, Bleicher PA, Crown WH. Optum Labs: building a novel node in the learning health care system. Health Aff. 2014;33(7):1187–94.CrossRef Wallace P, Shah N, Dennen T, Bleicher PA, Crown WH. Optum Labs: building a novel node in the learning health care system. Health Aff. 2014;33(7):1187–94.CrossRef
47.
go back to reference Fung-Kee-Fung M, Boushey RP, Morash C, Watters J, Morash R, Mackey M, et al. Use of a community of practice (CoP) platform as a model in regional quality improvements in cancer surgery: the Ottawa model. J Clin Oncol. 2012;30 Suppl 34:68.CrossRef Fung-Kee-Fung M, Boushey RP, Morash C, Watters J, Morash R, Mackey M, et al. Use of a community of practice (CoP) platform as a model in regional quality improvements in cancer surgery: the Ottawa model. J Clin Oncol. 2012;30 Suppl 34:68.CrossRef
48.
go back to reference Kaplan RS, Norton DP. Using the balanced scorecard as a strategic management system. In: Kaplan RS, Norton DP, editors. Focus your organisation on strategy with the balanced scorecard. Cambridge MA: Harvard Business School Publishing; 2005. p. 35–48. Kaplan RS, Norton DP. Using the balanced scorecard as a strategic management system. In: Kaplan RS, Norton DP, editors. Focus your organisation on strategy with the balanced scorecard. Cambridge MA: Harvard Business School Publishing; 2005. p. 35–48.
51.
go back to reference Di Ciccio C, Marrella A, Russo A. Knowledge-intensive processes: characteristics, requirements and analysis of contemporary approaches. J Data Semant. 2014;4(1):29–57.CrossRef Di Ciccio C, Marrella A, Russo A. Knowledge-intensive processes: characteristics, requirements and analysis of contemporary approaches. J Data Semant. 2014;4(1):29–57.CrossRef
53.
go back to reference Bennett C. Utilizing RxNorm to support practical computing applications: capturing medication history in live electronic health records. J Biomed Inform. 2012;45:634–41.CrossRefPubMed Bennett C. Utilizing RxNorm to support practical computing applications: capturing medication history in live electronic health records. J Biomed Inform. 2012;45:634–41.CrossRefPubMed
54.
go back to reference Reiner D, Press G, Lenaghan M, Barta D, Urmston R, editors. Information lifecycle management: the EMC perspective. 20th International Conference on Data Engineering; 2004; doi: 10.1109/ICDE.2004.1320052 Reiner D, Press G, Lenaghan M, Barta D, Urmston R, editors. Information lifecycle management: the EMC perspective. 20th International Conference on Data Engineering; 2004; doi: 10.​1109/​ICDE.​2004.​1320052
56.
go back to reference Landis-Lewis Z, Brehaut JC, Hochheiser H, Douglas GP, Jacobson RS. Computer-supported feedback message tailoring: theory-informed adaptation of clinical audit and feedback for learning and behavior change. Implement Sci. 2015;10(12); doi: 10.1186/s13012-014-0203-z. Landis-Lewis Z, Brehaut JC, Hochheiser H, Douglas GP, Jacobson RS. Computer-supported feedback message tailoring: theory-informed adaptation of clinical audit and feedback for learning and behavior change. Implement Sci. 2015;10(12); doi: 10.​1186/​s13012-014-0203-z.
60.
go back to reference Devine E, Alfonso-Cristancho R, Devlin A, Edwards T, Farrokhi E, Kessler L, et al. A model for incorporating patient and stakeholder voices in a learning health care network: Washington State’s Comparative Effectiveness Research Translation Network. J Clin Epidemiol. 2013;66 Suppl 1:S122–9.CrossRefPubMedPubMedCentral Devine E, Alfonso-Cristancho R, Devlin A, Edwards T, Farrokhi E, Kessler L, et al. A model for incorporating patient and stakeholder voices in a learning health care network: Washington State’s Comparative Effectiveness Research Translation Network. J Clin Epidemiol. 2013;66 Suppl 1:S122–9.CrossRefPubMedPubMedCentral
61.
go back to reference Kislov R, Waterman H, Harvey G, Boaden R. Rethinking capacity building for knowledge mobilisation: developing multilevel capabilities in healthcare organisations. Implement Sci. 2014;9(166); doi:10.1186/s13012-014-0166-0. Kislov R, Waterman H, Harvey G, Boaden R. Rethinking capacity building for knowledge mobilisation: developing multilevel capabilities in healthcare organisations. Implement Sci. 2014;9(166); doi:10.​1186/​s13012-014-0166-0.
62.
go back to reference Selby JV, Beal AC, Frank L. The Patient-Centered Outcomes Research Institute (PCORI) national priorities for research and initial research agenda. JAMA. 2012;307(15):1583–4. Selby JV, Beal AC, Frank L. The Patient-Centered Outcomes Research Institute (PCORI) national priorities for research and initial research agenda. JAMA. 2012;307(15):1583–4.
Metadata
Title
Architectural frameworks: defining the structures for implementing learning health systems
Authors
Lysanne Lessard
Wojtek Michalowski
Michael Fung-Kee-Fung
Lori Jones
Agnes Grudniewicz
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Implementation Science / Issue 1/2017
Electronic ISSN: 1748-5908
DOI
https://doi.org/10.1186/s13012-017-0607-7

Other articles of this Issue 1/2017

Implementation Science 1/2017 Go to the issue