Skip to main content
Top
Published in: Head & Face Medicine 1/2018

Open Access 01-12-2018 | Research

The micromass formation potential of human adipose-derived stromal cells isolated from different various origins

Authors: Benedikt Kleineidam, Sonja Sielker, Marcel Hanisch, Johannes Kleinheinz, Susanne Jung

Published in: Head & Face Medicine | Issue 1/2018

Login to get access

Abstract

Background

Adult stem cells appear to be a promising subject for tissue engineering, representing an individual material for regeneration of aged and damaged cells. Especially adipose derived stromal cells (ADSC), which are easily to achieve, allow an encouraging perspective due to their capability of differentiating into miscellaneous cell types. Here we describe the in vitro formation of human subcutaneous, visceral and omental ADSC micromasses and compare their histological attributes while being cultivated on collagen membranes.

Methods

Subcutaneous, visceral and omental fat tissue derived cells were isolated and processed according to standard protocols. Positively stained cells for CD13, CD44 and CD90 were cultivated on agarose in order to study micromass formation using a special method of cell tracking. Stained paraffin-embedded micromasses were analysed morphologically before and after being plated on collagen membranes.

Results

The micromass formation process was similar in all three tissue types. Subcutaneous fat tissue derived micromasses turned out to develop a more homogeneous and compact shape than visceral and omental tissue. Nevertheless all micromasses adhered to collagen membranes with visible spreading of cells. The immune histochemical (IHC) staining of subcutaneous, visceral and omental ADSC micromasses shows a constant expression of CD13 and a decrease of CD44 and CD 90 expression within 28 days. After that period, omental fat cells don’t show any expression of CD44.

Conclusion

In conclusion micromass formation and cultivation of all analysed fat tissues can be achieved, subcutaneous cells appearing to be the best material for regenerative concepts.
Literature
1.
go back to reference Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol biol cell. 2002; 13(12):4279–4295, 2002.CrossRef Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol biol cell. 2002; 13(12):4279–4295, 2002.CrossRef
5.
go back to reference Carlsson J, Yuhas JM. Liquid-overlay culture of cellular spheroids. Recent Results Cancer Res. 1984;95:1–23.CrossRef Carlsson J, Yuhas JM. Liquid-overlay culture of cellular spheroids. Recent Results Cancer Res. 1984;95:1–23.CrossRef
6.
go back to reference Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondro-genesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238(1):265–72.CrossRef Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondro-genesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238(1):265–72.CrossRef
7.
go back to reference Oyajobi BO, Frazer A, Hollander AP, Graveley RM, Xu C, Houghton A, et al. Expression of type X collagen and matrix calcification in three-dimensional cultures of immortalized temperature-sensitive chondrocytes derived from adult human articular cartilage. J Bone Miner Res. 1998;13(3):432–42.CrossRef Oyajobi BO, Frazer A, Hollander AP, Graveley RM, Xu C, Houghton A, et al. Expression of type X collagen and matrix calcification in three-dimensional cultures of immortalized temperature-sensitive chondrocytes derived from adult human articular cartilage. J Bone Miner Res. 1998;13(3):432–42.CrossRef
8.
go back to reference Ruedel A, Hofmeister S, Bosserhoff AK. Development of a model system to analyze chondrogenic differentiation of mesenchymal stem cells. Int J Exp Pathol. 2013;6(12):3042–8 eCollection 2013. Ruedel A, Hofmeister S, Bosserhoff AK. Development of a model system to analyze chondrogenic differentiation of mesenchymal stem cells. Int J Exp Pathol. 2013;6(12):3042–8 eCollection 2013.
9.
go back to reference Genç M, Castro Kreder N, Barten-van Rijbroek A, Stalpers LJ, Haveman J. Enhancement of effects of irradiation by gemcitabine in a glioblastoma cell line and cell line spheroids. J Cancer Res Clin Oncol. 2004;130(1):45–51.CrossRef Genç M, Castro Kreder N, Barten-van Rijbroek A, Stalpers LJ, Haveman J. Enhancement of effects of irradiation by gemcitabine in a glioblastoma cell line and cell line spheroids. J Cancer Res Clin Oncol. 2004;130(1):45–51.CrossRef
11.
go back to reference Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol biol. Cell. 2002;13(12):4279–95. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol biol. Cell. 2002;13(12):4279–95.
12.
go back to reference Huang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, et al. Chondrogenic potential of multipotential cells from human adipose tissue. Plast Reconstr Surg. 2004;113(2):585–94.CrossRef Huang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, et al. Chondrogenic potential of multipotential cells from human adipose tissue. Plast Reconstr Surg. 2004;113(2):585–94.CrossRef
13.
go back to reference Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng. 2007;13(6):1185–95.CrossRef Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng. 2007;13(6):1185–95.CrossRef
22.
go back to reference Neunzehn J, Heinemann S, Wiesmann HP. 3-D osteoblast culture for biomaterials testing. J Dev Biol Tissue Eng. 2013;5(1):7–12. Neunzehn J, Heinemann S, Wiesmann HP. 3-D osteoblast culture for biomaterials testing. J Dev Biol Tissue Eng. 2013;5(1):7–12.
23.
go back to reference Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294(5547):1708–12.CrossRef Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294(5547):1708–12.CrossRef
24.
go back to reference Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol. 1997;137(1):231–45.CrossRef Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol. 1997;137(1):231–45.CrossRef
25.
go back to reference Yamada KM, Geiger B. Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol. 1997;9(1):76–85.CrossRef Yamada KM, Geiger B. Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol. 1997;9(1):76–85.CrossRef
26.
go back to reference Gerber I, Ap Gwynn I, Alini M, Wallimann T. Stimulatory effects of creatine on metabolic activity, differentiation and mineralization of primary osteoblast-like cells in monolayer and micromass cell cultures. Eur Cell Mater. 2005;10:8–22.CrossRef Gerber I, Ap Gwynn I, Alini M, Wallimann T. Stimulatory effects of creatine on metabolic activity, differentiation and mineralization of primary osteoblast-like cells in monolayer and micromass cell cultures. Eur Cell Mater. 2005;10:8–22.CrossRef
27.
go back to reference Sivaraman A, Leach JK, Townsend S, Iida T, Hogan BJ, Stolz DB, et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab. 2005;6(6):569–91.CrossRef Sivaraman A, Leach JK, Townsend S, Iida T, Hogan BJ, Stolz DB, et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab. 2005;6(6):569–91.CrossRef
28.
go back to reference Gigante A, Manzotti S, Bevilacqua C, Orciani M, Di Primio R, Mattioli-Belmonte M. Adult mesenchymal stem cells for bone and cartilage engineering: effect of scaffold materials. Eur J Histochem 2008; 52(3):169–174.CrossRef Gigante A, Manzotti S, Bevilacqua C, Orciani M, Di Primio R, Mattioli-Belmonte M. Adult mesenchymal stem cells for bone and cartilage engineering: effect of scaffold materials. Eur J Histochem 2008; 52(3):169–174.CrossRef
29.
go back to reference Kakudo N, Shimotsuma A, Miyake S, Kushida S, Kusumoto K. Bone tissue engineering using human adipose-derived stem cells and honeycomb collagen scaffold. J Biomed Mast Res A. 2008;84(1):191–7.CrossRef Kakudo N, Shimotsuma A, Miyake S, Kushida S, Kusumoto K. Bone tissue engineering using human adipose-derived stem cells and honeycomb collagen scaffold. J Biomed Mast Res A. 2008;84(1):191–7.CrossRef
32.
go back to reference Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM, et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum. 2002;46(12):3349–60.CrossRef Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM, et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum. 2002;46(12):3349–60.CrossRef
33.
go back to reference Dimitroff C, Lee J, Rafii S, Fuhlbrigge RC, Sackstein R. CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. J Cell Biol. 2001;153(6):1277–86.CrossRef Dimitroff C, Lee J, Rafii S, Fuhlbrigge RC, Sackstein R. CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. J Cell Biol. 2001;153(6):1277–86.CrossRef
34.
go back to reference Saalbach A, Haustein UF, Anderegg U. A ligand of human thy-1 is localized on polymorphonuclear leukocytes and monocytes and mediates the binding to activated thy-1-positive microvascular endothelial cells and fibroblasts. J Invest Dermatol. 2000;115(5):882–8.CrossRef Saalbach A, Haustein UF, Anderegg U. A ligand of human thy-1 is localized on polymorphonuclear leukocytes and monocytes and mediates the binding to activated thy-1-positive microvascular endothelial cells and fibroblasts. J Invest Dermatol. 2000;115(5):882–8.CrossRef
35.
go back to reference Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immuno-phenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24(2):376–85.CrossRef Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immuno-phenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24(2):376–85.CrossRef
Metadata
Title
The micromass formation potential of human adipose-derived stromal cells isolated from different various origins
Authors
Benedikt Kleineidam
Sonja Sielker
Marcel Hanisch
Johannes Kleinheinz
Susanne Jung
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Head & Face Medicine / Issue 1/2018
Electronic ISSN: 1746-160X
DOI
https://doi.org/10.1186/s13005-018-0178-0

Other articles of this Issue 1/2018

Head & Face Medicine 1/2018 Go to the issue